ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
ἔφη : Κοινῶς ποιητὰς ἔθος ἐστὶν καλεῖν , καὶ τοὺς περιττοὺς τῇ φύσει καὶ τοὺς κακούς : ἔδει δὲ κρίνειν | ||
δὲ ὅτι καὶ ἡ τοῦ μαθηματικοῦ ἀριθμοῦ ἀρχὴ πάντας τοὺς περιττοὺς καὶ τοὺς ἀρτίους διπλασιάζουσα τὸν ἄρτιον ὑφίστησι : καὶ |
καὶ ἐλλείψεις τοῦ δέοντος : ἀλλ ' ὅμως οὔτε τοὺς μέσους σώφρονας λέγομεν οὔτε τοὺς ὑπερβάλλοντας ἀκολάστους . εἰ δὲ | ||
- τοῦ , πορφυραῖ δὲ ἄρα στιγμαὶ τοὺς ὀφθαλμοὺς αὐτῷ μέσους ἐς κάλλος γράφουσιν . ὁ δὲ τοξότης ἐν τῇ |
τῶν πόλων τοῦ ζῳδιακοῦ γραφομένων ἢ ἐπὶ διαφόρων μέν , τριγώνους δὲ ἢ τετραγώνους ἢ ἑξαγώνους διαστάσεις ποιούντων , τουτέστιν | ||
. ἐπεὶ οὖν δύο πυραμίδες εἰσὶν αἱ ΑΒΓΜ , ΑΓΔΜ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον , πρὸς ἀλλήλας εἰσὶν |
οὖν δέπας φασὶν εἶναι τοιοῦτον . δύναται δὲ καὶ δύο πυθμένας ὑποτίθεσθαι , τὸν μὲν οἷον τοῦ ποτηρίου φέροντα τὸν | ||
τῷ ὀνόματι ὀνόμαζε . ὥστε τοῦ ἐπιμεροῦς πυθμήν ἐστι . πυθμένας , ὡς ἤδη εἰρήκαμεν , καλεῖ τοὺς ἐσχάτους ἀριθμούς |
ἢ συμβεβηκός , ἐνδέχεται καὶ διαφόρους μέσους λαβεῖν καὶ διαφόρους ἐλάττονας , κἀντεῦθεν συναγαγεῖν καὶ διάφορα συμπεράσματα . κατὰ σημεῖον | ||
οἱ δὲ πορρωτέρω , καὶ διὰ τοῦτο ἢ πλέονας ἢ ἐλάττονας περιέπλευσαν σταδίους : τοῦ δὲ ἐπ ' εὐθείας γινομένου |
, καὶ τούτων λάμβανε τὸ λϚʹʹ , καὶ ἕξεις πήχεις ἐπιπέδους . Ἐὰν δὲ ᾖ τὸ μῆκος διὰ πήχεων , | ||
μήκη καὶ πρὸς ἑτέρων σύστασιν λαμβανόμενοι , ὁτὲ δὲ εἰς ἐπιπέδους , ὅταν ἐκ πολλαπλασιασμοῦ δύο ἀριθμῶν γεννηθῶσιν , ὁτὲ |
καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν ἐξ ὑπαρχῆς ὁ ι πρὸς | ||
. ἐνταῦθα ὑπεμφαίνει , ὅτι σιωπὴν ἐδίδασκεν . ἔδει ] εὐτάκτους ὄντας , νόμιμον ἦν , χρεία ἦν . ἢ |
λεγόντων οἱ μὲν ἁπλᾶς ἔλεγον καὶ ὁμογενεῖς , οἱ δὲ συνθέτους καὶ ἀνομογενεῖς καὶ ἐναντίας , κατὰ δὲ τὸ ἐπικρατοῦν | ||
λόγῳ μεταλαμβάνειν τὰς τοιαύτας τῶν ἀντωνυμιῶν εἴς τε ἁπλᾶς καὶ συνθέτους , τὰ νῦν περιγραφομένης τῆς πολλῆς παραθέσεως ὑπὲρ τοῦ |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
οἷον ἐπιδιμερῶν τὸν πέντε πρὸς τρία , εἶτα διπλασίους καὶ τριπλασίους τούτων καὶ ἐπ ' ἄπειρον , ἐπιτριμερῶν δὲ ἑπτὰ | ||
ἐπὶ μιᾶς εὐθείας ἐφεξῆς τούς τε διπλασίους ἐκτάττων καὶ τοὺς τριπλασίους , πρῶτον μὲν ἰσχυρίζεται τῇ λεγομένῃ κατὰ μῆκος σχίσει |
ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
. ἔστι τοίνυν ἡ μέθοδος γλαφυρά τις οὖσα τοιαύτη : ἐκθοῦ ἀπὸ μονάδος τοὺς ἀρτιάκις ἀρτίους ἕως οὗ βούλει καὶ | ||
πλευρὰν τὴν κ : εἰκοσάκι γὰρ κ , υ : ἐκθοῦ τοίνυν μ , κ , ι , καὶ ἔστι |
ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
. καί εἰσι μὲν τὸ μέγεθος τῶν παρὰ τοῖς Ἕλλησι διπλασίους , ὤκιστοι δὲ τὸ τάχος . εἰσὶ δὲ πυρρότριχες | ||
τὸν ι . ἐκθοῦ οὖν ἐν τῷ δευτέρῳ στίχῳ τοὺς διπλασίους : β , δ , Ϛ , η , |
εἰκόνες προσεπεφύκεσαν τῇ κεφαλῇ : χιτῶνα δὲ ἐνεδέδυτο καὶ ἐς ἄκρους τοὺς πόδας : δελφὶς δὲ ἐπὶ τῆς χειρὸς ἦν | ||
δοκῇ πάνυ ῥᾳδίως μεγάλων ἠξίωσας , τῶν δὲ Ἑλλήνων τοὺς ἄκρους καὶ παρὰ πᾶσι βεβοημένους ἐν φαύλῳ καθαιρεῖς , οὐδὲν |
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ | ||
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
πάντως ἀρχὴ μονὰς κατὰ τοὺς διπλασίους ἢ τριπλασίους ἢ συνόλως ἀναλογοῦντας ἀριθμούς , ὡς ἔχει ὁ ἑξηκοντατέσσαρα | καὶ ὁ | ||
ἡ ἐντὸς περιεχομένη σφαῖρα , ἣν ἑξαχῆ σχίσας ἑπτὰ κύκλους ἀναλογοῦντας ἑαυτοῖς εἰργάζετο τῶν πλανήτων ἕκαστον εἰς αὐτοὺς ἁρμοσάμενος : |
μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
, τοὺς δὲ λοιποὺς ἰάμβους ἔχοντες , τέσσαρες δὲ δύο τροχαίους , ἴσους δὲ ἰάμβους , ἤτοι κατὰ τὸ ἑξῆς | ||
ἐμπέσῃ . χαριεστέρα δ ' αὐτοῦ τομὴ ἡ εἰς τρεῖς τροχαίους : ἐπιδέχεται δὲ καὶ τὰς ἄλλας . Τὰ δ |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας , | ||
καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
δεῖξαι . Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες καὶ πολυγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις . | ||
ἐφεξῆς ἀπὸ μονάδος ἀριθμούς , οὕτως καὶ πυραμίδων τοὺς ἐφεξῆς πολυγώνους καθ ' ἕκαστον . ἀνάλογος δ ' ἔσται καὶ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
Τάνταλον , καὶ θαυμάσαντες ὅτι τοῦ παιδὸς αὐτοῦ κατεφρόνησε , συντιθέασι τὰ κρέα , καὶ ἀποτελοῦσι σῶον τὸν Πέλοπα . | ||
: σέ ποτε Διὸς ἀνὰ πύματα νεαρὲ κόρε νεβροχίτων . συντιθέασι δέ τινες καὶ ἑτέρῳ τρόπῳ τὸ τετράμετρον , ὥστε |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
ε . ἀπῆκται οὖν μοι τὸν ε διελεῖν εἰς τέσσαρας ⃞ους . [ ἑκάστῃ τῶν πλ . προσέθηκα Μο ∠ | ||
πλ . . ] Διαιρεῖται δὲ ὁ ε εἰς τέσσαρας ⃞ους , κεθ / καὶ κειϚ / καὶ κεξδ / |
χυμῶν ἄθροισις γενέσθαι : εἰ μὲν ἐπὶ τοὐκτὸς , τοὺς διαλείποντας , εἰ δὲ ἐπὶ τὰ ἐντὸς , τοὺς συνεχεῖς | ||
τοὺς ὀκτὼ καὶ ἁπλῶς ἑκάστῳ τοὺς διπλασίους τῆς ἑαυτοῦ τάξεως διαλείποντας . ἐκ δὴ τούτου φανερὸν ὅτι ἕκαστος κατὰ τὸ |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
Διὸς Τύχης ἐστὶν ἐκ παλαιοτάτου ναός , εἰ δὴ Παλαμήδης κύβους εὑρὼν ἀνέθηκεν ἐς τοῦτον τὸν ναόν . τὸ δὲ | ||
δ ' αὐτῇ οἱ κυβεύοντες καὶ πρὸς τὸ βάλλειν τοὺς κύβους , καὶ πρὸς τὸ συμβάλλειν τοὺς ὄρτυγας καὶ τοὺς |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
μετὰ πίσσης λαμβάνειν κέλευε , χαμαιπίτυός τε βλαστούς , καὶ κώνους , οὓς πεῦκαι φέρουσι , ἑψηθέντας ὁμοῦ καὶ ποθέντας | ||
Τοῦτο δὲ καταμάθοιμεν ἂν καὶ ἐκ τῶν γινομένων κατὰ τοὺς κώνους τομῶν . Αἱ μὲν γὰρ πρὸς ταῖς βάσεσιν αὐτῶν |
ὀκτώ , μουσικῇ τρία τέσσαρα ἕξ : βουλόμενοι γὰρ τοὺς περιέχοντας λόγους τὰς τρεῖς συμφωνίας ἐπιδεικνύναι κατὰ τὸ ἑξῆς , | ||
καὶ ζηλωτὴς ὢν τῆς Ἡρακλέους ἀρετῆς , ἐπεβάλετο τελεῖν ἄθλους περιέχοντας ἀποδοχήν τε καὶ δόξαν . πρῶτον μὲν οὖν ἀνεῖλε |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
τοὺς ὑπ ' Ἀχιλλεῖ τοὺς τὸ νότιον πλευρὸν κατέχοντας καὶ παρακειμένους τῇ τε Οἴτῃ καὶ τοῖς Ἐπικνημιδίοις Λοκροῖς ” ὅσσοι | ||
χρόνους τῆς μέσης κατεμέρισαν τῇ τε ἐνεργητικῇ καὶ παθητικῇ , παρακειμένους μὲν τῆς μέσης καὶ ὑπερσυντελίκους συγκαταλέγοντες τῇ ἐνεργητικῇ , |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
τε καὶ οἰκοδομικοὶ καὶ χαλκευτικοὶ καὶ οἱ τῶν ἄλλων τεχνῶν πλάσσονται ἀπὸ ὀξυτέρου ἄκρου διαδύνειν ἀρχόμενοι καὶ αἰεὶ μᾶλλον πλατυνόμενοι | ||
πρόεισιν ἐπ ' ἄπειρον . καὶ ἀπὸ τούτων δὲ ἄλλοι πλάσσονται κατὰ τὸν αὐτὸν λόγον , περὶ ὧν οὐκ ἀναγκαῖον |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ | ||
? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ |
φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
ἄκρως ὑγρούς , στενούς , ὀρθούς , τοὺς δὲ ὄπισθεν στερεούς , πλατεῖς , πάντας δὲ οὐδενὸς τραχέος φροντίζοντας , | ||
καὶ ἐπιπέδους ἀπὸ τριγώνου μέχρις ἀπείρου , ἔτι μὴν καὶ στερεούς , ὡς ἑξῆς δειχθήσεται , κατὰ πᾶν εἶδος στερεοῦ |
: ταὶ δὲ θυρέτρων χάσμ ' ἀχανὲς ποίησαν ἀναπτάμεναι πολυχάλκους ἄξονας ἐν σύριγξιν ἀμοιβαδὸν εἰλίξασαι γόμφοις καὶ περόνηισιν ἀρηρότε : | ||
, καὶ τοῦτο μὲν τὰς σφαίρας , τοῦτο δὲ τοὺς ἄξονας καὶ τὰ τύμπανα παρατιθέμενοι , οὐ λύουσι τὴν ἀπορίαν |
τὸ ἐρυσίσκηπτρον ὑπὲρ οὗ καὶ ἀρτίως ἐλέχθη . Βρέχουσι δὲ συντιθέντες τῷ οἴνῳ τῷ εὐώδει : ἔοικε δ ' οὖν | ||
καὶ τοιαύταις τισὶ μηχαναῖς προσχρώμενοι , τὸ δὲ ἐφεξῆς τούτῳ συντιθέντες οὐδὲ εἶναι πολλὰ ἔφασαν , ἀλλὰ ἕν : εἰ |
ἀλλήλους εἰσίν : ὅπερ ἔδει δεῖξαι . Ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα , τὸν δὲ γενόμενον ἐξ αὐτῶν | ||
γὰρ ἀριθμοὶ οἱ Α , Β ἀριθμόν τινα τὸν Γ πολλαπλασιάσαντες τοὺς Δ , Ε ποιείτωσαν : λέγω , ὅτι |
εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
τοὺς πρώτους καὶ γνωριμωτάτους καὶ κυριωτάτους λόγους πολλαπλασίους τε καὶ ἐπιμορίους ἤδη καὶ σύμφωνοι . συμφωνοῦσι δὲ φθόγγοι πρὸς ἀλλήλους | ||
στίχον τοὺς πολλαπλασίους ποιοῦσι , πρὸς δὲ τοὺς γείτονας τοὺς ἐπιμορίους , οἷον ὁ γ πρὸς τὸν β τὸν ἡμιόλιον |
] ? [ ἴσον ] ἰσάκις γίγνεσθαι [ ] τῶι τετραγώνωι [ ] ? τὸ σχῆμα ? ? ἀπεικάσαντες ? | ||
[ τῶι ] ποδιείωι [ ] ? ? [ ] τετραγώνωι [ ] ? [ , τὰ ] δὲ κατὰ |
οἱ μερίζοντες καὶ περὶ τὴν ἐκείνου ἁπλότητα διπλασιαζόμενοι καὶ ἔτι πολλαπλασιαζόμενοι , ἐκεῖνο γὰρ τῷ ἓν εἶναι , πάντα ἐστὶ | ||
. Καὶ πάλιν γίνεται δίτονον ὁ η καὶ ὁ θ πολλαπλασιαζόμενοι : ὁ γὰρ οβ εὑρίσκεται ἀνάλογον μεταξὺ καὶ ποεῖ |
Τιμαίῳ παραδίδωσιν , εἰς ἃ λέγει ὅτι πῶς ὀφείλομεν δύο ἐπογδόους εὑρίσκειν . τοῦτο οὖν τὸ νῦν παραδιδόμενον συμβάλλεται ἡμῖν | ||
ἐπογδόους ἐν τῇ ψυχογονίᾳ εὑρήσομεν . εἰ γὰρ θέλομεν δύο ἐπογδόους εὑρεῖν , λαμβάνομεν τὸν δεύτερον ὀκταπλάσιον : τίς δὲ |
ἐν εἰσθέσει μονόμετρον ἰαμβικόν , μεθ ' ὃ ἔκθεσις εἰς στίχους ἰαμβικοὺς ἀκαταλήκτους τριμέτρους παʹ . Γ ἀλλ ' οὐ | ||
τοῦ Διονυσίου καυχωμένου περὶ τῶν ἰδίων ποιημάτων , καί τινας στίχους τῶν δοκούντων ἐπιτετεῦχθαι προενεγκαμένου , καὶ ἐπερωτῶντος Ποῖά τινά |
ὀξυβελεῖς μεγίστους , εἰς δὲ τὰς ἀνωτάτας ὀξυβελεῖς τε τοὺς ἐλαχίστους καὶ πετροβόλων πλῆθος , ἄνδρας τε τοὺς χρησομένους τούτοις | ||
ἐκ δὲ τῶν ἄλλων πολιτῶν , ἵν ' ὡς εἰς ἐλαχίστους τὴν βλασφημίαν ἀγάγω , τὸν μαθητήν , εἰ δὲ |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
μὴ προκατοπτεύηται τοῖς ἐχθροῖς πρὸ τῆς συμβολῆς , δυνατὸν τοὺς καβαλλαρίους ἀραιοτέρους προτετάχθαι τῆς πεζικῆς φάλαγγος , μέχρις οὗ ἐγγίσωσιν | ||
' ὀλίγον ἄχρι ἑνὸς μιλίου ἐκτεταμένοι , δυνατόν ἐστι καὶ καβαλλαρίους πεζεύειν ἐν αὐτοῖς ἀσφαλῶς . Στενοὺς δὲ καὶ δυσκόλους |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
ἰάμβους ἔχοντες , τέσσαρες δὲ δύο τροχαίους , ἴσους δὲ ἰάμβους , ἤτοι κατὰ τὸ ἑξῆς κειμένους ἢ τοὺς μὲν | ||
ὁρῶντας ἐπιχαίρειν αὐτῷ θρηνοῦντι . Γ διπλῆ καὶ ἔκθεσις εἰς ἰάμβους τριμέτρους ἀκαταλήκτους ζʹ . σύστημα κατὰ περικοπήν . ὦ |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
σφοδρὸν ὁδοιπορεῖ νόμον . Τούτους δὲ τοὺς διηνεκῶς οὐρανῷ τελουμένους φθόγγους ἀγνοοῦμεν ἢ διὰ τὴν ἀπὸ πρώτης γονῆς συνήθειαν ἐνδελεχῶς | ||
“ οὐκ αἰσχύνῃ , ” ἔφη , “ τοὺς μὲν φθόγγους τῷ ξύλῳ προσαρμόττων , τὴν δὲ ψυχὴν εἰς τὸν |
κζʹ , λʹ . Διεῖλον δ ' ἔτι καὶ εἰς δεκανοὺς ἤτοι δεκαμοιρίας γ ὡς καὶ τῶν λοιπῶν δωδεκατημορίων ἕκαστον | ||
ζῴδια : περὶ πλανήτας , περὶ ἀπλανεῖς ἀστέρας , περὶ δεκανοὺς , περὶ τὰ ὅρια , περὶ μορφώσεις , περὶ |
οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους . Σημειωτέον , ὅτι , | ||
, δυνάμει ἄπειρα καὶ τὰ εἴδη . συμβαίνει τοὺς μὲν ὑπολόγους . ὑπολόγους μὲν καλεῖ τοὺς ἐλάττονας , προλόγους δὲ |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
καὶ τὰ μὴ γραφόμενα ἔστιν εὑρίσκειν : εὑρήσεις δὲ τοὺς συλλογισμοὺς καὶ ἀπὸ αἰτιῶν καὶ ἀπὸ τεκμηρίων , πάντας δὲ | ||
. Φανερὸν οὖν ἐκ τῶν εἰρημένων οὐ μόνον ἐνδέχεσθαι τοὺς συλλογισμοὺς πάντας γίνεσθαι κατὰ τὴν εἰρημένην μέθοδον , ἀλλὰ καὶ |
λέγονται μερικαὶ γνώσεις , οὕτω καὶ εἰσὶ καὶ καθ ' ὅρους μόνον βεβήκασι καὶ ἄνευ συνθέσεως ἐν ἑνὶ τῷ ὑποκειμένῳ | ||
γὰρ μεταπίπτειν . Θέσει ἄρα . , ] διὰ τοὺς ὅρους . κύκλος γὰρ τῇ θέσει καὶ τῷ μεγέθει δεδόσθαι |
ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . | ||
ὀνομάζεσθαι αὐτοὺς πενταχῶς , πρώτους , ἀσυνθέτους , γραμμικούς , εὐθυμετρικούς , περισσάκις περισσούς . μόνον δὲ οὕτως καταμετροῦνται . |
τῶν εʹ : γίνονται ρπʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; ποίει τὸ ἀνάπαλιν . Ἐὰν | ||
καὶ ὧν ἥμισυ γίνεται ρνʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; τὸ ἀνάπαλιν ποίει : δὶς |
βαρυτάτης ἡ προχώρησις ὑπάρξει , ὥστε τοὺς ἀπ ' ἀλλήλων πέμπτους πάντας φθόγγους τὴν διὰ πέντε συμφωνεῖν ἀλλήλοις , τοῦ | ||
μήτε τοὺς τετάρτους τῶν ἑξῆς διὰ τεσσάρων συμφωνεῖν μήτε τοὺς πέμπτους διὰ πέντε . Δύο δὲ τόνων ἢ τριῶν ἡμιτόνιον |
τοὺς μαθηματικοὺς ἅπαντας τοὺς εἰρημένους κύκλους ἀπλατεῖς ὑποτίθεσθαι , τοὺς τροπικοὺς καὶ τὸν ἰσημερινὸν καὶ τὸν ἀεὶ φανερὸν καὶ τὸν | ||
Λέγω , ὅτι καὶ κατὰ τὴν αὐτὴν ὥραν ἐπὶ τοὺς τροπικοὺς παρέσται ὁ ἥλιος . Εἰ μὲν οὖν ὁ ἥλιος |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων , στοιχεῖν λέγεται εἴ | ||
αὐτὸς νόμους θέμενος , ὥστε φανερῶς συγγίνεσθαι αὐταῖς καὶ μιᾷ στοιχεῖν , καὶ σχεδὸν εὑρὼν τὰς δύο φύσεις , τοῦ |
, τοὺς δὲ πλείστους καὶ τοὺς πεζοὺς εἰς λόχους καὶ δεκάδας καὶ τὰς ἄλλας ἀρχὰς διελὼν πεζεταίρους ὠνόμασεν , ὅπως | ||
ὄγχναις ὅρα καὶ μῆλα ἐπὶ μήλοις σωρούς τε αὐτῶν καὶ δεκάδας , εὐώδη πάντα καὶ ὑπόχρυσα . τὸ δὲ ἐν |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
χοίνικας βρέξας , ἐπειδὰν μαλθακοὶ ὦσι διατρωγόμενοι , ἰσχυρῶς ποιῆσαι λείους ἐν ὅλμῳ ἢ ἐν θυΐῃ : ἔπειτα ἐπιχέαι ὕδατος | ||
ὕδατι , κλύζειν . Ἢ κόκκους κνιδίους ὅσον ἑξήκοντα τρίψας λείους , ἐπιχέας τε μέλι καὶ ἔλαιον καὶ ὕδωρ , |
ἐπειδὰν δὲ τὰ δέκα ἔτη διατελέσωσιν , ἐξέρχονται εἰς τοὺς τελείους ἄνδρας . ἀφ ' οὗ δ ' ἂν ἐξέλθωσι | ||
ἐκλέγου δὲ τὰ ἀπὸ μιᾶς ῥίζης ἔχοντα τοὺς ἰδίους κλάδους τελείους . Ἀναγαλλίς : διττόν ἐστιν εἶδος αὐτῆς διαφέρον ἄνθει |
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
ταύτην ὁδὸν ἡγεμονεύσει ; Τρύφων μέντοι φησὶν ἐπὶ τοῦ τοιούτου συνδέσμους ἀντιπαρειλῆφθαι , τὸν γάρ ἀντὶ τοῦ δέ καὶ τὸν | ||
καὶ λιθώδεις συστάσεις πήγνυσθαί τε τὰ προαιρετικὰ νεῦρα καὶ τοὺς συνδέσμους καὶ τοὺς τένοντας , ἐπιτηδείως ἔχοντας εἰς τοῦτο διὰ |
θεῶν εἵλκυσαν εἰς ἔρωτα ἑαυτῶν , ἐξαιρέτως δὲ παρὰ τοὺς λοιποὺς θεοὺς Ἄρης καὶ Ἀθηνᾶ τῆς πόλεως ἤρων καὶ ἀντεποιεῖτο | ||
ἐκλήθη σεισάχθεια : φανερὸν δὲ διὰ τί . Ἔπειτα τοὺς λοιποὺς νόμους ἔθηκεν , οὓς μακρὸν ἂν εἴη διεξιέναι , |
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
διάνοιαν καὶ τοῖς ὀνόμασι διαφέρουσιν . Ἐπεὶ γοῦν δύο μὲν κανόνας τῶν εἰς ην ὀνομάτων , ὥς φαμεν , ὁ | ||
φαίνεσθαι , ἃ δὴ καὶ φανδούρους καλοῦσιν οἱ πολλοὶ , κανόνας δ ' οἱ Πυθαγορικοὶ , καὶ τὰ τρίγωνα τῶν |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
τὰ αὐτὰ εἴδη τῶν ψυχικῶν διαθέσεων τρέπεταί πως ἐπὶ διαγωγὰς ἀνομοίους , συνελκόμενα τοῖς ἔθεσι τῶν κατὰ καιροὺς πολιτειῶν ἐπὶ | ||
εἶναι τῶν τε ἄλλων Σκυθῶν καὶ τῶν Σαυροματῶν τοὺς βίους ἀνομοίους : τοὺς μὲν γὰρ εἶναι χαλεποὺς ὥστε καὶ ἀνθρωποφαγεῖν |
. Οἱ τέσσαρες ἐπίτριτοι . ἐπίτριτοι δὲ λέγονται κατὰ λόγους ἀριθμητικούς : ὁ τέταρτος γὰρ τοῦ τρίτου ἐπίτριτος . ἐπειδὴ | ||
τὸ μάθημα . τοὺς . . . δεινούς . τοὺς ἀριθμητικούς . αὐτὸ τὸ ἕν . τὴν μονάδα τὴν παρὰ |
. Τὸ εʹ ἀντισπαστικὸν δίμετρον ὑπερκατάληκτον : ἔχει δ ' ἐπιτρίτους δʹ ἀντὶ ἀντισπάστων . Τὸ Ϛʹ σύνθετον ἔκ τε | ||
εἰ θέλεις ἡμιολίους εὑρεῖν , τοὺς διπλασίους ζήτει , εἰ ἐπιτρίτους , τοὺς τριπλασίους , καὶ τοῦτο ἐφεξῆς . οἷον |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
τοῦτο ἀποφατικῶς ἢ καταφατικῶς , καὶ ποιεῖ τοὺς δύο καθόλου προσδιορισμούς , φημὶ δὴ τὸν πᾶς καὶ τὸν οὐδείς , | ||
ὑποκειμένων οὐ καθόλου ἀποφαίνονται , μὴ συντάττουσαι αὐτοῖς τοὺς καθόλου προσδιορισμούς , οἳ ποιοῦσι καθόλου ἡμᾶς ἀποφαίνεσθαι περὶ τῶν καθόλου |
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη | ||
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες . |
πολεμικὴν πρὸς πύλας , πάλῳ καὶ κλήρῳ τοῦτο λαχών . κλήρους γὰρ ποιησαμένων τῶν ἑπτὰ λοχαγῶν μία πύλη ἑκάστῳ ἐδόθη | ||
γὰρ Ἐτέοκλος Ἀργεῖος ἦν . . ἔθος γὰρ τοῖς μέλλουσι κλήρους ποιεῖν κράνος λαμβάνειν , καὶ ἐντὸς καθιέναι σημεῖα αὐτῶν |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
☾ ὅροι ἀπὸ οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα | ||
͵αιϚ λαʹ ξβʹ ρκδʹ σμηʹ υϘϚʹ ιϚʹ φη υϘϚ λβʹ σνδ ∠ ʹ σμη ξδʹ ρκζ δʹ ρκδ ρκζʹ ξδ |