κατὰ τὸ διατονικὸν γένος συναναπληρώσας φθόγγοις ἀναλόγοις , οὕτως τὴν ὀκτάχορδον ἀριθμοῖς συμφώνοις ὑπέταξε , διπλασίῳ , ἡμιολίῳ , ἐπιτρίτῳ | ||
πρὸς τὰς ἁρμονίας κέχρηνται . ἐνίοτε μὲν οὖν αὗται τέλειον ὀκτάχορδον ἐπλήρουν , ἔσθ ' ὅπη δὲ καὶ μεῖζον ἑξατόνου |
καὶ Σελήνη ἑξάδα , ἡ δὲ ἑβδομὰς κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης | ||
. Κρόνος δὲ καὶ Ζεὺς ἀνὰ μοίρας ἐννέα , Τὴν ὀγδοάδα δ ' ἔσχε τῶν μοιρῶν Ἄρης Ἔμπροσθεν καὶ ὄπισθεν |
μέρη τί βούλεται ἐνδείκνυσθαι ; Ῥητέον οὖν ὡς ὅτι τὴν δωδεκάδα ταύτην διεῖλε διχῇ , εἴς τε μονάδα καὶ ἑνδεκάδα | ||
Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ θέμα ἔτος λαʹ : εὑρίσκονται |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
δὲ εἶδος οὐ παρέργως ἐπισκεπτέον . τὸ μὲν δὴ δεύτερον ἐμφανεστάτην ἔχει προνομίαν : αἰεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος | ||
: ἀλλ ' ὅσα μὲν ἥμερα καὶ ἄγρια λέγεται ταύτην ἐμφανεστάτην καὶ μεγίστην ἔχει διαφοράν , οἷον συκῆ ἐρινεός , |
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
τὸ διὰ στρουθίου καλούμενον , ὧν καὶ τὰς γραφὰς ὑμῖν ὑπέταξα πρὸς τὸ μὴ δεῖσθαι ζητεῖν αὐτὰς ἐξ ἑτέρων εὑρίσκειν | ||
τὸ τὰς εἰσόδους αἰνιγματώδεις ἐσχηκέναι δοκιμάσας καὶ ἀνευρὼν καὶ συγκομίσας ὑπέταξα , ὅπως οἱ φιλόκαλοι διὰ πολλῶν εἰς μίαν δύναμιν |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
τεσσάρων , δι ' ὀξειᾶν δὲ τὴν διὰ πέντε , σύστημα δὲ ἀμφοτέρων συλλαβᾶς τε καὶ δι ' ὀξειᾶν ἡ | ||
πασῶν , ἀλλὰ πρὸς τὴν διεζευγμένην . τό τε πᾶν σύστημα οὔτε κατὰ διάτονον γένος ἁρμόζεται : οὔτε γὰρ τριημιτονιαῖον |
πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
: μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
. ἔστι καὶ εἶδος φυτοῦ , περὶ οὗ Βῶλος ὁ Δημοκρίτειος . ὅτι Θεόφραστος ἐν τῷ περὶ φυτῶν ἐνάτῳ , | ||
. . ἔστι καὶ εἶδος φυτοῦ περὶ οὗ Βῶλος ὁ Δημοκρίτειος , ὅτι Θεόφραστος ἐν τῶι Περὶ φυτῶν ἐνάτωι : |
καὶ βραχὺ τῆς διαλεκτικῆς τάττων ἰδίωμα , διὰ δὲ τῆς ἐξαπλώσεως καὶ ἐκτάσεως τῶν δακτύλων τὸ πλατὺ τῆς ῥητορικῆς δυνάμεως | ||
καὶ βραχὺ τῆς διαλεκτικῆς τάττων ἰδίωμα , διὰ δὲ τῆς ἐξαπλώσεως καὶ ἐκτάσεως τῶν δακτύλων τὸ πλατὺ τῆς ῥητορικῆς δυνάμεως |
τάττεται τὸ μέλος , κατὰ δὲ τὰ μήκη καὶ τὰς βραχύτητας ὁ χρόνος . οὗτος δὲ γίγνεται ῥυθμός , εἴτε | ||
πολλὰς ἐχόντων διαφορὰς οὐ μόνον περὶ τὰ μήκη καὶ τὰς βραχύτητας ἀλλὰ καὶ περὶ τοὺς ἤχους , ὑπὲρ ὧν ὀλίγῳ |
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
τὸ βαρύ . ὑποκείσθω δὲ καὶ τοὺς τοῖς ἑξῆς φθόγγοις συμφωνοῦντας διὰ τῆς αὐτῆς συμφωνίας ἑξῆς αὑτοῖς εἶναι . ἀσύνθετον | ||
ὀκτακισχιλίους ἡ διαφορά ἐστι , πρὸς δύο καὶ ταῦτα ἄνδρας συμφωνοῦντας ἀλλήλοις , τῶν μὲν λεγόντων τὸ τῆς Ἰνδικῆς πλάτος |
παρεμφάσεως πρὸς Στησαγόραν βʹ , Περὶ τῶν προσηγορικῶν βʹ . Λογικοῦ τόπου περὶ τὰς λέξεις καὶ τὸν κατ ' αὐτὰς | ||
πρὸς Ἀρισταγόραν αʹ , Συνημμένων πιθανῶν πρὸς Διοσκουρίδην δʹ . Λογικοῦ τόπου τοῦ περὶ τὰ πράγματα Σύνταξις πρώτη Περὶ ἀξιωμάτων |
ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ | ||
οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ |
. ἐκομίζοντο ἐπ ' οἴκου : ἐπεραιοῦντο . ὑπερενεγκόντες : ὑπερβιβάσαντες . ʃ τὸ ἔργον ἡρωϊκόν φ ὅπως μὴ περιπλέοντες | ||
δὲ τοῦ ἀπὸ ταύτης ἕως τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιβάσαντες ἕξομεν τὴν τρίτην συνημμένων τόνῳ βαρυτέραν . τὸ δὲ |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν | ||
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα . |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
ἐπὶ τοῖς ὀκτακοσίοις ἀπὸ χρυσοῦ , ἕλκοντας ἐς δισμυρίας καὶ δεκατέσσαρας καὶ τετρακοσίας λίτρας . ἀφ ' ὧν εὐθὺς ἐπὶ | ||
μὲν ἄμετρον ἐπαγόμενος , ναῦς δὲ χιλίας διακοσίας ἑπτὰ ἢ δεκατέσσαρας καὶ πεζῇ μὲν ἐν Πλαταιαῖς νικηθείς , ναυτικῇ δὲ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
μᾶλλον καὶ σφαιρικοὶ λεγέσθωσαν , ἑνὶ πλείονι διαστήματι αὐξηθέντες ἀπὸ κυκλικῶν καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ | ||
τὸ ζῴδιον λέγω , τυγχάνοντας καὶ ἐκ τῶν δυὸ τῶν κυκλικῶν συνδέσμων , ἐκλείπουσι κατὰ τομὴν πρὸς μοίρας τῶν δακτύλων |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
. δευτέρᾳ δὲ ἀπὸ ταύτης ὀλυμπιάδι προσετέθη καὶ ὁ δέκατος ἀθλοθέτης . ἐπὶ δὲ τῆς τρίτης καὶ ἑκατοστῆς φυλαί τε | ||
ἀθροίζεται ὡς ἐς βασιλίδα πόλιν πανηγυρίζουσαν . θεατὴς δὲ καὶ ἀθλοθέτης σὺν τοῖς λοιποῖς ἱερεῦσιν , οὓς ἐκ περιόδων χρόνον |
τρίτον ζυγῖται , τὸ τέταρτον θῆτες : οἱ μὲν οὖν πεντακοσιομέδιμνοι οὐκ ἠναγκάσθησαν εἰσελθεῖν εἰς τὰς ναῦς ὡς μεγίστην τιμὴν | ||
καὶ τοὺς ἱππέας καὶ τοὺς θῆτας . οἱ μὲν οὖν πεντακοσιομέδιμνοι ἦσαν εὔποροι , οἱ δὲ ἱππεῖς ἧττον μὲν τῶν |
, στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
πεφύκασιν ἀριθμέεσθαι ἀτρεκέως . ” τὸν γὰρ ἐνιαυτὸν τξεʹ ἡμέραις ἀριθ - μούντων ἡμῶν πλείονας ἔχει : ἔχει γὰρ καὶ | ||
καὶ εἰς τὰς τῶν παλαιῶν συναναγνώσεις , τέλος ἐπιθεῖναι τῇ ἀριθ - μητικῇ εἰσαγωγῇ τὸ ἁρμόζον ἅμα καὶ συμμετρότατον . |
, γίγνεται δὲ ὁ ἑπτὰ ἐκ μονάδων τοσῶνδε καὶ τῆς ἑπτάδος . τίς οὖν ὁ τὴν ἑπτάδα ταῖς μονάσιν ἐπιφέρων | ||
φρονήσει δὲ οὐδεμίαν ὁρῶντες ἐν σώμασιν ὁμοιότητα εὐλόγως διὰ τῆς ἑπτάδος * * * ὁρῶμεν τὸν σοφὸν διχῶς τὸν περὶ |
οὐκ ἐλαχίστης . παρακολούθημα λέγει ὅτι οἱ μὲν διαγώνιοι τοῦ διαγράμματος μονάδες εἰσίν : ἐν μὲν γὰρ τῇ ἀρχῇ ἁπλῆ | ||
πρᾶγμα τὸν πολυπλασιασμὸν ὑπηγόρευσεν , ὥσπερ ἐν ἁρμονικῇ μεταβολῇ τοῦ διαγράμματος ὅλου συνεπιτεινομένου τῷ πρώτῳ τῶν ἀριθμῶν . Ὁ μὲν |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
τοσούτους γε ἂν ἀποτέμοι ὥστε μή τινας ἀπολείπεσθαι ὑψηλοτέρους τῶν ἀτμήτων ἀεὶ μενόντων . τοῦτο γὰρ δὴ τὸ σχετλιώτατον τῆς | ||
ταῖς χρείαις διαφέροντας : ὁ μὲν γὰρ ἐκ λίθων λογάδων ἀτμήτων συνῳκοδόμηται καὶ ἐν ὑπαίθρῳ παρὰ ταῖς τοῦ νεὼ προσβάσεσιν |
τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
οἱ προστιθέντες ἐνταῦθα τὸ Ἐτεόκλεις ἀρχηγέτα ἀμαθεῖς εἰσι καὶ τῶν μέτρων καὶ τῆς ὀρθῆς τοῦ λόγου συντάξεως : τὸ γὰρ | ||
. Εἰ δὲ βούλοιο καὶ τὸν ϲταθμὸν τῶν ὑγρῶν εἰδέναι μέτρων , πάμπολλοι μὲν αἱ τῶν ὑγρῶν οὐϲιῶν εἰϲιν κατὰ |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
, πολυμερές τε καὶ ἀμερές . περὶ μὲν οὖν τοῦ πολυμεροῦς εἴρηται : τὸ δὲ ἀμερὲς αὐτῆς καὶ ἁπλοῦν τάσις | ||
αλ [ ] ˈ ἐπιλε [ Τῆς περὶ μέλους ἐπιστήμης πολυμεροῦς οὔσης καὶ διῃρημένης εἰς πλείους ἰδέας μίαν τινὰ αὐτῶν |
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
, ὅση δὲ ἐναντία , σμικράν . τὰ δὲ περὶ συμφωνίας αὐτῶν ἐν τοῖς ὕστερον λεχθησομένοις ἀνάγκη ῥηθῆναι . Τέταρτον | ||
σύμπηξις , θάτερον δὲ θατέρου ὂν διάφορον κατ ' οἰκονομίαν συμφωνίας ἐστὶν ἁρμονία : παραπλησίως καὶ ὁ κόσμος κατὰ τὴν |
αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
μέντοι ἐκ τῆς τῶν πρὸς τὰ φαινόμενα κανόνων πραγματείας τὰς μοιρικὰς κινήσεις ἐξετάζειν : αἱ γὰρ καθολικαὶ ὑποστάσεις καὶ χρονογραφίαι | ||
οὕτως ποιήσῃς , κρείσσων ἐνεργήσεις . ποιεῖ δὲ καὶ πρὸς μοιρικὰς ἀνεπιτυχίας , ἀπραξίας καὶ τὰ τοιαῦτα . Τῆς οὖν |
τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |
, καὶ τὴς μεταξύτητας κατὰ τὸ διατονικὸν γένος συναναπληρώσας φθόγγοις ἀναλόγοις οὕτως τὴν ὀκτάχορδον ἀριθμοῖς συμφώνοις ὑπέταξε , διπλασίῳ ἡμιολίῳ | ||
τὸ ἀκόλουθον διασωθῇ , τουτέστι τὸ ἐν τοῖς ὁμοίοις καὶ ἀναλόγοις καὶ ἰσομήκεσι καὶ μίαν ἔχουσι τάσιν ὁμότονον . ἔπειτα |
ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
[ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
ἀρχῆς τὸ ἦθος ἐγέννησεν ἐπὶ τῷ τῆς Ἀθηνᾶς νόμῳ : προσληφθείσης γὰρ μελοποιίας καὶ ῥυθμοποιίας , τεχνικῶς τε μεταληφθέντος τοῦ | ||
τοῦτο ἐν ἐπιτρίτῳ λόγῳ , μεθ ' ὃ μιᾶς χορδῆς προσληφθείσης τὸ μὲν ὅλον διά - στημα παρὰ τὴν αὐτὴν |
: λοιπὸν δὲ ὁ θ πρὸς τὸν η τονιαῖον ἐν ἐπογδόῳ , ὅπερ μέτρον κοινὸν πάντων τῶν ἐν μουσικῇ λόγων | ||
καὶ δίεσιν οὐχ ἡγοῦντο . ὁ δὲ τόνος εὑρίσκετο ἐν ἐπογδόῳ λόγῳ ἔν τε δίσκων κατασκευαῖς καὶ ἀγγείων καὶ χορδῶν |
ΔΕΖ μεῖζον τοῦ ΓΑΒ . Εἰλήφθω γὰρ τὰ κέντρα τῶν περιγραφομένων αὐτοῖς κύκλων τὰ Η Θ , κάθετοι ἤχθωσαν αἱ | ||
τούτων μερισμός , ἤδη μέν πως διισταμένων , οὔπω δὲ περιγραφομένων . Ἀλλ ' εἰ ταῦτα οὕτω φύσει διέστηκεν , |
Παλλάδος ] εἴσθεσις διπλῆς ἐν ἐκθέσει τοῦ δράματος ἀμοιβαίας τὰς περιόδους ἔχουσα . εἰσὶ δὲ τὰ μὲν τοῦ χοροῦ κῶλα | ||
Εἴσθεσις μέλους ἑτέρου περιοδικὴ , εἰς τέσσαρας στροφὰς διαιροῦσα τὰς περιόδους , ὧν ἡ πρώτη στροφὴ κώλων δέκα . ὧν |
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
διπλασιασμός , ὅτ ' ἂν τὴν προειρημένην κατὰ βάθος πύκνωσιν μανότητι μετατάττομεν ἢ οἱ παρεντεθέντες ἐξελίξωσι κατὰ βάθος . Ἀποκαταστῆσαι | ||
ἀλλὰ πάντες γε τὸ ἓν τοῖς ἐναντίοις σχηματίζουσιν οἷον πυκνότητι μανότητι καὶ τῷ μᾶλλον καὶ τῷ ἧττον , ταῦτα δέ |
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
καὶ αὑτῷ συμφωνεῖν ἠνάγκαζεν , οὐδὲν ἄτοπον , ὥσπερ τῶν διαγραμμάτων ἐνίοτε τοῦ πρώτου σμικροῦ καὶ ἀδήλου ψεύδους γενομένου , | ||
δὲ τὸ συνεχὲς οὐχ ὡς οἱ ἁρμονικοὶ ἐν ταῖς τῶν διαγραμμάτων καταπυκνώσεσιν ἀποδιδόναι πειρῶνται , τούτους ἀποφαίνοντες τῶν φθόγγων ἑξῆς |
πόνων ἀρωγήν , ἀνῆκεν τοῖς ἐκγόνοις : θρεψαμένη δὲ καὶ αὐξήσασα πρὸς ἥβην ἄρχοντας καὶ διδασκάλους αὐτῶν θεοὺς ἐπηγάγετο : | ||
, ἠγάπησε δὲ τῶν Ἀθηναίων ἡ πόλις καὶ θρέψασα καὶ αὐξήσασα καὶ κοσμήσασα πανταχῆ διέπεμψεν . οὗτοι συγκρύπτουσι μὲν δυσγένειαν |
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
πολλοὺϲ οἶδα τελέωϲ αὐτοῦ ἀπαλλαγένταϲ ἐπὶ τοῖϲ ἐμέτοιϲ . Περὶ ἡμιτριταίου . ὁ ἡμιτριταῖοϲ προϲαγορευόμενοϲ πυρετὸϲ μιχθέντοϲ τοῦ ϲηπομένου φλέγματοϲ | ||
διὰ τοὺς παρεμπίπτοντας παροξυσμοὺς , ἀγνοοῦσιν ὅτι τοῦτο ἐστὶ τοῦ ἡμιτριταίου ἴδιον : καὶ γὰρ περὶ τὰς ἕξ που ἢ |
ἔχει ἀλλ ' ἔτι γίνεται : τὸ δὲ γινόμενον οὐκ ἀπήρτισται . σπουδὴ δὲ καὶ τοῦδε : ἡ τούτου δὲ | ||
ταύτηι , ἧι ἡ μὲν σφαῖρα κυκλοτερῶς πανταχόθεν εἰς λειότητα ἀπήρτισται , τὸ σφαιροειδὲς δὲ κύκλος , οὐ μὴν ἴσος |
. Κουρήτιδα δὲ ἰδίως καὶ Ὀρφεὺς καὶ Πυθαγόρας αὐτὴν τὴν ἐννεάδα ἐκάλουν , ὡς Κουρήτων ἱερὰν ὑπάρχουσαν τριῶν τριμερῆ , | ||
κατὰ παρωνυμίαν τοῦ ἕν : ὅτι δὲ οὐδὲν ὑπὲρ τὴν ἐννεάδα ὁ ἀριθμὸς ἐπιδέχεται , ἀλλ ' ἀνακυκλεῖ πάντα ἐντὸς |
τὸ διπλάσιον αἴτιον τῶ ἡμισέω ἦμεν καὶ τὸ ἡμίσεον τῶ διπλασίω ἦμεν ‖ καὶ τὸ μεῖζον δὲ τῷ μείονι τοῦ | ||
κατὰ τὸν ἐπίτριτον ἀριθμὸν ὑπερέχοντα , τὸν δὲ κατὰ τὸν διπλασίω πλεονάζοντα συνίσταμεν . καθόλου δὲ εἰπεῖν , εἰ μεταξὺ |
φύσιν μεθεστακὼς εἰς ὑπερβάλλον ὕψος καὶ πάθος καὶ ξένων καὶ ὑπερφυῶν ὅρκων ἀξιοπιστίαν , καὶ ἅμα παιώνειόν τινα καὶ ἀλεξιφάρμακον | ||
ἐθεάσω νεῶν ἐρύσεις ἐκ θαλάττης ἄνω , καὶ λίθων ἀγωγὰς ὑπερφυῶν κατὰ μέγεθος , παντοδαποῖς ἑλιγμοῖς καὶ ἀναστροφαῖς ὀργάνων : |
οἱ καταλαμβάνοντες Ὠρεόν , οὗτοί εἰσιν οἱ κατασκάψαντες Πορθμόν . γενῶν δέ , ἂν ποτὲ μὲν ἀρσενικὸν ὄνομα προθῇς , | ||
ἐν γὰρ τῷ λέγειν αἱ διαι - ρέσεις γίνονται τῶν γενῶν εἰς τὰ εἴδη δηλοῖ τὰς διαιρετικάς , ἐν δὲ |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
εὖ ἀκρότητος . οἱ δὲ ἀποροῦντες πρὸς τὸ τὰς ἀρετὰς μεσότητας εἶναι καὶ λέγοντες , εἰ μήτε ἡ ὑπερβολὴ μήθ | ||
τούτων , τὸ μὲν συμπληροῦν τὰ διαστήματα καὶ παρεντάττειν τὰς μεσότητας , εἰ καὶ μηδεὶς ἐτύγχανε πεποιηκὼς πρότερον , ὑμῖν |
καὶ κʹ μοίρᾳ τοῦ Σκορπίου συνανατέλλει , ὁ δὲ ἔσχατος ἀναφερόμενος καὶ νοτιώτερος ὢν τῶν ἐν τῇ κεφαλῇ συνανατέλλει [ | ||
ὁ μὲν γὰρ αἶνός ἐστιν λόγος κατ ' ἀναπόλησιν μυθικὴν ἀναφερόμενος ἀπὸ ἀλόγων ζῴων ἢ φυτῶν πρὸς ἀνθρώπων παραίνεσιν καί |
μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
, ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
οἷόν τε ἰσχνότατον καὶ ἀσθενέστατον , μέχρις ἂν ᾗ δυνατὸν κατεργάσωνται τάς τε ἡδονὰς καὶ τὰς λύπας . βραδὺ δὲ | ||
ἀλήθουσιν , ἕως ἂν εἰς σεμιδάλεως τρόπον τὸ δοθὲν μέτρον κατεργάσωνται . προσούσης δ ' ἅπασιν ἀθεραπευσίας σώματος καὶ τῆς |
ὂν κατὰ τὴν σύνθεσιν τῶν στοιχείων καὶ αὐτῇ τῇ προφορᾷ διογκοῖ τὸ στόμα . [ , ] ὁ γὰρ Θεόκριτος | ||
, καὶ μᾶλλον εἰς ἀραιοπόρους ἐμπίπτει τοὺς βουβῶνας , καὶ διογκοῖ τούτους . Ἔστι μὲν οὖν καὶ αὕτη πιθανὴ ἡ |
ἡγουμένων δὲ τῶν δύο Τραχινίων , διὰ δυσβάτου στρατὸς Περσικὸς διελήλυθε , μυριάδες τέσσαρες , καὶ κατὰ νώτου γίνονται τῶν | ||
, μετὰ ταῦτα δ ' ἡ μὲν παρυπάτη μένει , διελήλυθε γὰρ τὸν αὑτῆς τόπον , ἡ δὲ λιχανὸς κινεῖται |
, γυμνάσιον ζωῆς , σύστημα θεόκτιστον , σελήνης παννύχισμα , ἀσύνοπτον θεώρημα , ὄμβρων τιθήνη , καρπῶν φύλαγμα καὶ μήτηρ | ||
μέσῳι κα [ ! ! ! ! ] υτων ? ἀσύνοπτον [ ! ! ! θεωροῦντας ] , ὅτι οὐ |
μόνον οὐ συνεργεῖ πρὸς τὴν γνῶσιν τῆς Ἡρακλειτείου φιλοσοφίας ἡ σκεπτικὴ ἀγωγή , ἀλλὰ καὶ ἀποσυνεργεῖ , εἴγε ὁ σκεπτικὸς | ||
προσηκόντων . ἔστι δὲ ἡ βίβλος εὕρημα Πυθαγόρου τοῦ φιλοσόφου σκεπτικὴ προγνώσεως δι ' ἀριθμῶν , ἣν διερχόμενος εὑρήσεις οὕτως |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
πολὺ καὶ ὀλίγον , ἔστι δὲ ὅτε εἰς ὑπερέχον καὶ ὑπερεχόμενον , ὅταν ἐπὶ τῆς πρώτης δυάδος παραλαμβάνηται , συμβολικῶς | ||
: τινὰ γὰρ καὶ διχῶς ἀποδίδοται , οἷον τὸ ὑπερέχον ὑπερεχόμενον ὑπερέχει καὶ τὸ ὑπερέχον ὑπεροχῇ ὑπερέχει . τέταρτον ἵνα |
τὰς ἀπροσδιορίστους ἰδεῖν : εἰ διαιροῦσιν ἐκεῖναι , ἐκείναις δὲ ἀναλογοῦσιν αὗται , δῆλον ὅτι καὶ αὗται διαιρήσουσιν , ποῖαι | ||
ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε καὶ τετράγωνός ἐστιν , ἀμφότερα |
δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς ὑπὸ Ἀπολλωνίου κατὰ | ||
μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ γὰρ μυριάδες ἐπὶ |
καὶ ἑκατὸν εἶναι [ . κόσμους ] συντεταγμένους κατὰ σχῆμα τριγωνοειδές , οὗ πλευρὰν ἑκάστην ἑξήκοντα κόσμους ἔχειν . τριῶν | ||
ἀλλὰ τρεῖς καὶ ὀγδοήκοντα καὶ ἑκατὸν εἶναι συντεταγμένους κατὰ σχῆμα τριγωνοειδές , οὗ πλευρὰν ἑκάστην ἑξήκοντα κόσμους ἔχειν : τριῶν |
μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
ἐριστικοὶ ἀλλὰ τὸ ὅλον τοῦτο πειραστικοί . ὁ δέ γε Βρύσων κατὰ κοινόν τι τετραγωνίζειν ἐπιχειρῶν καὶ οὐ κατὰ τὸ | ||
συμπεράσματα , οἱ δὲ παρὰ τὰς ἐν ἰατρικῇ Ὥσπερ ὁ Βρύσων ἐλέγχεται μὴ τετραγωνίζων τὸν κύκλον διὰ τὸ μὴ ἐκ |
ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
ἐντὸς τῶν Ἡρακλείων στηλῶν ] κειμένης θαλάσσης , ἣν ὁ περιέχων τὴν γῆν ὠκεανὸς [ πρὸς ] ἑσπέρας ἐπιτελεῖ , | ||
διὰ τὸ τὰς δεκάτας ἐπέχειν , περὶ τὰ υ που περιέχων ἔτη καταλαμβάνεται . Τούτοις δ ' ἀκολούθως ἐζητήσαμεν τὰς |
ἁρμόζει ταῖς κατασκευαῖς , τὰ δὲ ἀξιώματα ταῖς ἀποδείξεσιν . ἐφεξῆς οὖν ἡ ἀπόδειξις , καί φησι : τὰ τῷ | ||
πόλον , ἀρκτικὴν δὲ αὐτὴν ὀνομάζουσιν : ἡ δ ' ἐφεξῆς εὔκρατός ἐστιν : εἶτα τὴν τρίτην διακεκαυμένην καλοῦσιν : |
γίνεσθαι , περὶ καρκίνον γενομένου τοῦ ἡλίου , περὶ μεσημβρίαν ἀτρεκῆ ἐπὶ τριακοσίους τὴν διάμετρον σταδίους μηνύει σαφῶς , ὅτι | ||
δὲ ὅμως οὐδὲν καὶ τούτων οὕτως ἐχόντων συγγενομένους ἡμᾶς τὴν ἀτρεκῆ διάπειραν ἀλλήλων λαβεῖν : δύναιτο γὰρ ἂν καὶ τὰ |
πάντα κατὰ συμφωνίαν . πῶς ; ἔστιν αὑτοῖς ἃ διὰ τεττάρων ἔχει κοινωνίαν , διὰ πέντε , διὰ πασῶν πάλιν | ||
τετρακοσίων , τῶν δὲ μαγείρων οἱ διαφέροντες ὀψαρτυτικαῖς φιλοτεχνίαις ταλάντων τεττάρων , οἱ δὲ ταῖς εὐμορφίαις ἐκπρεπεῖς παράκοιτοι πολλῶν ταλάντων |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
πεττεία πλοκή . ἀγωγῆς μὲν οὖν εἴδη γ , εὐθεῖα ἀνακάμπτουσα περιφερής : εὐθεῖα μὲν οὖν ἐστιν ἡ διὰ τῶν | ||
πάλιν τοίνυν ἀπὸ τοῦ ἄκρου τοῦ Γ ἐπὶ τὸ Β ἀνακάμπτουσα ἀφίξεταί ποτε ἐπὶ τὸ Α , καὶ τοῦτο ἔσται |
οἱ παρεφθαρμένοι καὶ μεμυκότες ἑπτὰ στάχυες . ἥξει μὲν οὖν ἑπταετία προτέρα πολλὴν καὶ ἄφθονον ἔχουσα εὐκαρπίαν , πλημμύραις μὲν | ||
κατὰ τὴν τῶν ὀνειράτων σύγκρισιν ἐνέστη προτέρα τῆς εὐθηνίας ἡ ἑπταετία , τὸ πέμπτον | τῶν καρπῶν ἀνὰ πᾶν ἔτος |