ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται
7406573 ἀναφορων
' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ
ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν
7395942 ἐκκειμενων
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν
7322216 ηθʹ
ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ
γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ :
7270873 τριπλασιοι
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί
7270130 τετραπλασιοι
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς ,
7258441 τριπλασιων
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ
7211639 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
7204603 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
7182109 περισσων
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν
7179711 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
7173054 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
7137104 ἡμιολιοι
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια
7131956 τετραπλασιων
ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω
καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ
7081349 ἑπταγωνοι
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι
7069284 ἐκκειμενου
ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι .
τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει
7057614 τριγωνοι
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι
7029026 πολυγωνοι
δὲ τετράγωνοι , οἱ δὲ πεντάγωνοι καὶ κατὰ τὸ ἑξῆς πολύγωνοι . γεννῶνται δὲ οἱ τρίγωνοι τὸν τρόπον τοῦτον .
, ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι . πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν
7022397 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
7000917 προχωρουντες
ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν
καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ
6997915 περιεχοντες
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ
6995764 διαστασεων
Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία
6993071 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6983940 πενταγωνων
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν
6978184 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
6908069 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6902870 τμηματων
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ
6892738 πολυγωνων
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον
6876542 συντεθεντων
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν
6864313 ὡρολογιων
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη ,
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς ,
6852676 ἀνατελλουσι
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω -
6846251 ἰσημεριων
τόπων ἐπίσκεψιν ἢ τῆς τοῦ ἡλίου κινήσεως τῆς ἀπὸ τῶν ἰσημεριῶν ἐπὶ τοὺς μέσους τῶν ἐκλείψεων χρόνους ἢ μὴ ἀληθῶς
' ἡμῶν κατὰ τὸ υξγʹ ἔτος ἀπὸ τῆς Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος
6838685 ἐπιμερεις
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ
6830638 συμπιπτωσι
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι ,
6827981 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6818235 συναμφοτερων
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ
6812225 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
6808879 ἑξαγωνοι
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ
6807688 πυθμενων
ὡς ὑφηγητοῦ τινος πύλαις διπλαῖς ἐνήλατ ' , ἐκ δὲ πυθμένων ἔκλινε κοῖλα κλῇθρα κἀμπίπτει στέγῃ . Οὗ δὴ κρεμαστὴν
τὸν Κ ] , ὁ δὲ ὑπὸ τῶν Ζ Η πυθμένων καὶ τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [
6807291 τριακοστημοριων
μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ
δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν
6786458 ὁμοταγεις
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται
6783698 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
6774057 ἀρτιων
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους ,
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα
6772193 κηʹ
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ
6768976 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
6768585 πενταπλασιοι
μακροῦ ὄντων , ἐπαρθεὶς ὁ στρατηγὸς αὐτῶν , ὅτι καὶ πενταπλάσιοι τῶν πολεμίων ἦσαν οἱ σφέτεροι , τήν τε παρεμβολὴν
τὸν ε οὕτως ὡς ὁ ε πρὸς τὴν μονάδα : πενταπλάσιοι γὰρ ἀμφότεροι . Καὶ διὰ τοῦτο ὅσων ἐστὶν ἡ
6758581 ἐπιτριτοι
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ
6757883 ἡμισους
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ :
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ
6750677 διπλασιοι
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι
6749789 ἁφων
ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ μὲν τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , διὰ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων
τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι
6749368 τετραγωνοι
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον
6746338 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6745492 κωνων
μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ
6740927 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
6728355 ἐλαττονες
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων .
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ
6726131 τνδ
Εἰ μὲν γὰρ ἦν ὁ ἐνιαυτὸς ὁ κατὰ σελήνην ἡμερῶν τνδ , ἦν ἂν ἡ ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν
ποιήσηταί τις . Ἄγεται δὲ ὁ κατὰ σελήνην ἐνιαυτὸς ἡμερῶν τνδ : δι ' αἰτίαν δὲ τοιάνδε ὑπέλαβον εἶναι τὸν
6716691 ἀνισους
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως
6706686 στοιχηδον
τὰ κήτη . τὸ κεῖσθαι τοὺς ὀδόντας ἐν τοῖς σιαγόσι στοιχηδόν ? τὸ δὲ παῶν ἔρημοι οἱ νεώτεροι κοινῶς καὶ
ἀθρόα μετ ' ἀλλήλων εἶναι , τὰ δὲ διεστῶτα καὶ στοιχηδόν , ὥσπερ τὰ τῆς κολοκύντης καὶ σικύας καὶ τῶν
6703882 τεταρτημοριων
νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν
ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ
6693775 σπθ
ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ
σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ
6689550 διαμετροι
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν
6685759 νοουνται
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν
6680606 ἐπιπεδοι
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς
6673816 ἰσαριθμον
οἰκείου κλίματος χρόνοις ἀναφορικοῖς , κατὰ δὲ τὴν τοῦ μεσουρανήματος ἰσάριθμον τοῖς χρόνοις τῶν μεσουρανημάτων , κατὰ δὲ τὰς ἀπὸ
οἱ ὀδόντες , ἀνεστήκασι δὲ αἱ κεφαλαί , ζητοῦσι δὲ ἰσάριθμον θήραν . μαντεύομαι οὖν ἐγὼ καὶ Ὅμηρον βούλεσθαι λέγειν
6667290 αὐξησεων
καὶ τὰ περὶ ἀστέρων ἢ φάσεων ἢ κρύψεων ἢ σελήνης αὐξήσεων ἢ μειώσεων ἐν τοῖς ἐσχάτοις εἶχε τὴν παρ '
τῶν ἄκρων λημμάτων καὶ εἰς ἑνότητα σύνταξιςκαὶ τίνι καθόλου τῶν αὐξήσεων παραλλάττει τὰ ὕψη , τῆς σαφηνείας αὐτῆς ἕνεκα συντόμως
6664418 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
6661371 μοναδες
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι :
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες
6660172 βασεων
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν
6656327 λαμβανομενοι
ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ
τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ
6652556 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
6649408 νοτιωτερων
ἀστέρων , οὐ χρεία διόπτρας : πολλῷ γὰρ τῶν μὲν νοτιωτέρων ὑπαρχόντων , τῶν δὲ βορειοτέρων , αὐτόθεν ἀναβλέψαντι φανερὸν
Γεδρωσίαν καὶ τῆς Ἰνδικῆς διήκει , τῇ δὲ διὰ τῶν νοτιωτέρων Κυρήνης πεντακισχιλίοις σταδίοις παρὰ μικρόν . Ἅπασι δὲ τοῖς
6641841 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
6641727 ἡμισφαιριων
ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια .
οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ
6638080 πυθμενες
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ '
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ
6637812 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
6635907 Χηλων
Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ
τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται
6628442 συζυγιων
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν
6626013 ηζθʹ
ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον ,
Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων
6620122 διαμετρων
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς
6618940 δωδεκατημοριων
ἀκόλουθον ἂν εἴη συνάψαι καὶ τὰς αὐτῶν τῶν τοῦ ζῳδιακοῦ δωδεκατημορίων παραδεδομένας φυσικὰς ἰδιοτροπίας . αἱ μὲν γὰρ ὁλοσχερέστεραι καθ
, ἄμφω δ ' αὖτε τὸν αὐτὸν ἅμα θρώσκωσι τυχόντες δωδεκατημορίων ἑλικὸν δρόμον αἰθροδόνητον , τηνίκα τοὺς τεχθέντας ἀναγγέλλουσιν ἔσεσθαι
6607476 ἐφαπτομεναις
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα .
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ
6605815 ρπʹ
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια
6605047 ρκϚ
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . .
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται
6594868 πολλαπλασιεπιμερων
τριπλασίων καὶ τετραπλασίων καὶ ἐπιμορίων καὶ ἐπιμερῶν καὶ πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν . καὶ ὅτι ἐν πάσαις ταύταις ταῖς σχέσεσιν ἡ
καὶ τῶν ἐπιμερῶν καὶ τῶν μικτῶν ἀντὶ τοῦ τῶν τε πολλαπλασιεπιμερῶν καὶ τῶν πολλαπλασιεπιμορίων . ἔστι δὲ καὶ ἄλλο ἰδίωμα
6589311 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
6587667 ἑῳαι
ὑπὸ τοῦ ζῳδιακοῦ ἐπὶ τὰ πρὸς ἄρκτους , ἐκείνων αἱ ἑῷαι δύσεις τῶν ἑῴων ἐπιτολῶν προηγοῦνται , ὅσα δὲ ἀπολαμβάνεται
ἑῴα . Τῶν δ ' ἄλλων αἱ πλεῖσται τῶν ὀνομαζομένων ἑῷαι οἷον Πλειάδος καὶ Ὠρίωνος καὶ κυνός . Τῶν δὲ
6583526 ὑπεροχων
γὰρ βραδύτερον ἐξολιϲθαίνει καὶ χαλεπώτερον ἐμβάλλεται διὰ τὴν πυκνότητα τῶν ὑπεροχῶν τε καὶ κοιλοτήτων . πάϲχει μὲν οὖν ἔϲτιν ὅτε
μέσου , ἀλλὰ τοσούτῳ ἔλαττον , ὅσῳ τὸ ὑπὸ τῶν ὑπεροχῶν ἐστιν : ἦν δὲ ἡ ὑπεροχὴ μονάς : ἅπαξ
6581471 περιοδικων
ἐλάχιστα ἀποστήματα λογισμούς , ἃ γίνεται περὶ τὰς τῶν ρκ περιοδικῶν μοιρῶν ἀπὸ τοῦ ἀπογείου διαστάσεις , ἡ μὲν τῆς
τὰ περὶ τὴν σελήνην ἐξετάζειν δεῖ : περί τε τῶν περιοδικῶν αὐτῆς χρόνων , τουτέστιν τῶν ἀποκαταστατικῶν κινήσεων ἐν ἔτεσιν
6575196 κλιματος
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ
6573129 ἀξονων
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν ,
6571470 ἐκτεθεντων
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α ,
6569270 νοτιωτατος
. Κριοῦ κδ γʹ νο η ∠ ʹ δʹ ὁ νοτιώτατος τῶν δ . . . . . . .
δὲ νῦν ἐπὶ τοῦ ὁρίζοντος πρὸς τῇ δύσει κείμενος ὁ νοτιώτατος ἀστὴρ τῶν ἐν τῷ ἀριστερῷ ποδὶ τοῦ Ἀρκτοφύλακος .
6565369 ἐννακις
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο
6561950 ἀρκτικων
διὰ τὸ ψῦχός εἰσιν , ἀφορίζονται δ ' ὑπὸ τῶν ἀρκτικῶν πρὸς τοὺς πόλους . Αἱ δὲ τούτων ἑξῆς ,
δ ' αὐτὸν τρόπον καὶ περὶ τῶν τροπικῶν καὶ τῶν ἀρκτικῶν , παρ ' οἷς εἰσιν ἀρκτικοί , διορίζουσιν ὁμωνύμως
6558747 ζωνων
Θρᾷττα ταινιόπωλις , τὴν ἐπὶ τῶν ὑφασμάτων λέγει καὶ τῶν ζωνῶν , αἷς αἱ γυναῖκες περιδέονται . ΤΡΑΧΟΥΡΟΙ . τούτων
εὑρήσεις καὶ τὸν κύριον τοῦ μηνὸς οὕτως , τῇ τῶν ζωνῶν διαθέσει ἀνωφερῶς χρώμενος . οἷον ὁ Θὼθ ἔσται Ἄρεως
6557081 ἐδειχθησαν
τοῦ ἀκλεής ) . Πρῶτον αἱ πρωτότυποι ἀντωνυμίαι οὐκ ἀκόλουθοι ἐδείχθησαν τοῖς ἄλλοις πτωτικοῖς . ἔπειτα Δωριεῖς ἐπὶ τὸ τέλος
ἔδει δεῖξαι . ἐπισυμβήσεταί τε τούτων οὕτως ἐχόντων , ἐπείπερ ἐδείχθησαν καὶ τῶν ἴσον ἀπεχόντων τοῦ αὐτοῦ ἰσημερινοῦ σημείου αἱ
6556438 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
6553772 χειμερινων
- δὲ κύκλος ὁ ΕΖΜ , καὶ ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν πορευόμενος ἔν τινι ἡμέρᾳ ἀνατολὴν πεποιήσθω κατὰ τὸ
τοῦ μεσημβρινοῦ ὑπὸ γῆν . ιαʹ Ὅταν ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν ἐπὶ θερινὰς τροπὰς πορεύηται , ἐν τῷ μεταξὺ
6545524 εὐτακτοι
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι
6543497 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
6534609 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν

Back