εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ
8068183 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
7854749 εὐθειων
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς
7852476 λϚ
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
7807484 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
7555925 νϚ
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . .
7547946 συναμφοτερων
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ
7520225 κδ
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ ,
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ ,
7518535 ριζ
. . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . . . .
. . . . . . . . . . ριζ κγ ∠ ʹ Πίσκα . . . . .
7478913 λβ
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . .
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ
7429916 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
7422131 ἀσυμπτωτων
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι
7393061 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
7360293 μβ
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . .
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ
7334599 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
7316825 μθ
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν
7315507 τξα
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα :
7300529 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
7272333 ἡμιμοιριον
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι ,
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον
7272115 συντεθεντων
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν
7265307 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
7258478 ἐφαπτομενων
τὸ ἐγγράφεσθαι : τὸ μὲν γὰρ λέγεται ἐπὶ τῶν μὴ ἐφαπτομένων ἀλλήλων ὡς ἐπὶ τοῦδε # : τὸ δὲ ὅταν
ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ ἐπικύκλου ἡ μεταξὺ τῶν ἐφαπτομένων περιφέρεια ἔχουσα τὸ περίγειον ὅλη προσθετική ἐστιν , ἡ
7256901 διαμετρων
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς
7243077 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
7235197 ἑξηκοστων
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ -
7199931 ρμ
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . .
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ
7199438 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
7196879 ιη
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος ,
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ
7185147 σλδ
ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ
σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά
7181957 ριβ
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν
7159088 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
7134762 ροζ
καταπλαϲμάτων καὶ ϲικυῶν Γαληνοῦ ροϚ Ἐκ τῶν Λύκου περὶ καταπλαϲμάτων ροζ Περὶ τοῦ ἐξ ἄρτου καταπλάϲματοϲ ροη Περὶ τοῦ ἐκ
. . . . . . . . . . ροζ η ∠ ʹ Σαίνου ποταμοῦ ἐκβολαί . . .
7127083 ρμα
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ
7113829 ιγ
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ
7102730 περισσων
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν
7099327 νζ
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα
7057505 νγ
τὸ ὑπὸ τῶν ΑΒ , ΒΓ μοιρῶν σϚ λεπτῶν α νγ κ . Τὸ ἀπὸ τῆς ΑΒ τετράγωνον ὑπόκειται ὁ
ἐν τῷ αὐτῷ σελιδίῳ παρακείμενα τὰ τῆς ὅλης παραλλάξεως ἑξηκοστὰ νγ ∠ ʹ , ὡς καὶ ἐνθάδε τὴν προήγησιν τῆς
7054645 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ
7037410 ρθ
με ιβ πρὸς τὰ ρκ . μέσου δὲ τασσομένου τούτων ρθ μζ ια , γίνεται ὁ συγκείμενος λόγος μδ ιθ
τῶν μη κϚ ιδ πρὸς τὰ ρκ . τὰ γὰρ ρθ με ιβ ἐπὶ τὰ μη κζ κϚ γίνεται ͵ετιη
7028665 ρλη
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . .
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα
7023957 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
7021953 πλευρων
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά
6976691 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
6968982 Μμζ
μϚ ιζ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον τῶν αὐτῶν Μμζ ͵δϠδ μϚ ιζ : καὶ μήκει ἄρα ἔσται ἡ
ἐὰν τὰ ͵γχ τοῦ ἀπ ' αὐτῆς τετραγώνου προσθῶμεν ταῖς Μμζ ͵βψ ε λβ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον
6965387 σκε
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος
6949295 νβ
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ
6946580 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
6931292 ξδα
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ
6922865 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
6917354 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
6913949 παραλληλογραμμων
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ
6911988 μγ
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . .
6910149 Ϙθ
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ :
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ
6902870 γνωμονων
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται
6898365 μδ
νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με :
ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς
6897284 σκδ
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ
6894104 ρζ
ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ
γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ
6893724 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
6891088 λδ
λευκάνθεμον ἄλυϲϲον λβ Ἀρμένιον τὸ τῶν ζωγράφων λγ Κενταύριον λεπτόν λδ Περὶ φλεγμαγωγῶν λε Κολοκυνθίϲ λϚ Τιθύμαλλον λζ Ἴϲιον λη
. Ϛ μα Ἀφροδίτης . . . . . τνθ λδ Ἑρμοῦ . . . . . . . σλδ
6885285 Ϟος
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ ,
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι
6883778 ἀφελωμεν
τοῦ λόγου τοῦ τῶν ριδ ιϚ πρὸς τὰ λϚ λη ἀφέλωμεν τὸν τῶν ριζ ιβ πρὸς τὰ κε μδ ,
ἑκάτερος αὐτῶν ἐλάσσων Μο ι , καὶ ἐὰν ἑκάτερον αὐτῶν ἀφέλωμεν ἀπὸ Μο ι , εὑρήσομεν τοὺς λοιποὺς τῶν ζητουμένων
6866439 ρκ
εὐθεῖα τοιούτων κε ζ , οἵων ἐστὶν ἡ ΒΕ τείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΒΕ εὐθεῖα
διὰ τοῦτο τὴν μὲν ἐπὶ τῆς ΒΗ περιφέρειαν τοιούτων γίνεσθαι ρκ , οἵων ἐστὶν ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος
6866398 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
6863055 Ϟον
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα
6856246 ἀνισων
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ ,
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β
6841020 ἀπολαμβανομενων
χωρὶς τοῦ μεγίστου τῶν παραλλήλων τοῦ ΕΖ , τῶν δὲ ἀπολαμβανομένων τμημάτων ἐν ἑνὶ τῶν ἡμισφαιρίων ἡμικυκλίων μὲν ἔσται μείζονα
: ἑνὶ γὰρ στόματι πολλοὶ κλείονται λιμένες ἄκλυστοι , κόλπων ἀπολαμβανομένων ἐντός , ὥστ ' ἐοικέναι κέρασιν ἐλάφου τὸ σχῆμα
6840019 βγ
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ ,
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ
6838538 ξγ
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ
6834793 ٢٩
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤
6830842 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
6824782 ρμη
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ
6822017 φξ
θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο ,
δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος .
6809130 ρλβ
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . .
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ
6808749 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
6806324 ξη
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν
6804645 στιγμων
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας
6800443 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
6796674 ἰσων
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα
6786370 λγ
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . .
6785319 ἐκκειμενων
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν
6784313 κυκλων
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ
6779005 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6777871 ρξθ
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ
6777863 κγ
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ ,
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . .
6774153 μοναδων
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν
6772448 πολλαπλασιασθεντων
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα
6771731 ὀρθια
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων .
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες ,
6760813 Ϙε
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ
6753093 ριδ
ἐστιν ρμδ κϚ καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριδ ιϚ , ἡ δὲ τῆς ΕΚ μοιρῶν λε λδ
Πρὸϲ τοὺϲ διὰ ξηρότητα ἐν ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ ριδ Πρὸϲ τοὺϲ διὰ ἔμφραξιν κυρίου μορίου λειποθυμοῦνταϲ ριε Πρὸϲ
6745383 τριπλασιοι
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί
6744948 ιθ
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ
6742611 οβ
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . .
6742028 ριϚ
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι
6737944 τετραγωνων
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ;
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ
6731568 τκδ
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη
6720812 νδ
, καὶ ἡ μὲν ἡμίσεια τῆς προηγήσεως γίνεται μοιρῶν δ νδ λζ καὶ ἡμερῶν ξα ∠ ʹ ἔγγιστα , ἡ
ψκγ καὶ ἔτι , ὅσας καὶ ὁ ἥλιος ἐπιλαμβάνει τοῖς νδ κύκλοις μοίρας λβ . ἤδη μέντοι πάλιν ὁ Ἵππαρχος
6713415 Ὀριβαϲιου
ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ τῶν θερμαινόντων καὶ ψυχόντων ρϘη
ἄνθρακαϲ διαπύρουϲ ἐπιτεθεῖϲα ἰώδη τὴν χρόαν ἐμφαίνουϲα . Ἐκ τῶν Ὀριβαϲίου περὶ δυνάμεωϲ τῶν ἁπλῶν φαρμάκων . Ὅϲα μέϲα ἐϲτὶ
6710389 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
6709711 ἀξονων
κῶνοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχωσιν ἤπερ τὰ διὰ τῶν ἀξόνων τρίγωνα , ἰσοϋψεῖς ἔσονται οἱ κῶνοι . καταγεγράφθωσαν οἱ
καὶ ἐπεὶ τῶν ΚΗΓΔ , ΒΘΕΖ κώνων τὰ διὰ τῶν ἀξόνων τρίγωνα τὰ ΚΓΔ , ΒΕΖ ἴσα ἀλλήλοις ἐστίν ,
6703363 ὁμοταγων
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν ,
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ
6692964 ρκζ
. ρκη ια γʹ Φάσιος ποταμοῦ ἐκβολαί . . . ρκζ ια γʹ αἱ πηγαὶ τοῦ ποταμοῦ . . .
λειπούσας αὐταῖς νβ λβ εἰς ρπ , εὕρομεν ταῖς μὲν ρκζ κη περιφερείας εὐθεῖαν ρζ λς λδ : ταῖς δὲ

Back