μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ
8033187 ἀξονων
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν ,
7508103 κυκλων
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ
7471381 διαμετρων
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς
7331598 παραλληλογραμμων
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ
7249207 βασεων
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν
7228451 ηζʹ
: καὶ ἔστιν ἑκατέρα τῶν βξʹ γνʹ μείζων ἑκατέρας τῶν ηζʹ ζθʹ , τὰς δὲ μείζους περιφερείας ἀπέχοντος τοῦ ἡλίου
ηζʹ ζθʹ μείζων ἐστί , φανερόν : ἑκατέρα γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα
7224874 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
7198562 κυλινδρων
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις
7193735 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
7192940 ἐλαττονες
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων .
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ
7192176 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
7115932 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
7108788 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
7098028 διαμετροι
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν
7075759 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
7000993 κωνοι
βάσις πρὸς τὴν ΓΔ . ἐπεὶ γὰρ ἴσοι εἰσὶν οἱ κῶνοι , ὡς ἄρα ὁ περὶ τὸ Η κέντρον κύκλος
γὰρ καὶ κατὰ τρίγωνα ὁρώσης τῆς ὄψεως , ὅταν οἱ κῶνοι ἐξ ἀμφοτέρων τῶν ὀμμάτων ἐξίωσι καὶ προσβάλωσιν αἱ ὄψεις
6917346 τριπλασιοι
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί
6888654 παραλληλων
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν
6833275 ὑδερων
φύσιν ἐκεῖσε συννεύειν καὶ συντρέχειν . Ὁκόσοισι μὲν οὖν τῶν ὑδέρων ἐκ τῶν κενεώνων τε καὶ τῆς ὀσφύος [ .
ὁ ὕδερος . καί φησιν ὅτι “ ὁκόσοισι μὲν τῶν ὑδέρων ἐκ τῶν κενεώνων τε καὶ τῆς ὀσφύος ἄρχονται ,
6825328 ἐλασσονες
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ
6824601 ἐπικυκλων
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν ,
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ
6779258 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
6766662 σφαιρων
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι .
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ
6752788 ἀποστασεων
Τούτοις δ ' ἀκολούθως ἐζητήσαμεν τὰς πηλικότητας τῶν γινομένων μεγίστων ἀποστάσεων , ὅταν ἡ μέση τοῦ ἡλίου πάροδος κατ '
πλανώμεθα , καὶ τῶν σχημάτων κατὰ ποιάν τινα σχέσιν τῶν ἀποστάσεων τὰ μὲν πολύγωνα περιφερῆ , εὐθύγραμμα δὲ τὰ στρογγύλα
6745492 γνωμονων
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται
6738785 παραλληλοι
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ
6730791 διχοτομιων
: τὸ μὲν γὰρ δὶς ἀπὸ ΑΒ , διὰ τῶν διχοτομιῶν , ἴσον ἐστὶν τῷ τε δὶς ὑπὸ ΑΔΓ καὶ
, τῶν δὲ ἄλλων οἱ μὲν ἴσον ἀπέχοντες ὁποτερασοῦν τῶν διχοτομιῶν ὁμοίως εἰσὶ κεκλιμένοι , αἰεὶ δὲ ὁ πορρώτερον τὴν
6728106 γεγραφθωσαν
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου .
6728068 βραχυτεραι
ἐστίν , ἀλλ ' αἱ μὲν ἄνωθέν τε καὶ κάτωθεν βραχύτεραι τυγχάνουσιν οὖσαι , μακρότεραι δ ' αἱ μέσαι .
ζωστῆρσι χαλκέοις ἐσφιγμένοι , καὶ ξίφη παρηρτημένα , καὶ λόγχαι βραχύτεραι τῶν μετρίων : τοῖς δ ' ἀνδράσι καὶ κράνη
6728020 ἀνατελλουσι
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω -
6719477 τραπεζια
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος
6713236 ΚΖΗ
τὸ ἄρα ὑπὸ τῶν ΕΖΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΚΖΗ . ἀλλὰ τῷ ὑπὸ τῶν ΕΖΔ ἴσον ἐδείχθη τὸ
ἡ ΛΝ τῇ ΝΖ . ἤχθωσαν τεταγμένως αἱ ΒΘ , ΚΖΗ , ΛΜΔ . ἐπεὶ οὖν διὰ τὰ δεδειγμένα ἐν
6704021 μειζονες
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ .
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα
6696135 συναμφοτεραι
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ
6692572 ἁφων
ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ μὲν τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , διὰ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων
τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι
6670114 ὀρθογωνιων
κοινῆς θεωρίας τὸ ζητούμενον δείκνυσιν . διττῶν δὲ ὄντων τῶν ὀρθογωνίων τριγώνων , τῶν μὲν ἰσοσκελῶν , τῶν δὲ σκαληνῶν
ἀποφαίνεται : τὸ μὲν πῦρ ὑπὸ τεσσάρων καὶ εἴκοσι τριγώνων ὀρθογωνίων συμπληροῦται τέσσαρσιν ἰσοπλεύροις περιεχόμενον . ἕκαστον δὲ ἰσόπλευρον σύγκειται
6633637 ἀξονες
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ
6621932 πυραμιδων
ἀγοράν , ἔτι δὲ πύργων ἀξιολόγους κατασκευὰς καὶ κατὰ τάφους πυραμίδων πολλῶν καὶ μεγάλων διαφόρων ταῖς φιλοτεχνίαις . Ἐπ '
τῆς ΑΒΓΗ πυραμίδος ὕψος . τῶν ΑΒΓΗ , ΔΕΖΘ ἄρα πυραμίδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν . Ἀλλὰ δὴ τῶν
6617555 τετραγωνων
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ;
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ
6605011 φαινομεναι
' αὐτῶν ἐξικνεῖσθαι : αἱ γὰρ τῶν βαρβάρων λόγχαι παχέαι φαινόμεναι ἀγχέμαχοι μέν , ἄφοβοι δὲ ἐς τὸ ἐσακοντίζεσθαι ἦσαν
: αἱ μὲν γὰρ αὐτῶν ἀληθιναὶ λέγονται , αἱ δὲ φαινόμεναι . Ἀληθιναὶ μέν , ὅταν ἅμα κατὰ ἀλήθειαν ἐπὶ
6592033 κυκλοι
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ
6579449 πενταγωνων
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν
6576261 ἡμισφαιριων
ἑκάτερον τῶν λίθων ἓξ ὀνόματα ἐγγλύφεται , διότι καὶ τῶν ἡμισφαιρίων ἑκάτερον δίχα τέμνον τὸν ζῳοφόρον ἓξ ἐναπολαμβάνει ζῴδια .
οὐδὲν γὰρ τούτων περιφορὰ τοῦ παντὸς οὐρανοῦ , ἀλλὰ τῶν ἡμισφαιρίων καὶ μέρος τῆς ὅλης περιφορᾶς . πρὸς τούτοις δὲ
6561249 ἐπιτριτοι
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ
6557705 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
6556403 περιεχουσι
: ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν
Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ
6551413 ἑπταγωνοι
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι
6536484 ἐπιτολων
ἡλίῳ θεωρούμενος ὑφ ' ἡμῶν . Τῶν μὲν οὖν ἑῴων ἐπιτολῶν καὶ δύσεων πρότερον γίνονται αἱ ἀληθιναί , ὕστερον δὲ
. ἢ οὕτως : ὦ Ἥφαιστε , χρὴ φροντίζειν τῶν ἐπιτολῶν τοῦ Διός . Σκύθην ἐς οἶμον : Τὴν Σκυθικὴν
6486626 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6471239 εὐθειων
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς
6468802 ἐφαπτομενων
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ
6467681 πολυγωνων
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον
6462261 ἑξαγωνοι
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ
6443028 ὁριζοντων
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν
6437665 τετραπλευρων
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα ,
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ
6406473 διαστασεων
Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία
6406168 ἐστωσαν
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ
6405563 ὁμοταγεις
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται
6393232 πυθμενες
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ '
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ
6390973 ΒΧ
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ ,
6390261 ἑκατερᾳ
, ] δειχθήσεται δὲ ἑκατέρα τῶν ΒΧ , ΧΓ ἴση ἑκατέρᾳ τῶν ΒΥ , ΥΦ οὕτως : ἐπεζεύχθωσαν ἀπὸ τῶν
ἡ ΑΗ τῇ ΗΕ , σύμμετρός ἐστι καὶ ἡ ΑΕ ἑκατέρᾳ τῶν ΑΗ , ΗΕ . ὑπόκειται δὲ καὶ ἡ
6381544 ΓΒΑ
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΒ , ΓΒΑ , ΓΑΒ ἄρα δυσίν ὀρθαῖς ἴσαι εἰσίν . Παντὸς
τῶν ΔΗΕ , περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ τῶν ΓΒΑ , ΕΔΗ τὰς πλευρὰς ἀνάλογον , τῶν δὲ λοιπῶν
6375835 ἐπιμερων
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως .
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς
6364036 περιεχονται
εὑρέσεις , αἱ δὲ εὑρέσεις οὐ περιέχουσι τὰ κεφάλαια ἀλλὰ περιέχονται . Καὶ τὸ πάντων μέγιστον , ὅτι τὰ μὲν
εἰ ἀσώματοί εἰσι μόνως οἱ θεοί ; ὅτι δὴ οὐ περιέχονται ὑπὸ τῶν σωμάτων , φαμὲν ἡμεῖς , ἀλλὰ ταῖς
6354926 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
6351557 Ἐστωσαν
ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις . Ἔστωσαν δύο εὐθεῖαι παράλληλοι αἱ ΑΒ , ΓΔ , καὶ
ἀπάγεται γὰρ εἰς τὰ πτωτικὰ τοῦ ἑπτακαιδεκάτου . κγʹ . Ἔστωσαν δύο κύκλοι οἱ ΑΒ ΓΔ , καὶ ἐκβεβλήσθω ἡ
6343022 περιφερειαι
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ ,
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις
6341286 ἀσυμπτωτοι
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων
6327110 ἰσοι
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς
6319851 περιεχοντες
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ
6318723 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
6311733 συναμφοτερῳ
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ
6304064 ϲιμων
καὶ τοὺϲ εἰλεοὺϲ ἡ τούτων κάθαρϲιϲ ἐξιᾶται . Κενωτικὰ τῶν ϲιμῶν τοῦ ἥπατοϲ . Πολυπόδιον λινόζωϲτιϲ ἐϲθιομένη ἑφθὴ λαθυρίδεϲ μετ
ρμδ Περὶ ὑποκαπνιϲμῶν ρμε Κενωτικὰ λεπτῶν ἐντέρων ρμϚ Κενωτικὰ τῶν ϲιμῶν τοῦ ἥπατοϲ ρμζ Κενωτικὰ τῶν κυρτῶν τοῦ ἥπατοϲ ρμη
6297120 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
6288513 ἐφαπτομεναι
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ
6281959 πολων
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ .
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι
6274441 ἐφαπτομεναις
ἀλλήλαις , ἀχθῶσι δὲ διὰ τῶν ἁφῶν διάμετροι συμπίπτουσαι ταῖς ἐφαπτομέναις , ἴσα ἔσται τὰ πρὸς ταῖς ἐφαπτομέναις τρίγωνα .
τι σημεῖον , καὶ ἀπ ' αὐτοῦ παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ
6271854 τομαι
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ ,
6267848 ὁσοιδηποτουν
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι ,
6247001 ἀπεναντιον
διάμετρος δίχα τέμνουσιν ἀλλήλας . Κύβου γὰρ τοῦ ΑΖ τῶν ἀπεναντίον ἐπιπέδων τῶν ΓΖ , ΑΘ αἱ πλευραὶ δίχα τετμήσθωσαν
. Ἐὰν στερεὸν παραλληλεπίπεδον ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους τῶν ἀπεναντίον ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου
6242981 ἡμιολιοι
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια
6241357 συναμφοτερων
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ
6234059 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6231571 τετραπλασιοι
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς ,
6226671 ἀνεσεων
τὰ συμπίπτοντά ἐστιν . ἐπεὶ τοίνυν καὶ τὰ διαστήματα τῶν ἀνέσεων , ἐν οἷς παραλαμβάνομεν τὰ βοηθήματα , οὐκ ἴσα
ἐν οἷς παραλαμβάνομεν τὰ βοηθήματα , οὐκ ἴσα ἐπὶ πασῶν ἀνέσεων , καὶ αἱ περιστάσεις ἀνόμοιαι , καὶ τὰ συμπτώματα
6225447 ΡΒ
ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς
καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ
6224160 ΔΖΕ
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ
6222931 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6221172 σχεσεων
ἀκοὴν πρὸς τὰ ἐξαρτήματα καὶ βεβαιώσας πρὸς αὐτὰ τὸν τῶν σχέσεων λόγον , μετέθηκεν εὐμηχάνως τὴν μὲν τῶν χορδῶν κοινὴν
ιεʹ , καὶ ἀεὶ ὁμοίως . Ἐπιδειχθείσης ἡμῖν τῆς τῶν σχέσεων πλάσεως ἀπλατῶν καὶ μικτῶν ἀπὸ ἰσότητος τὴν ἀρχὴν ἐσχηκυίας
6210480 πλινθιδες
τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν
, ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί
6205365 ἐκκειμενων
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν
6203049 τεταρτημοριων
νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν
ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ
6197227 προσταγματων
ἐλεύθερος , ὡς ὑπηρέτης σός , ὡς ᾐσθημένος σου τῶν προσταγμάτων καὶ ἀπαγορευμάτων . μέχρι δ ' ἂν οὗ διατρίβω
τε τὸ ἔθνος καὶ διαιτᾶι κρίσεις καὶ συμβολαίων ἐπιμελεῖται καὶ προσταγμάτων , ὡς ἂν πολιτείας ἄρχων αὐτοτελοῦς . ἐν Αἰγύπτωι
6175539 προμηκεις
παράκειται . ἰστέον ὅτι ἑτερόμηκες νῦν καλεῖ κοινότερον καὶ τοὺς προμήκεις κατὰ τὸν καθόλου γεωμετρικὸν κανόνα τὸν νῦν ἡμῖν δεδειγμένον
δυάδος μονάδι μόνῃ μείζων ἐστί : καὶ ἐφεξῆς ὁμοίως . προμήκεις δέ εἰσιν οἱ πλείοσι μονάσιν ἔχοντες τὸ ἄνισον .
6163300 ἐδειχθησαν
τοῦ ἀκλεής ) . Πρῶτον αἱ πρωτότυποι ἀντωνυμίαι οὐκ ἀκόλουθοι ἐδείχθησαν τοῖς ἄλλοις πτωτικοῖς . ἔπειτα Δωριεῖς ἐπὶ τὸ τέλος
ἔδει δεῖξαι . ἐπισυμβήσεταί τε τούτων οὕτως ἐχόντων , ἐπείπερ ἐδείχθησαν καὶ τῶν ἴσον ἀπεχόντων τοῦ αὐτοῦ ἰσημερινοῦ σημείου αἱ
6162621 τμηματων
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ
6156772 βγ
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ ,
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ
6156423 παγουρων
τῶν δὲ καὶ γενεήν : ἐξ ὧν , φησι , παγούρων καὶ τὴν γενεὰν ἔμμορον , ἤγουν ἔλαχον καὶ ἔτυχον
Ἀπέχεσθαι δὲ λαβρακίων , κεφάλων , γυλαρίων , ἀστακῶν , παγούρων , καὶ ὅσα ὀστρακόδερμα . Τοὺς δὲ τῶν ἰχθύων
6150243 τριπλασιων
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ
6146989 μεσοι
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι

Back