τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ | ||
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ | ||
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
. . . . . . . . . Αἰγόκερω ια # βο γ ∠ ʹ γʹ Ϛʹ ὁ νοτιώτερος | ||
? τοϲουτουῒ ] χρόνου : ] χρόνοϲ ] Βυζαντίου ] ια ? ? πόλιϲ ] τοϲ ? ἦρξ ' ἐγώ |
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς | ||
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν |
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν | ||
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ |
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων | ||
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν |
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων | ||
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . . |
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς | ||
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν |
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
ἐν τῷ ἡγουμένῳ ὤμῳ τοῦ Ὠρίωνος ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἡγουμένου | ||
ἡ πλευρὰ β μθ μβ , τοῦ δὲ ιη δ ιδ λγ . Οἷον ἐπὶ ὑποδείγματος ἔστωσαν σύμμετροι εὐθεῖαι ἔχουσαι |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας | ||
νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β |
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα | ||
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν |
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . . | ||
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη | ||
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . . |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
καὶ ἐν κε ἔτεσιν Αἰγυπτιακοῖς λείπουσιν μιᾶς ἡμέρας ἑξηκοστοῖς δυσὶ μζ ε ὅλοι τε μῆνες ἔγγιστα ἀπαρτίζονται , καὶ ἐπιλαμβάνει | ||
ʂ α Μο γ : καὶ συνάγεται ὁ ʂ Μο μζ , ἐν μορίῳ μονάδος Ϙῳ . ἔσται ὁ μὲν |
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
. . . . . . . . . . ριε δʹ ιζ γʹ Ὀμηνόγαρα . . . . . | ||
. . . . . . . . . . ριε δʹ λ Ϛʹ : Ἀράχωτος . . . . |
. ξγ κη καὶ ἡ τοῦ Πορφυρίτου ὄρους . ξγ κϚ γοʹ καὶ ἡ τοῦ Μέλανος λίθου ὄρους ξγ κδ | ||
Β πλευρᾶς ἤτοι τῆς γ θ μδ καὶ τῆς β κϚ νδ . εἰ οὖν βούλει εὑρεῖν μέσην ἀνάλογον τῶν |
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ | ||
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ |
νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με : | ||
ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς |
τὸ ὑπὸ τῶν ΑΒ , ΒΓ μοιρῶν σϚ λεπτῶν α νγ κ . Τὸ ἀπὸ τῆς ΑΒ τετράγωνον ὑπόκειται ὁ | ||
ἐν τῷ αὐτῷ σελιδίῳ παρακείμενα τὰ τῆς ὅλης παραλλάξεως ἑξηκοστὰ νγ ∠ ʹ , ὡς καὶ ἐνθάδε τὴν προήγησιν τῆς |
λευκάνθεμον ἄλυϲϲον λβ Ἀρμένιον τὸ τῶν ζωγράφων λγ Κενταύριον λεπτόν λδ Περὶ φλεγμαγωγῶν λε Κολοκυνθίϲ λϚ Τιθύμαλλον λζ Ἴϲιον λη | ||
. Ϛ μα Ἀφροδίτης . . . . . τνθ λδ Ἑρμοῦ . . . . . . . σλδ |
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται | ||
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα : |
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ | ||
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . . |
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ | ||
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ |
, καὶ ἡ μὲν ἡμίσεια τῆς προηγήσεως γίνεται μοιρῶν δ νδ λζ καὶ ἡμερῶν ξα ∠ ʹ ἔγγιστα , ἡ | ||
ψκγ καὶ ἔτι , ὅσας καὶ ὁ ἥλιος ἐπιλαμβάνει τοῖς νδ κύκλοις μοίρας λβ . ἤδη μέντοι πάλιν ὁ Ἵππαρχος |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
α μη , τὴν δὲ τῆς ΚΖ διπλῆν μοιρῶν ρλη νθ μβ καὶ τὴν ὑπὸ αὐτὴν εὐθεῖαν τμημάτων ριβ κγ | ||
. . . . . . . . . . νθ λθ ∠ ʹιβʹ Αἰγάρα . . . . . |
. . . . . . . . ξ Ϛʹ λη ∠ ʹιβʹ Διοκαισάρεια . . . . . . | ||
. . . . . . . νθ ∠ ʹ λη δʹ Νύσσα . . . . . . . |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ | ||
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . . |
, Δάφνα , Σάφα . . . . . . οδ δʹ λ ∠ ʹ Σῶρα . . . . | ||
. . . . . . . . . . οδ ∠ ʹγ μβ ∠ ʹ Δαράνισσα . . . |
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν | ||
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ |
☾ ὅροι ἀπὸ οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα | ||
͵αιϚ λαʹ ξβʹ ρκδʹ σμηʹ υϘϚʹ ιϚʹ φη υϘϚ λβʹ σνδ ∠ ʹ σμη ξδʹ ρκζ δʹ ρκδ ρκζʹ ξδ |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
εἰ ζῇ ὁ ἀπόδημος πα εἰ κερδαίνω ἀπὸ τοῦ πράγματος πβ εἰ προγράφεται τὰ ἐμά πγ εἰ εὑρίσκω πωλῆσαι πδ | ||
π = λ ἐρώτησον Νεβαῦ πα = ξδ ἐρώτησον Ἰεσσαί πβ = νη ἐρώτησον Ἰεφθάε πγ = πε ἐρώτησον Σιγώρ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
ὥρας ἰσημερινῆς , ἡ δὲ τοῦ κατὰ κορυφὴν ἀπόστασις μοιρῶν οε . σκεψόμεθα δὴ ἐν τῷ παραλλακτικῷ κανόνι τὰ παρακείμενα | ||
. . . . . . . . . . οε μζ ∠ ʹ . Κατέχουσι δὲ τὰ μὲν ἐπὶ |
. ρκη ια γʹ Φάσιος ποταμοῦ ἐκβολαί . . . ρκζ ια γʹ αἱ πηγαὶ τοῦ ποταμοῦ . . . | ||
λειπούσας αὐταῖς νβ λβ εἰς ρπ , εὕρομεν ταῖς μὲν ρκζ κη περιφερείας εὐθεῖαν ρζ λς λδ : ταῖς δὲ |
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ | ||
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ |
ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα | ||
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ |
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |
, οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων λθ ιθ , οἵων δ ' αἱ β ὀρθαὶ τξ | ||
. . . . Αἰγόκερω ε ∠ ʹ γʹ βο λθ ∠ ʹ εʹ ὁ προηγούμενος τῶν τριῶν . . |
ἀπόγειον τῆς ἐκκεντρότητος ἀπὸ τοῦ περιγείου τοῦ ἐπικύκλου διάστασις μοιρῶν ξζ ιε ἔγγιστα , ἡ δὲ κατὰ τὸ περίγειον μοιρῶν | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων ξζ δ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΒΔΞ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν | ||
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι |
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . . | ||
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . . |
ἡ δὲ ὅλη προήγησις μοιρῶν θ μθ ιδ καὶ ἡμερῶν ρκγ . κατὰ δὲ τοὺς περὶ τὸ ἐλάχιστον ἀπόστημα λογισμοὺς | ||
. . . . . . . . . . ρκγ λγ Ναυλιβί . . . . . . . |
τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
, πολυπλασιάσαντες τὸν ἀριθμὸν τῶν Ϙθ νβ κγ καὶ τῶν ξϚ λα κγ ἐπὶ τὴν εὑρεθεῖσαν μοῖραν α ιϚ με | ||
. . . . . . . . . . ξϚ λθ γοʹ ὅθεν ὁ Μέλας καλούμενος ποταμὸς ῥέων συμβάλλει |
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς | ||
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ |
νζ ο δ ι δ κζ ιβ λγ ι κδ ξβ ο Ϛ ιε α κη ιδ λθ ε κϚ | ||
∠ ʹ κϚ εἶτα Ἀπόλλωνος πόλις μικρά . . . ξβ ∠ ʹ κε ∠ ʹγʹ Θηβῶν νομὸς , καὶ |
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . . | ||
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ |
λάθος ἔσται μου τῷ δρασμῷ Ϙ εἰ ἀπαλλαγήσομαι τῆς γυναικός Ϙα εἰ πεφαρμάκευμαι Ϙβ εἰ λήψομαι λεγάτον Ϙγ εἰ ὃ | ||
κ κη γ ια ιε μ μζ θ κζ μ Ϙα β θ μ λγ δ ιβ ιη ο νδ |
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . . | ||
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ |
ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς Αἰγυπτιακοῖς ἔτεσιν ρμδ ἀποκαταστάσεις ποιεῖσθαι τὰς πρὸς τὴν | ||
λϚ Τί δηλοῖ τὸ παχὺ οὐρούμενον καὶ μετὰ ταῦτα καθιϲτάμενον λζ Τί δηλοῖ τὸ λευκὸν καὶ λεπτὸν οὐρούμενον καὶ μένον |
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς | ||
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία , |
. . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . . . . | ||
. . . . . . . . . . ριζ κγ ∠ ʹ Πίσκα . . . . . |
μεγέθους δʹ . . . . . Καρκίνου ιγ βο οα Ϛʹ δʹ ὁ ἐπ ' ἄκρου τοῦ ῥύγχους . | ||
αʹ τῆς μεσημβρίας ἀνωμαλίας ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας οα ζ τῆς μέσης τοῦ μήκους τῆς αὐτῆς πάλιν ὑποκειμένης |
ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ | ||
γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ |
ἔχει δὲ οὕτω . Χυλοῦ ῥόδων . . . . ξε . βʹ μέλιτος . . . . . . | ||
. . . . . . . . . . ξε μ ∠ ʹδ Ἄνδρακα . . . . . |
διαφορᾶϲ ρλδ Περὶ ὠῶν ρλε Ὅϲα ὡϲ φάρμακον ἐνεργεῖται ὠά ρλϚ Περὶ τῆϲ ἀπὸ τῶν ἐνύδρων ζῴων τροφῆϲ ρλζ Περὶ | ||
ρξϚ κθ : καὶ λοιπὴ ἄρα ἡ ΘΒ τοιούτων ἐστὶν ρλϚ κζ , οἵων ἡ ΘΑ ἦν κε νη . |
. . . . . . . . . . οζ γοʹ λδ Θάκκονα . . . . . . | ||
. . . . . . . . . . οζ ∠ ʹγ λϚ ∠ ʹ Βίρθα . . . |
. . . . . . . . . . πζ Ϛʹ λζ Ϛʹ : Ἐκβάτανα . . . . | ||
. . . . . . . . . . πζ ∠ ʹ λ Ϛʹ Ῥογομάνιος ποταμοῦ ἐκβολαί πη ∠ |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
. . . . . . . . . . ρμϚ λα Ϛʹ Ἔλδανα . . . . . . | ||
. . . . . . . . . . ρμϚ ∠ ʹ κε ∠ ʹ Ἀγαναγόρα . . . |
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς | ||
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ - |
ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν | ||
! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ |
αἷς ἐπιβάλλουσιν χρόνοις συμμεσουρανήσεως ρκϚ δ ἐλάσσονες τῶν τῆς ὁμαλῆς ρλα κ χρόνοις ε ἔγγιστα , οἳ ποιοῦσιν γʹ μέρος | ||
καὶ Βιδάσπου ρκε λ συμβολὴ Ζαράδρου καὶ Βιβάσιος . . ρλα λδ συμβολὴ Βιδάσπου καὶ Ἄδριος . . . ρκϚ |
. πολλαπλασίασον τὰς ια ἐπὶ τὸν ιγʹ , καὶ γίνονται ρμγ . ταῦτα ἀπόλυσον ἀπὸ τοῦ ζωδίου , ἐν ᾧ | ||
. ρμβ κη Παλιμβόθρα βασίλειον . . . . . ρμγ κζ Ταμαλίτης . . . . . . . |
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
συγκροτοῦμαι ἀπὸ τοῦ φίλου Ϙζ εἰ παραμένει μου ἡ γυνή Ϙη εἰ παραμένει μου ὁ πλοῦτος Ϙθ εἰ ἀγοράζω χωρίον | ||
κάθετον , τουτέστι τοὺς ιδ ἐπὶ τοὺς ζ , γίνονται Ϙη : ταῦτα καθολικῶς ἑνδεκάκις , γίνονται ͵αοη : τούτων |
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . . | ||
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα |
ἐστιν ρμδ κϚ καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριδ ιϚ , ἡ δὲ τῆς ΕΚ μοιρῶν λε λδ | ||
Πρὸϲ τοὺϲ διὰ ξηρότητα ἐν ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ ριδ Πρὸϲ τοὺϲ διὰ ἔμφραξιν κυρίου μορίου λειποθυμοῦνταϲ ριε Πρὸϲ |
τεταρτημορίου μοιρῶν Ϙ . καὶ οἵων ἄρα ἡ ΒΓ εὐθεῖα πδ να ι τοιούτων ἡ ΕΒ α κγ ιϚ ∠ | ||
. . . . . . . . . . πδ λϚ ἀπὸ δὲ ἀνατολῶν Μηδίας μέρει παρὰ τὴν ἐπιζευγνύουσαν |
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ | ||
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν |
λ λγ μδ κζ # # , Ἄρεως δὲ μοίρας ρνβ λγ ε ιη με να # , Ἀφροδίτης δὲ | ||
δ , ἡ δ ' ἐπὶ τῆς ΘΓ ὁμοίως μοιρῶν ρνβ κζ νϚ . ταύταις δ ' ἀκολούθως καὶ ἡ |
. . . . . . . . . . ρλε μγ . Καλοῦνται δὲ αὐτῶν οἱ μὲν παρὰ τὸν | ||
. . . . . . . . . . ρλε η ∠ ʹ Σουσουάρα . . . . . |
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
ρβ τῆς ἀνωμαλίας ἀπέχουσα τοῦ ἀπογείου τοῦ ἐπικύκλου καὶ μοίρας σνη ἕως σο , πλεῖστον καὶ τὸ παρὰ τὴν πρώτην | ||
, παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς τὰ # |
ʹ κη ὁ δὲ Δοάνας , ἀπὸ μὲν τῶν Δαμάσσων ρξβ κζ ∠ ʹ ἀπὸ δὲ τοῦ Βηπύῤῥου ὄρους . | ||
. . . . . . . . . . ρξβ γʹ Ϛ τὸ μετ ' αὐτὴν ἀκρωτήριον . . |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον | ||
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς |