δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
9276535 νϚ
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . .
9261554 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
9233537 μθ
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν
9227253 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
9184565 ιη
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος ,
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ
9172334 λβ
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . .
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ
9151395 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
9127819 ιθ
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ
9103072 μβ
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . .
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ
9101339 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
9099552 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
9068727 νβ
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ
9057032 νζ
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα
9046373 κδ
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ ,
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ ,
9046141 οβ
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . .
9045582 ρξθ
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ
9023757 λγ
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . .
9019464 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
9017277 κη
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν
9007386 λδ
λευκάνθεμον ἄλυϲϲον λβ Ἀρμένιον τὸ τῶν ζωγράφων λγ Κενταύριον λεπτόν λδ Περὶ φλεγμαγωγῶν λε Κολοκυνθίϲ λϚ Τιθύμαλλον λζ Ἴϲιον λη
. Ϛ μα Ἀφροδίτης . . . . . τνθ λδ Ἑρμοῦ . . . . . . . σλδ
9001498 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
9000904 κβ
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ
8995961 κϚ
. ξγ κη καὶ ἡ τοῦ Πορφυρίτου ὄρους . ξγ κϚ γοʹ καὶ ἡ τοῦ Μέλανος λίθου ὄρους ξγ κδ
Β πλευρᾶς ἤτοι τῆς γ θ μδ καὶ τῆς β κϚ νδ . εἰ οὖν βούλει εὑρεῖν μέσην ἀνάλογον τῶν
8939316 ιγ
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ
8928146 νδ
, καὶ ἡ μὲν ἡμίσεια τῆς προηγήσεως γίνεται μοιρῶν δ νδ λζ καὶ ἡμερῶν ξα ∠ ʹ ἔγγιστα , ἡ
ψκγ καὶ ἔτι , ὅσας καὶ ὁ ἥλιος ἐπιλαμβάνει τοῖς νδ κύκλοις μοίρας λβ . ἤδη μέντοι πάλιν ὁ Ἵππαρχος
8902886 μγ
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . .
8888158 νγ
τὸ ὑπὸ τῶν ΑΒ , ΒΓ μοιρῶν σϚ λεπτῶν α νγ κ . Τὸ ἀπὸ τῆς ΑΒ τετράγωνον ὑπόκειται ὁ
ἐν τῷ αὐτῷ σελιδίῳ παρακείμενα τὰ τῆς ὅλης παραλλάξεως ἑξηκοστὰ νγ ∠ ʹ , ὡς καὶ ἐνθάδε τὴν προήγησιν τῆς
8858135 ριζ
. . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . . . .
. . . . . . . . . . ριζ κγ ∠ ʹ Πίσκα . . . . .
8856144 κγ
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ ,
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . .
8841503 ξγ
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ
8838083 ριβ
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν
8816016 ξθ
ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ
8801537 ριδ
ἐστιν ρμδ κϚ καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριδ ιϚ , ἡ δὲ τῆς ΕΚ μοιρῶν λε λδ
Πρὸϲ τοὺϲ διὰ ξηρότητα ἐν ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ ριδ Πρὸϲ τοὺϲ διὰ ἔμφραξιν κυρίου μορίου λειποθυμοῦνταϲ ριε Πρὸϲ
8795181 ξη
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν
8786456 ρβ
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν
8772828 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
8724540 ρμη
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ
8719756 μδ
νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με :
ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς
8710905 νθ
α μη , τὴν δὲ τῆς ΚΖ διπλῆν μοιρῶν ρλη νθ μβ καὶ τὴν ὑπὸ αὐτὴν εὐθεῖαν τμημάτων ριβ κγ
. . . . . . . . . . νθ λθ ∠ ʹιβʹ Αἰγάρα . . . . .
8692001 ξϚ
, πολυπλασιάσαντες τὸν ἀριθμὸν τῶν Ϙθ νβ κγ καὶ τῶν ξϚ λα κγ ἐπὶ τὴν εὑρεθεῖσαν μοῖραν α ιϚ με
. . . . . . . . . . ξϚ λθ γοʹ ὅθεν ὁ Μέλας καλούμενος ποταμὸς ῥέων συμβάλλει
8688750 ρμα
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ
8684238 λθ
, οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων λθ ιθ , οἵων δ ' αἱ β ὀρθαὶ τξ
. . . . Αἰγόκερω ε ∠ ʹ γʹ βο λθ ∠ ʹ εʹ ὁ προηγούμενος τῶν τριῶν . .
8667640 ριϚ
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι
8639659 ρζ
ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ
γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ
8637549 Ϙη
συγκροτοῦμαι ἀπὸ τοῦ φίλου Ϙζ εἰ παραμένει μου ἡ γυνή Ϙη εἰ παραμένει μου ὁ πλοῦτος Ϙθ εἰ ἀγοράζω χωρίον
κάθετον , τουτέστι τοὺς ιδ ἐπὶ τοὺς ζ , γίνονται Ϙη : ταῦτα καθολικῶς ἑνδεκάκις , γίνονται ͵αοη : τούτων
8634303 τξα
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα :
8630464 μζ
καὶ ἐν κε ἔτεσιν Αἰγυπτιακοῖς λείπουσιν μιᾶς ἡμέρας ἑξηκοστοῖς δυσὶ μζ ε ὅλοι τε μῆνες ἔγγιστα ἀπαρτίζονται , καὶ ἐπιλαμβάνει
ʂ α Μο γ : καὶ συνάγεται ὁ ʂ Μο μζ , ἐν μορίῳ μονάδος Ϙῳ . ἔσται ὁ μὲν
8628523 οζ
. . . . . . . . . . οζ γοʹ λδ Θάκκονα . . . . . .
. . . . . . . . . . οζ ∠ ʹγ λϚ ∠ ʹ Βίρθα . . .
8624948 οε
ὥρας ἰσημερινῆς , ἡ δὲ τοῦ κατὰ κορυφὴν ἀπόστασις μοιρῶν οε . σκεψόμεθα δὴ ἐν τῷ παραλλακτικῷ κανόνι τὰ παρακείμενα
. . . . . . . . . . οε μζ ∠ ʹ . Κατέχουσι δὲ τὰ μὲν ἐπὶ
8621156 λζ
ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς Αἰγυπτιακοῖς ἔτεσιν ρμδ ἀποκαταστάσεις ποιεῖσθαι τὰς πρὸς τὴν
λϚ Τί δηλοῖ τὸ παχὺ οὐρούμενον καὶ μετὰ ταῦτα καθιϲτάμενον λζ Τί δηλοῖ τὸ λευκὸν καὶ λεπτὸν οὐρούμενον καὶ μένον
8620405 λη
. . . . . . . . ξ Ϛʹ λη ∠ ʹιβʹ Διοκαισάρεια . . . . . .
. . . . . . . νθ ∠ ʹ λη δʹ Νύσσα . . . . . . .
8611148 ξζ
ἀπόγειον τῆς ἐκκεντρότητος ἀπὸ τοῦ περιγείου τοῦ ἐπικύκλου διάστασις μοιρῶν ξζ ιε ἔγγιστα , ἡ δὲ κατὰ τὸ περίγειον μοιρῶν
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων ξζ δ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΒΔΞ
8610107 ια
. . . . . . . . . Αἰγόκερω ια # βο γ ∠ ʹ γʹ Ϛʹ ὁ νοτιώτερος
? τοϲουτουῒ ] χρόνου : ] χρόνοϲ ] Βυζαντίου ] ια ? ? πόλιϲ ] τοϲ ? ἦρξ ' ἐγώ
8605252 κθ
τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας
νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β
8604807 ξβ
νζ ο δ ι δ κζ ιβ λγ ι κδ ξβ ο Ϛ ιε α κη ιδ λθ ε κϚ
∠ ʹ κϚ εἶτα Ἀπόλλωνος πόλις μικρά . . . ξβ ∠ ʹ κε ∠ ʹγʹ Θηβῶν νομὸς , καὶ
8603336 οα
μεγέθους δʹ . . . . . Καρκίνου ιγ βο οα Ϛʹ δʹ ὁ ἐπ ' ἄκρου τοῦ ῥύγχους .
αʹ τῆς μεσημβρίας ἀνωμαλίας ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας οα ζ τῆς μέσης τοῦ μήκους τῆς αὐτῆς πάλιν ὑποκειμένης
8567858 ριε
. . . . . . . . . . ριε δʹ ιζ γʹ Ὀμηνόγαρα . . . . .
. . . . . . . . . . ριε δʹ λ Ϛʹ : Ἀράχωτος . . . .
8556327 Ϙθ
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ :
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ
8551766 Ϙζ
τῶν ἀπ ' αὐτῶν ⃞ων , ΔΥ Δ α Μο Ϙζ ἴσ . ⃞ῳ : τῷ ἀπὸ πλ . ΔΥ
Ϙ β ι λδ α γ ιη νγ β λ Ϙζ ο ιβ μα ο δ Ἡλίου κ νθ γ
8550010 ιδ
ἐν τῷ ἡγουμένῳ ὤμῳ τοῦ Ὠρίωνος ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἡγουμένου
ἡ πλευρὰ β μθ μβ , τοῦ δὲ ιη δ ιδ λγ . Οἷον ἐπὶ ὑποδείγματος ἔστωσαν σύμμετροι εὐθεῖαι ἔχουσαι
8537967 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
8531805 ρν
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ .
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία
8519482 Ϙβ
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία ,
8519009 πδ
τεταρτημορίου μοιρῶν Ϙ . καὶ οἵων ἄρα ἡ ΒΓ εὐθεῖα πδ να ι τοιούτων ἡ ΕΒ α κγ ιϚ ∠
. . . . . . . . . . πδ λϚ ἀπὸ δὲ ἀνατολῶν Μηδίας μέρει παρὰ τὴν ἐπιζευγνύουσαν
8514703 οδ
, Δάφνα , Σάφα . . . . . . οδ δʹ λ ∠ ʹ Σῶρα . . . .
. . . . . . . . . . οδ ∠ ʹγ μβ ∠ ʹ Δαράνισσα . . .
8513362 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
8511762 ρλη
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . .
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα
8494136 Ϙε
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ
8487950 ροα
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν
8478541 σκε
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος
8468546 ξε
ἔχει δὲ οὕτω . Χυλοῦ ῥόδων . . . . ξε . βʹ μέλιτος . . . . . .
. . . . . . . . . . ξε μ ∠ ʹδ Ἄνδρακα . . . . .
8461857 ρη
ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν
! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ
8460602 Ϙδ
ὁ μὲν αος Μο Ϙη , ὁ δὲ βος Μο Ϙδ . καὶ ποιοῦσι τὸ πρόβλημα . ιϚ . Εὑρεῖν
Ὀξυπόριον καθαρτικόν Ϙβ Ὀξυπόριον διὰ φοινίκων Ϙγ Καθαρτικὸν διὰ κυδωνίων Ϙδ Καθαρτικὸν διὰ κιτρίου Ϙε Καθαρτικὸν διὰ μαράθρου ϘϚ Ἄλλο
8454035 ρκα
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . .
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . .
8445159 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
8437830 πβ
εἰ ζῇ ὁ ἀπόδημος πα εἰ κερδαίνω ἀπὸ τοῦ πράγματος πβ εἰ προγράφεται τὰ ἐμά πγ εἰ εὑρίσκω πωλῆσαι πδ
π = λ ἐρώτησον Νεβαῦ πα = ξδ ἐρώτησον Ἰεσσαί πβ = νη ἐρώτησον Ἰεφθάε πγ = πε ἐρώτησον Σιγώρ
8420070 ρλβ
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . .
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ
8411057 πγ
. καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . , ,
μεταξὺ τῶν τροπικῶν ια ἔγγιστα , οἵων ἐστὶν ὁ μεσημβρινὸς πγ . εὔληπτα δὲ αὐτόθεν ἐκ τῆς προκειμένης παρατηρήσεως γίνεται
8409195 ριη
τῶν αὑτοῦ μηνῶν ιθ ἑαυτῷ ἐπιμερίζει ἡμέρας πγ , Σελήνῃ ριη , Κρόνῳ ρλ , Διὶ νβ , Ἄρει ξδ
. . . . . . . . . . ριη ∠ ʹ λη ∠ ʹδ Βαρζαῦρα . . .
8407435 ρκ
εὐθεῖα τοιούτων κε ζ , οἵων ἐστὶν ἡ ΒΕ τείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΒΕ εὐθεῖα
διὰ τοῦτο τὴν μὲν ἐπὶ τῆς ΒΗ περιφέρειαν τοιούτων γίνεσθαι ρκ , οἵων ἐστὶν ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος
8399196 πζ
. . . . . . . . . . πζ Ϛʹ λζ Ϛʹ : Ἐκβάτανα . . . .
. . . . . . . . . . πζ ∠ ʹ λ Ϛʹ Ῥογομάνιος ποταμοῦ ἐκβολαί πη ∠
8398929 ρθ
με ιβ πρὸς τὰ ρκ . μέσου δὲ τασσομένου τούτων ρθ μζ ια , γίνεται ὁ συγκείμενος λόγος μδ ιθ
τῶν μη κϚ ιδ πρὸς τὰ ρκ . τὰ γὰρ ρθ με ιβ ἐπὶ τὰ μη κζ κϚ γίνεται ͵ετιη
8396706 ρμ
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . .
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ
8393642 Ϙα
λάθος ἔσται μου τῷ δρασμῷ Ϙ εἰ ἀπαλλαγήσομαι τῆς γυναικός Ϙα εἰ πεφαρμάκευμαι Ϙβ εἰ λήψομαι λεγάτον Ϙγ εἰ ὃ
κ κη γ ια ιε μ μζ θ κζ μ Ϙα β θ μ λγ δ ιβ ιη ο νδ
8372464 οϚ
. . . . . . . . . . οϚ γοʹ λϚ δʹ . Ποταμοὶ δὲ διαῤῥέουσι τὴν χώραν
τὰ ἐν ὠϲὶ πάθη οε Πρὸϲ τὰϲ διὰ ψῦξιν ὀδύναϲ οϚ Πρὸϲ τὰϲ ἐξ ὕδατοϲ φαρμακώδουϲ ὀδύναϲ τοῦ πόρου τοῦ
8371455 σκδ
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ
8352178 τκδ
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη
8350944 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ
8344443 ρκϚ
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . .
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται
8332987 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
8324872 ξα
μήκει τῶν αὐτῶν νθ μζ , ἡ δὲ ΖΜΓ ὅλη ξα νζ . ὡσαύτως , ἐπεὶ καὶ ἡ ὑπὸ ΔΓΝ
. . . . . . . . . . ξα λη ∠ ʹ Θεμισώνιον . . . . .
8313329 ρκζ
. ρκη ια γʹ Φάσιος ποταμοῦ ἐκβολαί . . . ρκζ ια γʹ αἱ πηγαὶ τοῦ ποταμοῦ . . .
λειπούσας αὐταῖς νβ λβ εἰς ρπ , εὕρομεν ταῖς μὲν ρκζ κη περιφερείας εὐθεῖαν ρζ λς λδ : ταῖς δὲ
8307675 ρϘϚ
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης
8286953 ργ
ἡ δὲ ἰσημερινὴ μγʹ ∠ γʹ , ἡ δὲ χειμερινὴ ργ γʹ . ιβʹ . δωδέκατός ἐστιν παράλληλος , καθ
ρ Πάϲτιλλον χολῆϲ καθαρτικόν ρα Βουκελλάτον καθαρτικόν ρβ Φλέγματοϲ καθαρτικόν ργ Μελαγχολικοῦ χυμοῦ καθαρτικόν ρδ Κοινὸν καθαρτήριον ρε Ἀλοηδάρια διὰ
8277375 οθ
ἕξομεν τὴν ἀπὸ τοῦ ἀπογείου ἐπὶ τὴν πρώτην ἀκρώνυκτον μοιρῶν οθ λ . εἰ μὲν οὖν ἐπὶ τούτου τοῦ ἐκκέντρου
Ἄρεως ἀνωμαλίας ἐν ἔτεσιν μὲν ἡλιακοῖς τοῖς καθ ' ἡμᾶς οθ καὶ ἡμέραις γ καὶ Ϛʹ καὶ κʹ ἔγγιστα ,
8270785 ριγ
ἐστιν ριγ να , ἡ δὲ ὑπὸ ΔΑΖ γωνία τοιούτων ριγ να , οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ .
χαλβάνηϲ ριβ Κολλύρια διάϲμυρνα καὶ Χιακὰ καλούμενα δι ' οἴνου ριγ Κολλύριον τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια
8265723 πθ
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον
8263784 ροζ
καταπλαϲμάτων καὶ ϲικυῶν Γαληνοῦ ροϚ Ἐκ τῶν Λύκου περὶ καταπλαϲμάτων ροζ Περὶ τοῦ ἐξ ἄρτου καταπλάϲματοϲ ροη Περὶ τοῦ ἐκ
. . . . . . . . . . ροζ η ∠ ʹ Σαίνου ποταμοῦ ἐκβολαί . . .
8261421 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
8260890 ρμγ
. πολλαπλασίασον τὰς ια ἐπὶ τὸν ιγʹ , καὶ γίνονται ρμγ . ταῦτα ἀπόλυσον ἀπὸ τοῦ ζωδίου , ἐν ᾧ
. ρμβ κη Παλιμβόθρα βασίλειον . . . . . ρμγ κζ Ταμαλίτης . . . . . . .

Back