ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
9054958 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
9052003 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
8963270 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
8730628 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
8659087 σιϚ
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ '
8653433 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
8610966 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
8604438 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
8531074 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
8509062 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
8475134 ιθ
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ
8453460 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
8445157 λϚ
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
8442642 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
8437216 τκδ
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη
8434478 σκδ
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ
8432405 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
8399988 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
8390673 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
8382515 ρξθ
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ
8371987 ιη
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος ,
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ
8349266 κδ
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ ,
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ ,
8338857 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
8328451 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
8324146 ρλε
. . . . . . . . . . ρλε μγ . Καλοῦνται δὲ αὐτῶν οἱ μὲν παρὰ τὸν
. . . . . . . . . . ρλε η ∠ ʹ Σουσουάρα . . . . .
8317076 ιγ
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ
8305553 λβ
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . .
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ
8293465 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
8289334 ωξδ
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ
8275317 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
8262685 κη
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν
8240454 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
8212386 ρπδ
πλάτος πάροδος τῆς σελήνης ἐν τοῖς ἓξ μησὶν συνάγει μοίρα ρπδ α κε . . . τοσαῦται γὰρ παράκεινται [
καὶ αἱ λείπουσαι ταύταις εἰς ἕνα κύκλον μείζους οὖσαι τῶν ρπδ α κε καὶ πολλῷ μείζους τοῦ ἡμικυκλίου μεταξύ εἰσιν
8207945 ρκα
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . .
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . .
8202591 ρκϚ
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . .
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται
8184392 ξδʹ
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν
8183966 ὀκτακις
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους .
8163716 σμγʹ
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους
8156567 μθ
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν
8155993 ρηʹ
κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ
τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου
8142737 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
8105004 σπη
μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους
γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ
8084879 σνϚʹ
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ
8075519 ρλβ
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . .
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ
8068179 ρλγ
ʹ Σάγηδα μητρόπολις . . . . . . . ρλγ κγ ∠ ʹ Βαλαντίπυργον . . . . .
. . . . . . . . . . ρλγ κθ Κουραπόρεινα . . . . . . .
8063041 ρμα
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ
8052044 νβ
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ
8051634 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ
8044647 ρϘε
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς
8041221 ρν
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ .
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία
8028104 ρπγ
αὐτὸν χρόνον καὶ ἀνωμαλίας ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπγ ιζ . ἐπεὶ οὖν ἐν μὲν τῷ χρόνῳ τῆς
. . . . . . . . . . ρπγ νβ ☉ ἀπογείου . . . . . .
8024530 οβ
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . .
7999056 ψξη
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ
7992755 ρπβ
ρκ , καὶ πάλιν ἡ μὲν τῆς ΖΘ διπλῆ μοιρῶν ρπβ ν καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριθ
τῆς γʹ ἀκρωνύκτου ἀπέχων ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ρπβ μζ : ἐπέλαβεν ἄρα ἐν τῷ μεταξὺ τῶν β
7988279 κδʹ
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ
7986290 φοϚʹ
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα
7985744 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν
7983109 ξγ
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ
7981672 ριβ
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν
7980363 λγ
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . .
7972359 ρξβ
ʹ κη ὁ δὲ Δοάνας , ἀπὸ μὲν τῶν Δαμάσσων ρξβ κζ ∠ ʹ ἀπὸ δὲ τοῦ Βηπύῤῥου ὄρους .
. . . . . . . . . . ρξβ γʹ Ϛ τὸ μετ ' αὐτὴν ἀκρωτήριον . .
7966888 Ἐλ
Ἔλαιον κίκινον ρβ Ἔλ . λινοϲπέρμινον ργ Ῥαφάνινον ἔλαιον ρδ Ἔλ . αἰγείρινον ρε Ἔλ . ἀμυγδάλινον ρϚ Ἔλ .
ϲικυώνιον ρκε Ἔλ . μετώπιον ρκϚ Ἔλ . μενδήϲιον ρκζ Ἔλ . μεγάλινον ρκη Ἔλ . ἀμαράκινον ρκθ Ἔλ .
7954156 Καλαμοϲ
Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη Καννάβεωϲ ὁ καρπόϲ ροθ
καὶ ἐπιχρίϲαϲ μέτωπον καὶ κροτάφουϲ παύϲειϲ παραχρῆμα κεφαλῆϲ ὀδύναϲ . Κάλαμοϲ ἀρωματικὸϲ ϲτύψεωϲ βραχείαϲ καὶ δριμύτητοϲ ἐλαχίϲτηϲ μετέχει . τὸ
7945199 ρξ
# η , τερεβινθίνης # η , πεπέρεως λευκοῦ κόκκους ρξ . τὸ ὕπερον ἀλείφων γλευκίνῳ κόπτε . Ἰσχιαδικοὺς ἐν
∠ ʹ ἡ δὲ ὡς ἐπὶ τὰ Κάσια ὄρη ἐκτροπὴ ρξ μθ ∠ ʹ ἡ δὲ ἐν τούτοις πηγή .
7944798 ρνβ
λ λγ μδ κζ # # , Ἄρεως δὲ μοίρας ρνβ λγ ε ιη με να # , Ἀφροδίτης δὲ
δ , ἡ δ ' ἐπὶ τῆς ΘΓ ὁμοίως μοιρῶν ρνβ κζ νϚ . ταύταις δ ' ἀκολούθως καὶ ἡ
7944365 ρϘϚ
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης
7930609 νζ
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα
7926340 ρλη
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . .
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα
7920199 νϚ
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . .
7919784 χμη
αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη
γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉
7911590 ροα
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν
7906213 πβ
εἰ ζῇ ὁ ἀπόδημος πα εἰ κερδαίνω ἀπὸ τοῦ πράγματος πβ εἰ προγράφεται τὰ ἐμά πγ εἰ εὑρίσκω πωλῆσαι πδ
π = λ ἐρώτησον Νεβαῦ πα = ξδ ἐρώτησον Ἰεσσαί πβ = νη ἐρώτησον Ἰεφθάε πγ = πε ἐρώτησον Σιγώρ
7905888 σκε
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος
7883515 ρμγ
. πολλαπλασίασον τὰς ια ἐπὶ τὸν ιγʹ , καὶ γίνονται ρμγ . ταῦτα ἀπόλυσον ἀπὸ τοῦ ζωδίου , ἐν ᾧ
. ρμβ κη Παλιμβόθρα βασίλειον . . . . . ρμγ κζ Ταμαλίτης . . . . . . .
7878182 ρπε
τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη
ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη
7873801 ρμη
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ
7866054 πγ
. καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . , ,
μεταξὺ τῶν τροπικῶν ια ἔγγιστα , οἵων ἐστὶν ὁ μεσημβρινὸς πγ . εὔληπτα δὲ αὐτόθεν ἐκ τῆς προκειμένης παρατηρήσεως γίνεται
7857191 ρκʹ
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον .
7855424 ρμϚ
. . . . . . . . . . ρμϚ λα Ϛʹ Ἔλδανα . . . . . .
. . . . . . . . . . ρμϚ ∠ ʹ κε ∠ ʹ Ἀγαναγόρα . . .
7849805 σκη
θαλαττία σκδ Κρῆθμον σκε Κριθαί σκϚ Ἄλφιτα σκζ Ἀλφίτων μάζα σκη Περὶ κρίμνου καὶ πόλτου σκθ Κρίνον σλ Κροκοδείλιον σλα
ʹ # ʹ ὑπάται μέσαι συνημμένων διεζευγμένων ὑπερβολαίων ρϘβ σιϚ σκη σνϚ σπη τδ τμβ τπδ υλε υνϚ φιβ #
7838519 ρμ
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . .
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ
7836926 ριγ
ἐστιν ριγ να , ἡ δὲ ὑπὸ ΔΑΖ γωνία τοιούτων ριγ να , οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ .
χαλβάνηϲ ριβ Κολλύρια διάϲμυρνα καὶ Χιακὰ καλούμενα δι ' οἴνου ριγ Κολλύριον τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια
7831492 ρλα
αἷς ἐπιβάλλουσιν χρόνοις συμμεσουρανήσεως ρκϚ δ ἐλάσσονες τῶν τῆς ὁμαλῆς ρλα κ χρόνοις ε ἔγγιστα , οἳ ποιοῦσιν γʹ μέρος
καὶ Βιδάσπου ρκε λ συμβολὴ Ζαράδρου καὶ Βιβάσιος . . ρλα λδ συμβολὴ Βιδάσπου καὶ Ἄδριος . . . ρκϚ
7815336 οζ
. . . . . . . . . . οζ γοʹ λδ Θάκκονα . . . . . .
. . . . . . . . . . οζ ∠ ʹγ λϚ ∠ ʹ Βίρθα . . .
7813582 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
7797502 ρϘα
χρόνοι ἀναφορικοὶ σξϚ με , τῇ δὲ ιʹ τοῦ Ζυγοῦ ρϘα μ . ἀφαιρουμένων δὲ τῶν ρϘα μ ἀπὸ τῶν
ν κγ ἔγγιστα , πλάτους δὲ κύκλων ͵δχλ καὶ μοιρῶν ρϘα κβ νζ ἔγγιστα , μήκους δὲ κύκλων ͵δχια λειπόντων
7796256 ρβ
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν
7792308 Ϙε
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ
7792300 σπθ
ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ
σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ
7791355 ρλϚ
διαφορᾶϲ ρλδ Περὶ ὠῶν ρλε Ὅϲα ὡϲ φάρμακον ἐνεργεῖται ὠά ρλϚ Περὶ τῆϲ ἀπὸ τῶν ἐνύδρων ζῴων τροφῆϲ ρλζ Περὶ
ρξϚ κθ : καὶ λοιπὴ ἄρα ἡ ΘΒ τοιούτων ἐστὶν ρλϚ κζ , οἵων ἡ ΘΑ ἦν κε νη .
7785411 ρϘδ
ρϘα Κεδρίδεϲ ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ
, γίνεται διπλῆ ἀποχὴ ρπ καὶ ιδ μϚ : γίνονται ρϘδ μϚ . αἷς παράκεινται τρίτῳ σελιδίῳ ε η ,
7782982 ρνγ
. ἐπὶ τὰς ὑποστάσεις : ἔσται ὁ μὲν τρίγωνος Μο ρνγ , ὁ δὲ τετράγωνος Μο ͵Ϛυ , ὁ δὲ
, οἵων δ ' αἱ β ὀρθαὶ τξ , τοιούτων ρνγ λ : ὥστε καὶ λοιπὴ μὲν ἡ ὑπὸ ΖΔΚ
7775101 Ϙη
συγκροτοῦμαι ἀπὸ τοῦ φίλου Ϙζ εἰ παραμένει μου ἡ γυνή Ϙη εἰ παραμένει μου ὁ πλοῦτος Ϙθ εἰ ἀγοράζω χωρίον
κάθετον , τουτέστι τοὺς ιδ ἐπὶ τοὺς ζ , γίνονται Ϙη : ταῦτα καθολικῶς ἑνδεκάκις , γίνονται ͵αοη : τούτων
7773378 οδ
, Δάφνα , Σάφα . . . . . . οδ δʹ λ ∠ ʹ Σῶρα . . . .
. . . . . . . . . . οδ ∠ ʹγ μβ ∠ ʹ Δαράνισσα . . .
7769882 ρξδ
ρξγ νότ . β Ἀττάβα ποταμοῦ ἐκβολαί . . . ρξδ νότ . α Κῶλι πόλις . . . .
κεκαυμέναι ρξα Ὀϲτέα κεκαυμένα ρξβ Περὶ δερμάτων ρξγ Περὶ αἰθυίηϲ ρξδ Περὶ ἀλωπέκων ρξε Περὶ ἀράχνηϲ ρξϚ Περὶ βατράχων ρξζ
7760354 τεταρτων
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ
7747335 μγ
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . .
7743222 ξη
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν
7742730 ξθ
ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ
7736311 μβ
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . .
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ

Back