| ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
| αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
| καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
| ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
| ἔφη : Κοινῶς ποιητὰς ἔθος ἐστὶν καλεῖν , καὶ τοὺς περιττοὺς τῇ φύσει καὶ τοὺς κακούς : ἔδει δὲ κρίνειν | ||
| δὲ ὅτι καὶ ἡ τοῦ μαθηματικοῦ ἀριθμοῦ ἀρχὴ πάντας τοὺς περιττοὺς καὶ τοὺς ἀρτίους διπλασιάζουσα τὸν ἄρτιον ὑφίστησι : καὶ |
| ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
| τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
| ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
| ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
| σφοδρὸν ὁδοιπορεῖ νόμον . Τούτους δὲ τοὺς διηνεκῶς οὐρανῷ τελουμένους φθόγγους ἀγνοοῦμεν ἢ διὰ τὴν ἀπὸ πρώτης γονῆς συνήθειαν ἐνδελεχῶς | ||
| “ οὐκ αἰσχύνῃ , ” ἔφη , “ τοὺς μὲν φθόγγους τῷ ξύλῳ προσαρμόττων , τὴν δὲ ψυχὴν εἰς τὸν |
| διάνοιαν καὶ τοῖς ὀνόμασι διαφέρουσιν . Ἐπεὶ γοῦν δύο μὲν κανόνας τῶν εἰς ην ὀνομάτων , ὥς φαμεν , ὁ | ||
| φαίνεσθαι , ἃ δὴ καὶ φανδούρους καλοῦσιν οἱ πολλοὶ , κανόνας δ ' οἱ Πυθαγορικοὶ , καὶ τὰ τρίγωνα τῶν |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| δʹ εʹ Ϛʹ ζʹ ηʹ θʹ ιʹ , Πρὸς τοὺς ὁρισμοὺς αʹ , Περὶ ὀδμῶν αʹ , Περὶ οἴνου καὶ | ||
| ὅρος καὶ ἑτερόριστος : ἑτερόριστος μὲν ὅτι πάντας τοὺς ἄλλους ὁρισμοὺς ὁρίζεται , αὐθόριστος δὲ ὅτι καὶ ἑαυτὸν σὺν ἐκείνοις |
| καὶ τὰ μὴ γραφόμενα ἔστιν εὑρίσκειν : εὑρήσεις δὲ τοὺς συλλογισμοὺς καὶ ἀπὸ αἰτιῶν καὶ ἀπὸ τεκμηρίων , πάντας δὲ | ||
| . Φανερὸν οὖν ἐκ τῶν εἰρημένων οὐ μόνον ἐνδέχεσθαι τοὺς συλλογισμοὺς πάντας γίνεσθαι κατὰ τὴν εἰρημένην μέθοδον , ἀλλὰ καὶ |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| οὖν δέπας φασὶν εἶναι τοιοῦτον . δύναται δὲ καὶ δύο πυθμένας ὑποτίθεσθαι , τὸν μὲν οἷον τοῦ ποτηρίου φέροντα τὸν | ||
| τῷ ὀνόματι ὀνόμαζε . ὥστε τοῦ ἐπιμεροῦς πυθμήν ἐστι . πυθμένας , ὡς ἤδη εἰρήκαμεν , καλεῖ τοὺς ἐσχάτους ἀριθμούς |
| λεγόντων οἱ μὲν ἁπλᾶς ἔλεγον καὶ ὁμογενεῖς , οἱ δὲ συνθέτους καὶ ἀνομογενεῖς καὶ ἐναντίας , κατὰ δὲ τὸ ἐπικρατοῦν | ||
| λόγῳ μεταλαμβάνειν τὰς τοιαύτας τῶν ἀντωνυμιῶν εἴς τε ἁπλᾶς καὶ συνθέτους , τὰ νῦν περιγραφομένης τῆς πολλῆς παραθέσεως ὑπὲρ τοῦ |
| ἐν εἰσθέσει μονόμετρον ἰαμβικόν , μεθ ' ὃ ἔκθεσις εἰς στίχους ἰαμβικοὺς ἀκαταλήκτους τριμέτρους παʹ . Γ ἀλλ ' οὐ | ||
| τοῦ Διονυσίου καυχωμένου περὶ τῶν ἰδίων ποιημάτων , καί τινας στίχους τῶν δοκούντων ἐπιτετεῦχθαι προενεγκαμένου , καὶ ἐπερωτῶντος Ποῖά τινά |
| λέγονται μερικαὶ γνώσεις , οὕτω καὶ εἰσὶ καὶ καθ ' ὅρους μόνον βεβήκασι καὶ ἄνευ συνθέσεως ἐν ἑνὶ τῷ ὑποκειμένῳ | ||
| γὰρ μεταπίπτειν . Θέσει ἄρα . , ] διὰ τοὺς ὅρους . κύκλος γὰρ τῇ θέσει καὶ τῷ μεγέθει δεδόσθαι |
| οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , εἶτα διπλασίους καὶ τριπλασίους τούτων καὶ ἐπ ' ἄπειρον , ἐπιτριμερῶν δὲ ἑπτὰ | ||
| ἐπὶ μιᾶς εὐθείας ἐφεξῆς τούς τε διπλασίους ἐκτάττων καὶ τοὺς τριπλασίους , πρῶτον μὲν ἰσχυρίζεται τῇ λεγομένῃ κατὰ μῆκος σχίσει |
| καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
| ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
| ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν ἐξ ὑπαρχῆς ὁ ι πρὸς | ||
| . ἐνταῦθα ὑπεμφαίνει , ὅτι σιωπὴν ἐδίδασκεν . ἔδει ] εὐτάκτους ὄντας , νόμιμον ἦν , χρεία ἦν . ἢ |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| ἐν τῷ Πρὸς τοὺς γραμματικοὺς καὶ ἐν τῷ Πρὸς τοὺς φυσικοὺς ὑπομνήματι παρεστήσαμεν : οὐκ ἄρα δυνατόν ἐστι τοῖς γεωμέτραις | ||
| Οἱ δὲ τὸ ὂν ἀντὶ τῆς ἀρχῆς λαμβάνοντες οὓς καὶ φυσικοὺς εἰπεῖν οὐκ ὀκνήσειεν ἄν τις , οὕτως λέγοντες τὸ |
| δεῖξαι . Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες καὶ πολυγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις . | ||
| ἐφεξῆς ἀπὸ μονάδος ἀριθμούς , οὕτως καὶ πυραμίδων τοὺς ἐφεξῆς πολυγώνους καθ ' ἕκαστον . ἀνάλογος δ ' ἔσται καὶ |
| ἐπειδὰν δὲ τὰ δέκα ἔτη διατελέσωσιν , ἐξέρχονται εἰς τοὺς τελείους ἄνδρας . ἀφ ' οὗ δ ' ἂν ἐξέλθωσι | ||
| ἐκλέγου δὲ τὰ ἀπὸ μιᾶς ῥίζης ἔχοντα τοὺς ἰδίους κλάδους τελείους . Ἀναγαλλίς : διττόν ἐστιν εἶδος αὐτῆς διαφέρον ἄνθει |
| . καί εἰσι μὲν τὸ μέγεθος τῶν παρὰ τοῖς Ἕλλησι διπλασίους , ὤκιστοι δὲ τὸ τάχος . εἰσὶ δὲ πυρρότριχες | ||
| τὸν ι . ἐκθοῦ οὖν ἐν τῷ δευτέρῳ στίχῳ τοὺς διπλασίους : β , δ , Ϛ , η , |
| Τάνταλον , καὶ θαυμάσαντες ὅτι τοῦ παιδὸς αὐτοῦ κατεφρόνησε , συντιθέασι τὰ κρέα , καὶ ἀποτελοῦσι σῶον τὸν Πέλοπα . | ||
| : σέ ποτε Διὸς ἀνὰ πύματα νεαρὲ κόρε νεβροχίτων . συντιθέασι δέ τινες καὶ ἑτέρῳ τρόπῳ τὸ τετράμετρον , ὥστε |
| καὶ ἐλλείψεις τοῦ δέοντος : ἀλλ ' ὅμως οὔτε τοὺς μέσους σώφρονας λέγομεν οὔτε τοὺς ὑπερβάλλοντας ἀκολάστους . εἰ δὲ | ||
| - τοῦ , πορφυραῖ δὲ ἄρα στιγμαὶ τοὺς ὀφθαλμοὺς αὐτῷ μέσους ἐς κάλλος γράφουσιν . ὁ δὲ τοξότης ἐν τῇ |
| ἂν μὴ λάβωσιν ; ἐχέτωσαν οὗτοι τὴν εἱμαρμένην : τοὺς πλανήτας προσκυνεῖν οὐ βούλομαι . τίς ἐστιν ὁ Βερενίκης πλόκαμος | ||
| * περίσημον : ἐμφανές * ἀπλανές : πολυπλανές διαστεῖλαν τοὺς πλανήτας * ἀστράσιν : ζῳδίοις * ἄστροις : γράφεται ἀστράσιν |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| ὀκτώ , μουσικῇ τρία τέσσαρα ἕξ : βουλόμενοι γὰρ τοὺς περιέχοντας λόγους τὰς τρεῖς συμφωνίας ἐπιδεικνύναι κατὰ τὸ ἑξῆς , | ||
| καὶ ζηλωτὴς ὢν τῆς Ἡρακλέους ἀρετῆς , ἐπεβάλετο τελεῖν ἄθλους περιέχοντας ἀποδοχήν τε καὶ δόξαν . πρῶτον μὲν οὖν ἀνεῖλε |
| ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
| ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
| , τοὺς δὲ λοιποὺς ἰάμβους ἔχοντες , τέσσαρες δὲ δύο τροχαίους , ἴσους δὲ ἰάμβους , ἤτοι κατὰ τὸ ἑξῆς | ||
| ἐμπέσῃ . χαριεστέρα δ ' αὐτοῦ τομὴ ἡ εἰς τρεῖς τροχαίους : ἐπιδέχεται δὲ καὶ τὰς ἄλλας . Τὰ δ |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| μετὰ πίσσης λαμβάνειν κέλευε , χαμαιπίτυός τε βλαστούς , καὶ κώνους , οὓς πεῦκαι φέρουσι , ἑψηθέντας ὁμοῦ καὶ ποθέντας | ||
| Τοῦτο δὲ καταμάθοιμεν ἂν καὶ ἐκ τῶν γινομένων κατὰ τοὺς κώνους τομῶν . Αἱ μὲν γὰρ πρὸς ταῖς βάσεσιν αὐτῶν |
| τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
| εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
| οὐκοῦν καὶ κατὰ τοὺς ἐξ ἀρχῆς λόγους καὶ κατὰ τοὺς δευτέρους τούτους καὶ ὅποι στρέφοι τις ἂν καλὸν καὶ γενναῖον | ||
| τὸ γένος σώζων τε καὶ ποιῶν ἀθάνατον , ἀεὶ τοὺς δευτέρους τοῖς προτέροις παραπλησίους : ἐγὼ δὲ ἄλλως μὲν οὐκ |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| χυμῶν ἄθροισις γενέσθαι : εἰ μὲν ἐπὶ τοὐκτὸς , τοὺς διαλείποντας , εἰ δὲ ἐπὶ τὰ ἐντὸς , τοὺς συνεχεῖς | ||
| τοὺς ὀκτὼ καὶ ἁπλῶς ἑκάστῳ τοὺς διπλασίους τῆς ἑαυτοῦ τάξεως διαλείποντας . ἐκ δὴ τούτου φανερὸν ὅτι ἕκαστος κατὰ τὸ |
| ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
| λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
| μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
| ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
| οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους . Σημειωτέον , ὅτι , | ||
| , δυνάμει ἄπειρα καὶ τὰ εἴδη . συμβαίνει τοὺς μὲν ὑπολόγους . ὑπολόγους μὲν καλεῖ τοὺς ἐλάττονας , προλόγους δὲ |
| Πέτρωνος καὶ λόγον , ὡς ἑκατὸν καὶ ὀγδοήκοντα καὶ τρεῖς κόσμους ὄντας , ἁπτομένους δ ' ἀλλήλων κατὰ στοιχεῖον , | ||
| καὶ σῶμα . ἀμέλει καὶ λέγουσιν οὕτως ἀπείρους εἶναι τοὺς κόσμους καὶ πανταχοῦ εἶναι τοῦ κενοῦ , τί γὰρ μᾶλλον |
| μὲν δεῖ ὀργιζομένου καὶ ὡς δεῖ καὶ κατὰ τοὺς ἄλλους διορισμούς , πάλιν δὲ μὴ ὀργιζομένου , ὅτε μὴ προσήκει | ||
| , ὥστε ἐπιθυμεῖν ὧν δεῖ καὶ ὅσα κατὰ τοὺς ἄλλους διορισμούς : οὕτω δὲ καὶ ὁ λόγος τάττεται . . |
| , ἔτι δὲ τοὺς χρόνους μὴ ἐθέλῃ πληροῦν ἀποξενούμενος τοὺς εἰρημένους , ὁ τοῦ τελευτήσαντος γένει ἐγγύτατα ἐπεξίτω μὲν φόνου | ||
| νῦν δὲ ὡς ἐν ἐπιδρομῇ θεωρητέον ἐπ ' ἀριθμῶν τοὺς εἰρημένους λόγους . ἵνα τοίνυν ἐπίτριτον ἀποστήσῃ τις λόγον , |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| τίς γὰρ οὐκ ἂν γελάσειεν ἀκούων , ὅτι οἱ Πυθαγόρειοι χωριστοὺς ἀριθμοὺς οὐκ ᾔδεσαν ; αὐτοῦ μὲν Πυθαγόρου διχῶς εἰωθότος | ||
| ἓν κατὰ τὴν ἐκείνων ἐκλαμβάνεις διάνοιαν οὔθ ' ἕπεται τῷ χωριστοὺς εἶναι τοὺς ἀριθμοὺς τὸ μετέχειν αὐτοὺς ἀκράτου τοῦ κακοῦ |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
| ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
| τὸ ἐρυσίσκηπτρον ὑπὲρ οὗ καὶ ἀρτίως ἐλέχθη . Βρέχουσι δὲ συντιθέντες τῷ οἴνῳ τῷ εὐώδει : ἔοικε δ ' οὖν | ||
| καὶ τοιαύταις τισὶ μηχαναῖς προσχρώμενοι , τὸ δὲ ἐφεξῆς τούτῳ συντιθέντες οὐδὲ εἶναι πολλὰ ἔφασαν , ἀλλὰ ἕν : εἰ |
| ταύτην ὁδὸν ἡγεμονεύσει ; Τρύφων μέντοι φησὶν ἐπὶ τοῦ τοιούτου συνδέσμους ἀντιπαρειλῆφθαι , τὸν γάρ ἀντὶ τοῦ δέ καὶ τὸν | ||
| καὶ λιθώδεις συστάσεις πήγνυσθαί τε τὰ προαιρετικὰ νεῦρα καὶ τοὺς συνδέσμους καὶ τοὺς τένοντας , ἐπιτηδείως ἔχοντας εἰς τοῦτο διὰ |
| δὲ οἱ ποτὲ μὲν εἰς χρόνους , ποτὲ δὲ εἰς ῥυθμοὺς ἀναλυόμενοι , ὡς οἱ ἑξάσημοι . τῶν δὲ συνθέτων | ||
| ἀνήκει τῷ οἰκείῳ θεῷ , οἷον ὁ μουσικὸς φθόγγους , ῥυθμοὺς καὶ τὰ ὅμοια , ὁ φιλόσοφος γεωμετρίαν , ἀστρονομίαν |
| πόλεμοι πλεονάκις αὐτοῖς πρὸς τοὺς Σικανούς , ἕως συνθήκας ποιησάμενοι συμφώνους ὅρους ἔθεντο τῆς χώρας 〚 περὶ ὧν τὰ κατὰ | ||
| συμφώνους ὄντας , τοὺς δὲ διαφώνους , καὶ τοὺς μὲν συμφώνους μίαν κρᾶσιν τὴν ἐξ ἀμφοῖν ποιοῦντας , τοὺς δὲ |
| περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
| διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
| ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας , | ||
| καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς |
| πάντως ἀρχὴ μονὰς κατὰ τοὺς διπλασίους ἢ τριπλασίους ἢ συνόλως ἀναλογοῦντας ἀριθμούς , ὡς ἔχει ὁ ἑξηκοντατέσσαρα | καὶ ὁ | ||
| ἡ ἐντὸς περιεχομένη σφαῖρα , ἣν ἑξαχῆ σχίσας ἑπτὰ κύκλους ἀναλογοῦντας ἑαυτοῖς εἰργάζετο τῶν πλανήτων ἕκαστον εἰς αὐτοὺς ἁρμοσάμενος : |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| ε . ἀπῆκται οὖν μοι τὸν ε διελεῖν εἰς τέσσαρας ⃞ους . [ ἑκάστῃ τῶν πλ . προσέθηκα Μο ∠ | ||
| πλ . . ] Διαιρεῖται δὲ ὁ ε εἰς τέσσαρας ⃞ους , κεθ / καὶ κειϚ / καὶ κεξδ / |
| φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
| τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
| . ἔστι τοίνυν ἡ μέθοδος γλαφυρά τις οὖσα τοιαύτη : ἐκθοῦ ἀπὸ μονάδος τοὺς ἀρτιάκις ἀρτίους ἕως οὗ βούλει καὶ | ||
| πλευρὰν τὴν κ : εἰκοσάκι γὰρ κ , υ : ἐκθοῦ τοίνυν μ , κ , ι , καὶ ἔστι |
| εἰς κοινὴν ὁμόνοιαν καὶ συγγενικὴν φιλίαν καταστήσῃ . τοὺς δὲ προειρημένους ναοὺς ἔδει κατασκευασθῆναι ἐν Δήλῳ καὶ Δελφοῖς καὶ Δωδώνῃ | ||
| αὐτὸς δὲ οἷος ἦν τὴν φάραγγα διερευνᾶν καὶ μαστεύειν τοὺς προειρημένους . εἶτα ἀκούει φωνῆς , καὶ ἔλεγεν αὕτη τῶν |
| μετοχὴν ἕκαστον τῶν ὄντων ἐστὶν ἕν , δεῖ κατειληφέναι ἀπειράκις ἀπείρους νοητὰς μονάδας , ἀδύνατον δὲ καταλαβεῖν ἀπειράκις ἀπείρους μονάδας | ||
| . § : τί δὲ δεῖ καταλέγεσθαι τὰς δεκάδος ἀρετὰς ἀπείρους τὸ πλῆθος , πάρεργον ποιούμενος ἔργον μέγιστον , ὃ |
| τὰς ἰδέας πρεσβεύοντες οἱ μὲν τὸ παράδειγμα τῆς γραμμῆς τὴν δυάδα λέγουσιν , οἱ δὲ τὴν ἰδέαν τῆς γραμμῆς . | ||
| ; ἢ τὰ δύο : καὶ μετὰ τὴν μονάδα τὴν δυάδα καὶ οὕτω γε τὸν λοιπὸν ἀριθμὸν προελθεῖν . Οὕτω |
| οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
| δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
| τὸ εὔρυθμον καὶ τὸ εὔσχημον διώκειν . Μετὰ τοίνυν τοὺς αἰσθητοὺς τούτους φθόγγους καὶ ῥυθμοὺς καὶ σχήματα οὕτως ἀκτέον : | ||
| μὲν γὰρ περὶ χρόνων ζωῆς ἐπὶ τῶν ὅλως ἐχόντων χρόνους αἰσθητοὺς θεωρεῖται , τουτέστι μὴ ἐλάττονας ἡλιακῆς περιόδου μιᾶς : |
| ] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
| [ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
| δέ ἐστιν ἡ γραμματική : ἡ μὲν γὰρ περὶ τοὺς χαρακτῆρας καὶ τὰς τῶν στοιχείων ἐκφωνήσεις καταγίνεται , ἥτις καὶ | ||
| τέχνῃ προσγίνεται . ὁρῶμεν γὰρ ἐν ἄλλοις τῶν σχημάτων τοὺς χαρακτῆρας , τὸν μὲν τραχύτερον , τὸν δὲ γλαφυρώτερον , |
| τὰ αὐτὰ εἴδη τῶν ψυχικῶν διαθέσεων τρέπεταί πως ἐπὶ διαγωγὰς ἀνομοίους , συνελκόμενα τοῖς ἔθεσι τῶν κατὰ καιροὺς πολιτειῶν ἐπὶ | ||
| εἶναι τῶν τε ἄλλων Σκυθῶν καὶ τῶν Σαυροματῶν τοὺς βίους ἀνομοίους : τοὺς μὲν γὰρ εἶναι χαλεποὺς ὥστε καὶ ἀνθρωποφαγεῖν |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| καὶ τοὺς μὲν χρόνους τοῖς ῥυθμοῖς ᾔκασε , τοὺς δὲ τόνους τοῖς τόνοις τῆς μουσικῆς . καὶ σημεῖα ἔθετο ἐφ | ||
| δημιουργίαν . Ἔτι μὴν ἐν τῇ τῶν τρόπων οὓς καὶ τόνους ἐκαλέσαμεν ἐκθέσει ἕκαστος μὲν αὐτῶν , εἰ κατὰ τὰ |
| βραχὺ καὶ ἡδὺ μετὰ δεινότητος , ἔτι δὲ καὶ τοὺς σχηματισμοὺς καὶ τὴν σαφήνειαν , ὅσον αὐτῆς μὴ τῇ διαλέκτῳ | ||
| δηλωτικὰ τὰ προειρημένα . σκεπτέον δὲ καὶ τοὺς πρὸς αὐτὸν σχηματισμοὺς τῶν ἀστέρων καὶ τὰς συνόδους : εἰ γὰρ τοιουτοτρόπως |
| . Οἱ τέσσαρες ἐπίτριτοι . ἐπίτριτοι δὲ λέγονται κατὰ λόγους ἀριθμητικούς : ὁ τέταρτος γὰρ τοῦ τρίτου ἐπίτριτος . ἐπειδὴ | ||
| τὸ μάθημα . τοὺς . . . δεινούς . τοὺς ἀριθμητικούς . αὐτὸ τὸ ἕν . τὴν μονάδα τὴν παρὰ |
| νόμιμον : ἔτι γὰρ καὶ νῦν κατὰ τὸν θερισμὸν τοὺς πρώτους ἀμηθέντας στάχυς θέντας τοὺς ἀνθρώπους κόπτεσθαι πλησίον τοῦ δράγματος | ||
| τοῖς ἀθανάτοις θεοῖς συνεισελθοῦσα καὶ ποιοῦσα ἐν αὐτοῖς τοὺς μὲν πρώτους , τοὺς δὲ δευτέρους . εἰ γὰρ καὶ ὡς |
| ὁρισμοὺς καὶ θέσεις καὶ διαιρέσεις καὶ συναγωγὰς συνθέσεις τε καὶ μερισμοὺς καὶ ὑπερβολὰς καὶ ἐλλείψεις καὶ παραβολὰς καθ ' ὁποιαοῦν | ||
| διαλέγεται λαβόντων σχέσιν πρὸς σῶμα , μορφὰς καὶ τύπους καὶ μερισμοὺς καὶ σωματοειδεῖς φιλοτιμίας αὐτοῖς παρέχων , ἐπειδὴ ἤδη ἡ |
| τοὺς μαθηματικοὺς ἅπαντας τοὺς εἰρημένους κύκλους ἀπλατεῖς ὑποτίθεσθαι , τοὺς τροπικοὺς καὶ τὸν ἰσημερινὸν καὶ τὸν ἀεὶ φανερὸν καὶ τὸν | ||
| Λέγω , ὅτι καὶ κατὰ τὴν αὐτὴν ὥραν ἐπὶ τοὺς τροπικοὺς παρέσται ὁ ἥλιος . Εἰ μὲν οὖν ὁ ἥλιος |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| ὀξυβελεῖς μεγίστους , εἰς δὲ τὰς ἀνωτάτας ὀξυβελεῖς τε τοὺς ἐλαχίστους καὶ πετροβόλων πλῆθος , ἄνδρας τε τοὺς χρησομένους τούτοις | ||
| ἐκ δὲ τῶν ἄλλων πολιτῶν , ἵν ' ὡς εἰς ἐλαχίστους τὴν βλασφημίαν ἀγάγω , τὸν μαθητήν , εἰ δὲ |
| ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
| οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| ὁ κύκλος , ἀλλ ' ὥσπερ Πρωταγόρας ἔλεγεν ἐλέγχων τοὺς γεωμέτρας , οὔτε . . . . τά γε μὴν | ||
| ὁ γεωμέτρης , ἀλλ ' ὡς Πρωταγόρας ἔλεγεν ἐλέγχων τοὺς γεωμέτρας . ἔφερε γὰρ κανόνα καὶ προσῆπτε τῷ κύκλῳ καὶ |
| κόρους καὶ κόρας , καὶ ἅμα δὴ θεωροῦντάς τε καὶ θεωρουμένους μετὰ λόγου τε καὶ ἡλικίας τινὸς ἐχούσης εἰκυίας προφάσεις | ||
| ἀστέρας πρὸς τὸ κακοποιεῖν ἢ μὴ ἐπί τε τῶν κέντρων θεωρουμένους καὶ ἐπὶ ταῖς ἀναφοραῖς ἢ τοῖς ἀποκλίμασιν , ἀλλ |
| τῶν τριάκοντα ἀνῃρέθη , πιεῖν κώνειον κατακριθείς . Λέγουσι τοὺς Πυθαγορείους πάνυ σφόδρα περὶ τὴν ἰατρικὴν σπουδάσαι τέχνην . καὶ | ||
| . μετὰ οὖν τὴν πρὸς Σωκράτη φοίτησιν ἀπῆλθεν πρὸς τοὺς Πυθαγορείους , τὸ δι ' ἀριθμῶν τὰ πράγματα σημαίνειν παρ |
| , καὶ ὡς ἀδύνατος ἂν εἶναι νομισθείη ἡ κατὰ τοὺς δογματικοὺς φυσιολογία . πάντως γὰρ κατά τινα κίνησιν τῶν τε | ||
| κριτήριον καὶ ἡ ἀλήθεια , καὶ τίνα ποτὲ κατὰ τοὺς δογματικοὺς εἶχε φύσιν , ὁτὲ δὲ καὶ ἀπορητικώτερον σκεπτόμενοι , |
| , ἀλλ ' εἶναί τινας καὶ παρ ' αὐτὴν διδασκαλίας τρόπους οἳ αὐτῇ οὐχ ὑπόκεινται . ὥστ ' οὐ διαβάλλων | ||
| τοῦ κλύσματος . οὐ δέχονται μὲν οὖν διὰ τούτους τοὺς τρόπους : οὐ δύνανται δὲ κατέχειν , ἀπὸ μὲν τῆς |
| ἐπιτρίτου λόγου χρεία , διότι τὸν πρῶτον καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι | ||
| μοίρας , πολλαπλασίασον ἐπὶ τὸν ιγʹ , καὶ τὸν συναχθέντα ἀριθμὸν διέκβαλε ἀπ ' αὐτοῦ λογιζόμενος ἑκάστῳ ζῳδίῳ μοίρας λ |
| τοῦτο ἀποφατικῶς ἢ καταφατικῶς , καὶ ποιεῖ τοὺς δύο καθόλου προσδιορισμούς , φημὶ δὴ τὸν πᾶς καὶ τὸν οὐδείς , | ||
| ὑποκειμένων οὐ καθόλου ἀποφαίνονται , μὴ συντάττουσαι αὐτοῖς τοὺς καθόλου προσδιορισμούς , οἳ ποιοῦσι καθόλου ἡμᾶς ἀποφαίνεσθαι περὶ τῶν καθόλου |
| δὲ πάτρα μὲν εἰς τὴν δευτέραν μετάβασιν ἐλθόντων ἡ κατὰ μόνας ἑκάστῳ πρότερον οὖσα συγγένεια , ἀπὸ τοῦ πρεσβυτάτου τε | ||
| φρέατος ἔνδον ψυχρότερον Ἀραρότος . ἢ μετὰ Πλάτωνος ἀδολεσχεῖν κατὰ μόνας μᾶλλον μᾶλλον ὁ συκοφάντης οὐ δικαίως τοὔνομα ἐν τοῖσι |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
| ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
| Διὸς Τύχης ἐστὶν ἐκ παλαιοτάτου ναός , εἰ δὴ Παλαμήδης κύβους εὑρὼν ἀνέθηκεν ἐς τοῦτον τὸν ναόν . τὸ δὲ | ||
| δ ' αὐτῇ οἱ κυβεύοντες καὶ πρὸς τὸ βάλλειν τοὺς κύβους , καὶ πρὸς τὸ συμβάλλειν τοὺς ὄρτυγας καὶ τοὺς |
| ἔστιν ἐπὶ τοῦ ἄξονος , κύκλους γράψει παραλλήλους τοὺς αὐτοὺς πόλους ἔχοντας τῇ σφαίρᾳ καὶ ἔτι ὀρθοὺς πρὸς τὸν ἄξονα | ||
| ὧν ὁ διὰ μέσων τῶν ζῳδίων κύκλος ἐφάπτεται τοὺς αὐτοὺς πόλους ἐχόντων τῇ σφαίρᾳ . ὁ δὲ διὰ μέσων τῶν |
| . ἔνεστι γὰρ κοινῶς ἐφ ' ὅλην διατείνειν αὐτὴν τοὺς μαθηματικοὺς λόγους , ἔνεστι δὲ καὶ περὶ τὰ μέρη τῆς | ||
| τῆς φιλοσοφίας ὠνόμαζον , καὶ τοὺς ἐμπείρους τῶν τοιῶνδε λόγων μαθηματικοὺς ἀπέφαινον . ἐνόμιζον δὲ καὶ κάλλιστα παραδείγματα εἶναι τὰ |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| , ὁπόσα ἐδυνήθη συναγαγεῖν , Ἀμύκλαν δὲ καὶ Κλεινίαν τοὺς Πυθαγορικοὺς κωλῦσαι αὐτόν , ὡς οὐδὲν ὄφελος : παρὰ πολλοῖς | ||
| , ὁπόσα ἐδυνήθη συναγαγεῖν . Ἀμύκλαν δὲ καὶ Κλεινίαν τοὺς Πυθαγορικοὺς [ . , ] κωλῦσαι αὐτόν , ὡς οὐδὲν |
| τί φησιν : ὅτι ἐὰν ἐκθήσῃς ἀναλόγους ἀριθμοὺς ἀπὸ μονάδος τετραπλασίους φησὶν ἢ ἑξαπλασίους , σκόπει τὸν ἔσχατον , ὑπὸ | ||
| τῷ τοῦ διαγράμματος ὕφει πεφώρανται τάξει ἐκκείμεναι ὑπὲρ αὐτοὺς τοὺς τετραπλασίους καὶ ἐπὶ τῶν ἀκολούθων τοῦ πολλαπλασίου εἰδῶν τὸ ἀνάλογον |
| τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
| αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| ἁρμόζει ταῖς κατασκευαῖς , τὰ δὲ ἀξιώματα ταῖς ἀποδείξεσιν . ἐφεξῆς οὖν ἡ ἀπόδειξις , καί φησι : τὰ τῷ | ||
| πόλον , ἀρκτικὴν δὲ αὐτὴν ὀνομάζουσιν : ἡ δ ' ἐφεξῆς εὔκρατός ἐστιν : εἶτα τὴν τρίτην διακεκαυμένην καλοῦσιν : |
| : ἐν τούτοις γὰρ ἐπεμβαίνοντες οἱ φθοροποιοὶ καὶ καθυπερτεροῦντες τοὺς ἀστέρας ἰσχυρότερον βλάπτουσιν , οἱ δὲ ἀγαθοποιοὶ ἐν τοῖς τετραγώνοις | ||
| καὶ τὸν τόπον καθὼς προείπομεν . ἡ δὲ πρὸς τοὺς ἀστέρας σύνοδος τοῦ χρονοκράτορος καὶ αἱ σύνοδοι τῶν ἀστέρων πρὸς |
| ἀθετοῦνται ἀμφότεροι , καὶ ἀστερίσκοι παράκεινται , ὅτι τοὺς ὕστερον λεγομένους ὑπὸ τῆς Ἴριδος δι ' ἐπιείκειαν ἐνθάδε τις μετενήνοχεν | ||
| τοὺς σοφιζομένους τὴν ἀλήθειαν , ἀλλὰ τοὺς ἐν τῇ συνηθείᾳ λεγομένους , τοὺς διδασκάλους τῶν ῥητορικῶν προβλημάτων : θεατὰς δὲ |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| σύνθεσιν εἴρηται ἡ ἑτέρα πλάσις , ὅτι δυνατὸν λύεσθαι τοὺς ἀποτελουμένους εἰς τοὺς ἐξ ὧν συνετέθησαν , οἷον τὸν Ϛʹ | ||
| τοὺς ἁπλοῦς λόγους τοὺς ἐκ τῆς συμπλοκῆς τῶν ἁπλῶν φωνῶν ἀποτελουμένους καὶ ὡς προτεινομένους ὑπὸ τῶν συλλογίσασθαί τι βουλομένων τοῖς |