τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά | ||
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος |
. . . . . ριζ ιδ Ψευδοστόμου ποταμοῦ ἐκβολαί ριζ γʹ ιδ Ποδοπέρουρα . . . . . . | ||
. . . . . . . . . . ριζ κγ ∠ ʹ Πίσκα . . . . . |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
. . . . . . . . . Ϙθ νζ ∠ ʹ ἀφ ' ὧν ῥέουσιν ὅ τε Ῥυμμὸς | ||
ιθ ὀκταετηρίσιν , ὅπερ ἐστὶν ἔτη ρνβ , ἐμβόλιμοι ἄγονται νζ : ἐν δὲ τῷ αὐτῷ χρόνῳ κατὰ τὴν ἐννεακαιδεκαετηρίδα |
ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ , ΓΔ | ||
σὺν τῇ προσκειμένῃ ὡς μιᾶς , ἅ εἰσιν ἡμίση τῶν σλδ . Τὰ ἀπὸ τῶν ΑΔ καὶ ΔΒ τετράγωνα διπλάσιά |
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων | ||
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
λα γοʹ Κινύφου ποταμοῦ ἐκβολαί . . . . . μβ δʹ λα ∠ ʹ Βαραθία . . . . | ||
, Ἑρμῇ ε , Σελήνῃ ζ : Ἄρης ἀπὸ τῶν μβ ἑαυτῷ πρῶτον ἡμέρας ε , Κρόνῳ ι , Διὶ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν ΔΖ | ||
ἰσημερινοὶ χρόνοι , ἐπὶ δὲ τῆς κατὰ τὸ μεσουράνημα νζ νβ , ἐπὶ δὲ τῆς κατὰ τὸ δῦνον ο κθ |
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
ἔσται μοιρῶν η λα , ἡ δὲ ΕΜ ὅλη ιδ μγ . ὥστε καὶ ἡ ἀπὸ τοῦ βορείου πέρατος τοῦ | ||
. . . . . . . . . ξγ μγ Γήλακα ἢ Σήλκα . . . . . . |
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη | ||
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . . |
με ιβ πρὸς τὰ ρκ . μέσου δὲ τασσομένου τούτων ρθ μζ ια , γίνεται ὁ συγκείμενος λόγος μδ ιθ | ||
τῶν μη κϚ ιδ πρὸς τὰ ρκ . τὰ γὰρ ρθ με ιβ ἐπὶ τὰ μη κζ κϚ γίνεται ͵ετιη |
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς | ||
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν |
τὸ ὑπὸ τῶν ΑΒ , ΒΓ μοιρῶν σϚ λεπτῶν α νγ κ . Τὸ ἀπὸ τῆς ΑΒ τετράγωνον ὑπόκειται ὁ | ||
ἐν τῷ αὐτῷ σελιδίῳ παρακείμενα τὰ τῆς ὅλης παραλλάξεως ἑξηκοστὰ νγ ∠ ʹ , ὡς καὶ ἐνθάδε τὴν προήγησιν τῆς |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
ρβ ιϚ ργ β ρδ να ρε κη ρϚ λϚ ρζ ξγ ρη πβ ρθ πη ρι Ϙα ρια Ϙβ | ||
γ τοῖϲ πάνυ ἀϲθενοῦϲιν . ἐϲτὶν ἡ γραφὴ Ὀριβαϲίου κεφάλαιον ρζ : λείπει δὲ τούτῳ τρία εἴδη . Καθαρτικὸν τοῦ |
μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα | ||
ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν |
, καὶ ἡ μὲν ἡμίσεια τῆς προηγήσεως γίνεται μοιρῶν δ νδ λζ καὶ ἡμερῶν ξα ∠ ʹ ἔγγιστα , ἡ | ||
ψκγ καὶ ἔτι , ὅσας καὶ ὁ ἥλιος ἐπιλαμβάνει τοῖς νδ κύκλοις μοίρας λβ . ἤδη μέντοι πάλιν ὁ Ἵππαρχος |
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ | ||
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ |
. ξγ κη καὶ ἡ τοῦ Πορφυρίτου ὄρους . ξγ κϚ γοʹ καὶ ἡ τοῦ Μέλανος λίθου ὄρους ξγ κδ | ||
Β πλευρᾶς ἤτοι τῆς γ θ μδ καὶ τῆς β κϚ νδ . εἰ οὖν βούλει εὑρεῖν μέσην ἀνάλογον τῶν |
νθ α , τὴν δὲ ΓΖ τῶν αὐτῶν νδ Ϛ μδ , τὴν δὲ ΓΘ ὅλην νθ ε με : | ||
ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας ροδ μδ : ἅπερ προέκειτο εὑρεῖν . Πάλιν δ ' ἐφεξῆς |
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων | ||
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . . |
ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ μετοπωρινοῦ σημείου χρόνοις ρη με . καὶ λοιπὸν μὲν ἄρα τό τε τῶν | ||
! ! ! ] ! ! ω ? [ ] ρη πωϲ τοῦτο . τη [ ] ϲί . ποῖοϲ |
ξε μη . καὶ λοιπὴ ἡ ΕΗ περιφέρεια μοιρῶν ἐστιν ξγ μθ . καὶ τὸ ἀπ ' αὐτῆς μοιρῶν ͵δοβ | ||
. . . . . . . . . . ξγ ∠ ʹγ λϚ ∠ ʹδ ἀπὸ δὲ μεσημβρίας αὐτῷ |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
τῶν ἀπ ' αὐτῶν ⃞ων , ΔΥ Δ α Μο Ϙζ ἴσ . ⃞ῳ : τῷ ἀπὸ πλ . ΔΥ | ||
Ϙ β ι λδ α γ ιη νγ β λ Ϙζ ο ιβ μα ο δ Ἡλίου κ νθ γ |
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ , | ||
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . . |
καὶ ἡ ὑπὸ ΑΕΒ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων Ϙθ νε , οἵων εἰσὶν αἱ β ὀρθαὶ τξ : | ||
, οἵων δ ' αἱ δύο ὀρθαὶ τξ , τοιούτων Ϙθ λϚ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΑΛ |
ἐκκειμένην μετοπωρινὴν ἰσημερίαν ἀποχῆς ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μοίραις ριϚ μ προσθῶμεν ἑνὸς κύκλου μοίρας τξ καὶ ἀπὸ τῶν | ||
. . . . . . . . . . ριϚ ιϚ ∠ ʹδ . Τῶν δὲ ἀνδρῶν Πειρατῶν μεσόγειοι |
εὐθεῖα τοιούτων κε ζ , οἵων ἐστὶν ἡ ΒΕ τείνουσα ρκ . καὶ οἵων ἐστὶν ἄρα ἡ μὲν ΒΕ εὐθεῖα | ||
διὰ τοῦτο τὴν μὲν ἐπὶ τῆς ΒΗ περιφέρειαν τοιούτων γίνεσθαι ρκ , οἵων ἐστὶν ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος |
ἐστιν ρμδ κϚ καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ριδ ιϚ , ἡ δὲ τῆς ΕΚ μοιρῶν λε λδ | ||
Πρὸϲ τοὺϲ διὰ ξηρότητα ἐν ταῖϲ τῶν παροξυϲμῶν ἀρχαῖϲ ϲυγκοπτομένουϲ ριδ Πρὸϲ τοὺϲ διὰ ἔμφραξιν κυρίου μορίου λειποθυμοῦνταϲ ριε Πρὸϲ |
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
τῶν ἑαυτοῦ μηνῶν κ ἑαυτῷ ἐπιμερίζει ἡμέρας ϘϚ , Κρόνῳ ρμα , Διὶ νϚ , Ἄρει ο , Ἡλίῳ Ϙ | ||
ϘϚ , Ἡλίῳ Ϙ , Σελήνῃ ριζ , Κρόνῳ ἡμέρας ρμα , Διὶ νϚ , Ἄρει ο , Ἀφροδίτῃ λϚ |
ἐκ τῆς βας διαιρέσεως Μο κη , ὁ δὲ μείζων οβ . καὶ δῆλον ὡς ποιοῦσι τὸ πρόβλημα . ιδ | ||
. . . . . . . . . . οβ ∠ ʹ λβ ∠ ʹ Γαύαρα . . . |
τῶν προχείρων , τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν | ||
δὲ ἡ ϲκευαϲία τοῦ ὀροῦ ἐν τῷ δευτέρῳ λόγῳ κεφαλαίου Ϙε . εἰ δὲ οὔκ ἐϲτιν ὁ καιρὸϲ τοῦ γάλακτοϲ |
καὶ ἐν κε ἔτεσιν Αἰγυπτιακοῖς λείπουσιν μιᾶς ἡμέρας ἑξηκοστοῖς δυσὶ μζ ε ὅλοι τε μῆνες ἔγγιστα ἀπαρτίζονται , καὶ ἐπιλαμβάνει | ||
ʂ α Μο γ : καὶ συνάγεται ὁ ʂ Μο μζ , ἐν μορίῳ μονάδος Ϙῳ . ἔσται ὁ μὲν |
ἀγωγόν ξϚ Κονδίτον ξανθοχόλοιϲ ξζ Κονδίτον φλεγμαγωγόν ξη Κονδίτον μελαγχολικοῖϲ ξθ Ἀψινθάτου ϲκευαϲία ἐκκοπρωτικοῦ ο Ἀψινθάτον ξανθῆϲ χολῆϲ ἀγωγόν οα | ||
ἑκατέρας τῶν ΑΖ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΘΖ γίνεται ξθ ιγ λα , ἡ δὲ ΘΓ ὁμοίως ριγ ιϚ |
συγκροτοῦμαι ἀπὸ τοῦ φίλου Ϙζ εἰ παραμένει μου ἡ γυνή Ϙη εἰ παραμένει μου ὁ πλοῦτος Ϙθ εἰ ἀγοράζω χωρίον | ||
κάθετον , τουτέστι τοὺς ιδ ἐπὶ τοὺς ζ , γίνονται Ϙη : ταῦτα καθολικῶς ἑνδεκάκις , γίνονται ͵αοη : τούτων |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
. . . . . . . . . . ξη λϚ ∠ ʹ Πυράμου ποταμοῦ ἐκβολαί . . ξη | ||
. . . . . . . . . . ξη λα δʹ καὶ μέρει τῆς Πετραίας Ἀραβίας παρὰ τὴν |
ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς Αἰγυπτιακοῖς ἔτεσιν ρμδ ἀποκαταστάσεις ποιεῖσθαι τὰς πρὸς τὴν | ||
λϚ Τί δηλοῖ τὸ παχὺ οὐρούμενον καὶ μετὰ ταῦτα καθιϲτάμενον λζ Τί δηλοῖ τὸ λευκὸν καὶ λεπτὸν οὐρούμενον καὶ μένον |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
α μη , τὴν δὲ τῆς ΚΖ διπλῆν μοιρῶν ρλη νθ μβ καὶ τὴν ὑπὸ αὐτὴν εὐθεῖαν τμημάτων ριβ κγ | ||
. . . . . . . . . . νθ λθ ∠ ʹιβʹ Αἰγάρα . . . . . |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
ὥρας ἰσημερινῆς , ἡ δὲ τοῦ κατὰ κορυφὴν ἀπόστασις μοιρῶν οε . σκεψόμεθα δὴ ἐν τῷ παραλλακτικῷ κανόνι τὰ παρακείμενα | ||
. . . . . . . . . . οε μζ ∠ ʹ . Κατέχουσι δὲ τὰ μὲν ἐπὶ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
. . . . . . . . . . ρλβ γοʹ ιε Πολεούρ . . . . . . | ||
αὐτὴν εὐθεῖα τμημάτων ρκ , ἡ δὲ τῆς ΖΗ μοιρῶν ρλβ ιζ κ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ρθ |
νζ ο δ ι δ κζ ιβ λγ ι κδ ξβ ο Ϛ ιε α κη ιδ λθ ε κϚ | ||
∠ ʹ κϚ εἶτα Ἀπόλλωνος πόλις μικρά . . . ξβ ∠ ʹ κε ∠ ʹγʹ Θηβῶν νομὸς , καὶ |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
μεγέθους δʹ . . . . . Καρκίνου ιγ βο οα Ϛʹ δʹ ὁ ἐπ ' ἄκρου τοῦ ῥύγχους . | ||
αʹ τῆς μεσημβρίας ἀνωμαλίας ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας οα ζ τῆς μέσης τοῦ μήκους τῆς αὐτῆς πάλιν ὑποκειμένης |
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ | ||
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ |
λευκάνθεμον ἄλυϲϲον λβ Ἀρμένιον τὸ τῶν ζωγράφων λγ Κενταύριον λεπτόν λδ Περὶ φλεγμαγωγῶν λε Κολοκυνθίϲ λϚ Τιθύμαλλον λζ Ἴϲιον λη | ||
. Ϛ μα Ἀφροδίτης . . . . . τνθ λδ Ἑρμοῦ . . . . . . . σλδ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
ἐκ τῆς ἐπιορκίας τιμωρίαν τοῖς σκολιῶς δικάσασι . . ΑΥΤΙΚΑ ΓΑΡ ΤΡΕΧΕΙ ὉΡΚΟΣ . Κατασκευάζων πῶς ἡ δικαιοσύνη ὑπερφέρει τῆς | ||
ἦτοι βασιλῆες Ἀχαιῶν εἰσὶ καὶ ἄλλοι . . ΗΔΗ ΜΕΝ ΓΑΡ ΚΛΗΡΟΝ ΕΔΑΣΣΑΜΕΘΑ . Ἀντὶ τοῦ πρὸ μακροῦ τὴν περιουσίαν |
τεταρτημορίου μοιρῶν Ϙ . καὶ οἵων ἄρα ἡ ΒΓ εὐθεῖα πδ να ι τοιούτων ἡ ΕΒ α κγ ιϚ ∠ | ||
. . . . . . . . . . πδ λϚ ἀπὸ δὲ ἀνατολῶν Μηδίας μέρει παρὰ τὴν ἐπιζευγνύουσαν |
. . . . . . . . . Αἰγόκερω ια # βο γ ∠ ʹ γʹ Ϛʹ ὁ νοτιώτερος | ||
? τοϲουτουῒ ] χρόνου : ] χρόνοϲ ] Βυζαντίου ] ια ? ? πόλιϲ ] τοϲ ? ἦρξ ' ἐγώ |
, πολυπλασιάσαντες τὸν ἀριθμὸν τῶν Ϙθ νβ κγ καὶ τῶν ξϚ λα κγ ἐπὶ τὴν εὑρεθεῖσαν μοῖραν α ιϚ με | ||
. . . . . . . . . . ξϚ λθ γοʹ ὅθεν ὁ Μέλας καλούμενος ποταμὸς ῥέων συμβάλλει |
ΝΟΝ ΕΙΔΟΣ ΚΑΤΑ ΔΕ ΤΑ ΤΗΣ ΡΥΘΜΟΠΟΙΙΑΣ ΣΧΗΜΑΤΑ ΠΑΡΑΛΛΑΤΤΕΙ ΕΝ ΤΩΙ ΦΙΛΟΝ ΩΡΑΙΣΙΝ ΑΓΑΠΗΜΑ ΘΝΑΤΟΙΣΙΝ ΑΝΑΠΑΥΜΑ ΜΟΧΘΩΝ ΕΣΤΙ ΔΕ ΠΟΥ | ||
ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ [ [ ΩΣΤΕ ] ΤΗΝ ΜΕΝ ΠΡΩΤΗΝ ΞΥΛΛΑΒΗΝ ΕΝ ΤΩΙ [ ] ΜΕΓΙΣΤΩΙ ΧΡΟΝΩΙ ΚΕΙΣΘΑΙ [ ΤΗΝ ΔΕ ΔΕΥΤΕΡΑΝ |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
πζ εἰ πρεσβεύσω τὰ πρὸς θεόν πη εἰ βουλευτὴς ἔσομαι πθ εἰ λανθάνει μου ὁ δρασμός Ϙ εἰ ἀπαλλάσσομαι τῆς | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων πθ ιϚ , οἵων ἐστὶν ὁ περὶ τὸ ΓΖΛ ὀρθογώνιον |
μήκει τῶν αὐτῶν νθ μζ , ἡ δὲ ΖΜΓ ὅλη ξα νζ . ὡσαύτως , ἐπεὶ καὶ ἡ ὑπὸ ΔΓΝ | ||
. . . . . . . . . . ξα λη ∠ ʹ Θεμισώνιον . . . . . |
ὁ μὲν αος Μο Ϙη , ὁ δὲ βος Μο Ϙδ . καὶ ποιοῦσι τὸ πρόβλημα . ιϚ . Εὑρεῖν | ||
Ὀξυπόριον καθαρτικόν Ϙβ Ὀξυπόριον διὰ φοινίκων Ϙγ Καθαρτικὸν διὰ κυδωνίων Ϙδ Καθαρτικὸν διὰ κιτρίου Ϙε Καθαρτικὸν διὰ μαράθρου ϘϚ Ἄλλο |
. . . . . . . . . . ρλη ιζ Βαρδαμάνα . . . . . . . | ||
ἐν πυρετοῖϲ ἐκ τῶν Φιλαγρίου ρλζ Ἡ διὰ κωδυῶν ἀντίδοτοϲ ρλη Ὀμφακομέλιτοϲ ϲκευαϲία ρλθ Ῥοδομέλιτοϲ ϲκευαϲία ρμ Ὑδροροϲάτου ϲκευαϲία ρμα |
. . . . . . . . ξ Ϛʹ λη ∠ ʹιβʹ Διοκαισάρεια . . . . . . | ||
. . . . . . . νθ ∠ ʹ λη δʹ Νύσσα . . . . . . . |
καὶ ἡ ὑπὸ ΒΕΓ γωνία πρὸς τῇ περιφερείᾳ οὖσα τοιούτων ρν κϚ , οἵων εἰσὶν αἱ δύο ὀρθαὶ τξ . | ||
μεμφόμενος τῆς πόλεως κάθαρσιν [ . ] . οὗτος ἔζησεν ρν ἔτη , τὰ δὲ Ϙ ἐκαθεύδησεν . καὶ παροιμία |
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
ἐστιν ριγ να , ἡ δὲ ὑπὸ ΔΑΖ γωνία τοιούτων ριγ να , οἵων ἐστὶν ἡ μία ὀρθὴ Ϙ . | ||
χαλβάνηϲ ριβ Κολλύρια διάϲμυρνα καὶ Χιακὰ καλούμενα δι ' οἴνου ριγ Κολλύριον τὸ διὰ βδελλίου καὶ ϲτύρακοϲ Φιλαγρίου ριδ Κολλύρια |
, οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων λθ ιθ , οἵων δ ' αἱ β ὀρθαὶ τξ | ||
. . . . Αἰγόκερω ε ∠ ʹ γʹ βο λθ ∠ ʹ εʹ ὁ προηγούμενος τῶν τριῶν . . |
. . . . . . . . . . πζ Ϛʹ λζ Ϛʹ : Ἐκβάτανα . . . . | ||
. . . . . . . . . . πζ ∠ ʹ λ Ϛʹ Ῥογομάνιος ποταμοῦ ἐκβολαί πη ∠ |
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . . | ||
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . . |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
ἐν τῷ ἡγουμένῳ ὤμῳ τοῦ Ὠρίωνος ἑσπέριος ἀνατέλλει . ὡρῶν ιδ ∠ ʹ : ὁ ἐπὶ τῆς κεφαλῆς τοῦ ἡγουμένου | ||
ἡ πλευρὰ β μθ μβ , τοῦ δὲ ιη δ ιδ λγ . Οἷον ἐπὶ ὑποδείγματος ἔστωσαν σύμμετροι εὐθεῖαι ἔχουσαι |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
. . . . . . . . . . οζ γοʹ λδ Θάκκονα . . . . . . | ||
. . . . . . . . . . οζ ∠ ʹγ λϚ ∠ ʹ Βίρθα . . . |
τῶν αὑτοῦ μηνῶν ιθ ἑαυτῷ ἐπιμερίζει ἡμέρας πγ , Σελήνῃ ριη , Κρόνῳ ρλ , Διὶ νβ , Ἄρει ξδ | ||
. . . . . . . . . . ριη ∠ ʹ λη ∠ ʹδ Βαρζαῦρα . . . |
٤٢ τὸ ΒΔ ٣ ٢٧ ٥٠ ٧ ١٨ τὸ ΛΘ ٣٢ ٣٢ ٩ ٥٢ ٤٢ ἡ ΖΘ ٩ ἡ ΚΘ | ||
ἤτοι τῆς ἡμισείας τῆς ΑΗ ٢٧ ٢٦ ٣ ٣٨ ٥٨ ٣٢ ١٥ ἡ ΑΖ ٥ ١٧ ٢٨ ٢١ ١٧ ἡ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
, φυλάττων τὴν τῶν πραγμάτων τάξιν καὶ ἀκολουθίαν . ΚΕΦΑΛΑΙΑ ΤΟΥ ΠΡΩΤΟΥ ΛΟΓΟΥ Αʹ . Πῶς δεῖ γυμνάζειν τὸν καθ | ||
ἀπὸ τῶν πρὸς τὴν Ἰὼ λεγομένων ἔστι συμβαλεῖν . ΤΑ ΤΟΥ ΔΡΑΜΑΤΟΣ ΠΡΟΣΩΠΑ : Κράτος καὶ Βία : Ἥφαιστος : |
. . . . . . . . . . Ϙγ γοʹ λζ δʹ Τιβρακάνα . . . . . | ||
πη θ πθ οβ Ϙ ιγ Ϙα πα Ϙβ ιβ Ϙγ νζ Ϙδ κθ Ϙε κε ϘϚ πθ Ϙζ οζ |
. καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . , , | ||
μεταξὺ τῶν τροπικῶν ια ἔγγιστα , οἵων ἐστὶν ὁ μεσημβρινὸς πγ . εὔληπτα δὲ αὐτόθεν ἐκ τῆς προκειμένης παρατηρήσεως γίνεται |
τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ ١٦ ἡ ΓΖ ٢ ١٣ ٦ ٢٤ ٤ ἡ ΑΗ ٤ ٣٧ ٥٣ λοιπὸν | ||
٤٤ ٣ ἡ ΓΔ ٧ ١٥ ٣٣ ἡ ΔΖ ٥ ١٣ ٣٠ Ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ ἡ ΖΘ |
ἡ δὲ ἰσημερινὴ μγʹ ∠ γʹ , ἡ δὲ χειμερινὴ ργ γʹ . ιβʹ . δωδέκατός ἐστιν παράλληλος , καθ | ||
ρ Πάϲτιλλον χολῆϲ καθαρτικόν ρα Βουκελλάτον καθαρτικόν ρβ Φλέγματοϲ καθαρτικόν ργ Μελαγχολικοῦ χυμοῦ καθαρτικόν ρδ Κοινὸν καθαρτήριον ρε Ἀλοηδάρια διὰ |
. . . . . . . . . . ρμ κζ γʹ Ἀσπαθίς . . . . . . | ||
⋖ π , ἀϲβέϲτου ⋖ ρμ , ἀϲπίδων ϲποδοῦ ⋖ ρμ , ἐλαίου παλαιοῦ κοτύλαϲ β : ψυγέντι τῷ φαρμάκῳ |
τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας | ||
νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β |
١١ ٤٣ ἡ αὐτῶν πλευρὰ ἢ καὶ ΔΖ ٠ ٥ ٣٠ ٤ ٤٧ καὶ ἀσύμμετρος τῇ ΑΓ . , ] | ||
καὶ δεύτερα σοϚ . καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
, μείζων ἡ ΘΗ τῆς ΘΒ . ἴση δὲ ἡ ΘΒ τῇ ΘΔ : ὑπόκειται γάρ : μείζων ἄρα ἐστὶν | ||
. ἔθηκα τῷ ΗΒ ἴσον τὸν ΗΘ , ὥστε ὁ ΘΒ πρὸς τὸν ΗΒ συμφωνήσει διὰ πασῶν , ὡς εἶναι |
. πολλαπλασίασον τὰς ια ἐπὶ τὸν ιγʹ , καὶ γίνονται ρμγ . ταῦτα ἀπόλυσον ἀπὸ τοῦ ζωδίου , ἐν ᾧ | ||
. ρμβ κη Παλιμβόθρα βασίλειον . . . . . ρμγ κζ Ταμαλίτης . . . . . . . |
ἀπόγειον τῆς ἐκκεντρότητος ἀπὸ τοῦ περιγείου τοῦ ἐπικύκλου διάστασις μοιρῶν ξζ ιε ἔγγιστα , ἡ δὲ κατὰ τὸ περίγειον μοιρῶν | ||
ιη , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων ξζ δ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΒΔΞ |
τιμῶσι μὲν καλῶς εἶπεν , οὐ φιλοῦσι δέ . . ΤΗΝ Δ ' ἙΤΕΡΗΝ . Τὴν ἀμείνω λέγει : καὶ | ||
κατάθου λοιπὸν μετὰ τὴν συμφορὰν τὴν πόλιν εἰρωνευόμενος . ΜΕΤΑ ΤΗΝ ἈΝΤΙΛΗΨΙΝ ΘΗΣΕΙΣ ΤΟ ΧΡΩΜΑ Ἀντεγκληματικὸν τυγχάνον διὰ τὴν ἔχθραν |
ʹ Σάγηδα μητρόπολις . . . . . . . ρλγ κγ ∠ ʹ Βαλαντίπυργον . . . . . | ||
. . . . . . . . . . ρλγ κθ Κουραπόρεινα . . . . . . . |
εἰ ζῇ ὁ ἀπόδημος πα εἰ κερδαίνω ἀπὸ τοῦ πράγματος πβ εἰ προγράφεται τὰ ἐμά πγ εἰ εὑρίσκω πωλῆσαι πδ | ||
π = λ ἐρώτησον Νεβαῦ πα = ξδ ἐρώτησον Ἰεσσαί πβ = νη ἐρώτησον Ἰεφθάε πγ = πε ἐρώτησον Σιγώρ |
. . . . . . . . . . ριε δʹ ιζ γʹ Ὀμηνόγαρα . . . . . | ||
. . . . . . . . . . ριε δʹ λ Ϛʹ : Ἀράχωτος . . . . |
ἀνασκευάσαι τὰ εἰρημένα . τὰ πάντα δὲ ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ αὐτοῦ δράματα ξζ καὶ γ πρὸς | ||
τρίτος ἐγένετο . τὰ πάντα δ ' ἦν αὐτοῦ δράματα Ϙβ , σῴζεται δὲ οη : τούτων νοθεύεται τρία , |
ρξθ ιϚ γʹ Σήρου ποταμοῦ ἐκβολαί . . . . ροα ∠ ʹ ιζ γʹ τὸ πρὸς τοὺς Σίνας τοῦ | ||
? ! δήσατο δεσμοῖς , αἴκιζέν τ ' ἀλόχους ! ροα ? ? ? κερδαλεόφρον ' ἐόντα . ἡμέας ἔτρεψεν |