οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους
9740117 σνϚʹ
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ
8403827 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
8393077 παʹ
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν
8391749 ξδʹ
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν
8248657 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
8177666 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
8163717 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
8151848 ἁμιολιος
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας
8151533 οβʹ
ιβʹ , ιαʹ καὶ λοιπὰ Ϛʹ : ταῦτα δωδεκάκις γίνονται οβʹ , καὶ ἑκάστου ἐκκρουσθέντος κύκλου ἀνὰ αʹ , γίνονται
' ἑαυτά , καὶ γίνεται παʹ : ηʹ θʹ ξδʹ οβʹ παʹ : εἶτα πάλιν τούτων ἕκαστον ληφθήτω τρίς ,
8139688 ρϞβʹ
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος
8075789 κδʹ
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ
8038782 υλβʹ
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ
7974399 ωξδ
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ
7959620 ͵ακδ
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη
7929977 κζʹ
ΒΓ . ἄλογον ἄρα διὰ τὸν ὅρον . Διὰ τὸ κζʹ τοῦ ιʹ δυνατόν ἐστι πορίσασθαι τὸ δεδομένον τῆς προτάσεως
καὶ οὐκ εἰς τὰ προηγούμενα , σελήνη μὲν ἐν ἡμέραις κζʹ καὶ τρίτῳ μάλιστα ἡμέρας καὶ νυκτὸς διέρχεται : ὁ
7926873 φιβʹ
, καὶ ταῦτα πάλιν ὀκτάκις τπδʹ , οὗ ἐπίτριτος ὁ φιβʹ , μεταξὺ δὲ τούτων δύο ἐπόγδοα , τοῦ μὲν
, τούτου δὲ υπϚʹ , ἀφ ' ὧν ἐπὶ τὰ φιβʹ ὁ λειμματιαῖος γίνεται λόγος . τινὲς δέ φασι μὴ
7918282 ἐπογδοος
, τοῦ δὲ Δ ἐπόγδοος ὁ Ε , τοῦ Ε ἐπόγδοος ὁ Ζ , τοῦ Ζ ἐπόγδοος ὁ Η :
δυνατοῦ δεῖξαι τὸ προκείμενον , ὅς ἐστι μονάδων ͵αφλϚʹ , ἐπόγδοος μὲν αὐτοῦ γίνεται ὁ τῶν ͵αψκηʹ , τούτου δὲ
7889135 ἰαμβικος
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα
7858692 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
7851819 ρηʹ
κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ
τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου
7836154 ιηʹ
Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων .
ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι
7817889 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
7796654 ὑποτριπλασιος
, καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος
κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ
7785810 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν
7780470 τπδʹ
ὀβολοὺς μηʹ , θέρμους οβʹ , κεράτια ρμδʹ , χαλκοῦς τπδʹ , νομίσματα Ϛʹ . καλεῖται δὲ ἡ # τετρασάριον
καυθέντων καὶ σβεσθέντων ὕδατι καὶ διηθηθέντος τοῦ ὕδατος , ⋖ τπδʹ , τοῦτ ' ἔστι λι δʹ , κηροῦ ⋖
7738649 ιϚʹ
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν
7735946 ͵αψκη
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος
7662309 χοριαμβικα
, ἤτοι ἑφθημιμερῆ καὶ μονόμετρα . τὰ δὲ ἑξῆς ρκαʹ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικά , ἤτοι ἑφθημιμερῆ καὶ πενθημιμερῆ
εἴτε ἐπιτρίτου τετάρτου , καὶ διιάμβου : τὰ ἑξῆς δύο χοριαμβικὰ δίμετρα βραχυκατάληκτα : τὸ τρισκαιδέκατον ἐκ χοριάμβου καὶ σπονδείου
7661146 ἐπιπεμπτος
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ
γὰρ πέντε κε . καὶ ὁ λ ἄρα τοῦ κε ἐπίπεμπτός ἐστιν , ὡς ἔχει ἡ ΑΒ πρὸς τὴν ΒΓ
7624945 χαλκουϲ
, ὀβολοὺϲ ξʹ , θέρμουϲ Ϙʹ , κεράτια ρπʹ , χαλκοῦϲ υπʹ . ἔϲτι δὲ ὁ κύαθοϲ κοτύληϲ τὸ Ϛʹʹ
χʹ , θέρμουϲ Ϡʹ , κε - ράτια ͵αωʹ , χαλκοῦϲ ͵δωʹ [ ἄλλοι ͵γχʹ ] . ἡ Πτολεμαϊκὴ μνᾶ
7622980 ὀκτακις
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους .
7598721 ιεʹ
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου
7596632 ἐπογδοα
ὁ Α ἄρα τοῦ Γ ἐστιν ἐπόγδοος . Τὰ ἓξ ἐπόγδοα διαστήματα μείζονά ἐστι διαστήματος ἑνὸς διπλασίου . ἔστω γὰρ
ἐν λόγῳ μὲν ἐπογδόῳ : τὰ γὰρ θʹ τῶν ηʹ ἐπόγδοα : ἡ δὲ τάσις ἐλέχθη τόνος . ὅτι δὲ
7594406 πενταγωνοις
τις πρόληψίς ἐστιν εἰς ἐγγραφὴν καὶ περιγραφὴν πενταγώνων καὶ ἐν πενταγώνοις τῷ στοιχειωτῇ συμβαλλόμενον . ἐδείχθη τῆς μὲν ὑπὸ ΖΚΓ
τῆς ΚΛ . καὶ ὑπόκειται κʹ τρίγωνα τὰ ΔΕΖ ιβʹ πενταγώνοις τοῖς ΑΒΓ ἴσα : μεῖζον ἄρα τὸ εἰκοσάεδρον τοῦ
7593710 ἡμιολιος
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος .
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ
7591774 καταληκτικα
. εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας
] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα ,
7580802 ὑπεπιτριτος
ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ
Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον
7579941 σιϚ
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ '
7576254 λβʹ
τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν
δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ
7575022 βραχυκαταληκτα
. εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι ἡμιόλιον
καὶ βραχυκατάληκτα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ ἀκατάληκτα καὶ βραχυκατάληκτα , ὧν τελευταῖον : ὤλετ ' ἄκλαυστος ἄιστος .
7570264 σπθ
ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ
σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ
7564210 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
7551556 ἐννατα
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ
7535997 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
7532805 ἑφθημιμερη
πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια .
δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι .
7531792 καʹ
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων
7519839 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
7473466 χμη
αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη
γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉
7454504 σπη
μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους
γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ
7451249 ξϚʹ
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ
7444894 πενθημιμερη
εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά .
, κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ
7442024 ρμδʹ
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς
7440594 ἡμιολια
βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ
ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν
7434389 σκδ
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ
7434073 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
7409330 ρκεʹ
υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος #
[ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ
7404722 ἐπιτριτος
ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι .
τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ ,
7388996 ἐπογδοων
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν
7383267 ψκθʹ
παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν ψκθʹ . Ἐὰν οὖν τις λέγῃ ὅτι Οἱ ρʹ πήχεις
προσαυξηθέντες ἑπτὰ ἀριθμοὶ ποιοῦσι τὸν δεύτερον τετράγωνον καὶ κύβον τὸν ψκθʹ , αʹ γʹ θʹ κζʹ παʹ σμγʹ ψκθʹ .
7381790 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
7379820 τροχαϊκα
δίμετρα τὰ Ϛʹ , ιβʹ . τὰ δ ' ἄλλα τροχαϊκὰ , τῇ μὲν δίμετρα , τῇ δ ' Εὐριπίδεια
, τὸν τρίτον ἔχον πόδα τετράβραχυν . τὰ ἑξῆς ἓξ τροχαϊκὰ δίμετρα ἀκατάληκτα ἐπιμεμιγμένα τριβράχεσιν . τὸ δὲ ιγʹ ,
7373560 τονιαια
ΖΔ , τὴν δὲ τῶν ΒΗ τῇ τῶν ΑΖ , τονιαία μὲν ἔσται καὶ ἑκατέρα τῶν ΔΒ καὶ ΖΔ ,
λοιπῶν , ἕως ἂν περιτραπῶσιν ἐπὶ τὸ λέγειν οἵων ἡ τονιαία δύο . ἔπειτα οὐδ ' οὕτως τὰς ὑπεροχὰς ὁρίζουσι
7373559 ϘϚʹ
νίτρου . . . . . . . δραχ . ϘϚʹ θείου . . . . . . . δραχ
. ρϘβʹ στυπτηρίας ὑγρᾶς . . . . δραχ . ϘϚʹ νίτρου . . . . . . . δραχ
7369180 ἀναπαιστικα
χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν
τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα
7368480 ἐπιτριτοις
ὡς εἴρηται , ὀνομάζεται . ἔστι δὲ κώλων χοριαμβικῶν ἐπιμεμιγμένων ἐπιτρίτοις καὶ βακχείοις καὶ παλιμβάκχοις ζʹ , ὧν τὸ αʹ
καὶ τριπλασίοις καὶ συνόλως πολυπλασίοις καὶ πάλιν ἐν ἡμιολίοις καὶ ἐπιτρίτοις καὶ τοῖς παραπλησίοις , ἔτι μέντοι καὶ τὴν ἁρμονικήν
7358555 φοϚʹ
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα
7349080 κγʹ
γύναια . οἱ δὲ κλιμακτῆρες ἔτος ζʹ , ιγʹ , κγʹ , μγʹ , νβʹ , ξϚʹ , οδʹ ,
ὡρῶν ιε : Προκύων ἑῷος δύνει . Ἱππάρχῳ νότος . κγʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ
7347576 διπλασιῳ
, ἀρτία καὶ περιττή , ἡ μὲν ἀρτία ἐν λόγῳ διπλασίῳ , πρῶτος γὰρ τῶν ἀρτίων ὁ βʹ καὶ αὐτὸς
διὰ πέντε ἐν ἡμιολίῳ , τοὺς δὲ διὰ πασῶν ἐν διπλασίῳ , καὶ τοὺς μὲν διὰ πασῶν καὶ διὰ τεσσάρων
7330004 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
7329258 σμζ
τοῖς ὁμοίοις Ϡξδ , ἅ ἐστιν Αἰγυπτιακὰ Ϡξδ καὶ νυχθήμερα σμζ λγ β με κγ μ κη ἔγγιστα , ἀνωμαλίας
τοῦ ἐπικύκλου , ὃν ἔχει τὰ ͵γρκβ ∠ ʹ πρὸς σμζ ∠ ʹ , ᾧ λόγῳ ὁ αὐτός ἐστιν ὁ
7322100 κϚʹ
δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ δʹ , μονόμετρα κϚʹ , ὧν τὸ κεʹ μονόμετρον , παρατελευταῖον ὀνομαζόμενον ,
οζʹ Ἄρεως ἑνδέκατος , δύσκολος καὶ θανατηφόρος . οηʹ Κρόνου κϚʹ , Σελήνης ἕκτος , χαλεπός . πʹ Ἀφροδίτης ιϚʹ
7320859 ἡμιολιων
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος :
7316800 ρλε
. . . . . . . . . . ρλε μγ . Καλοῦνται δὲ αὐτῶν οἱ μὲν παρὰ τὸν
. . . . . . . . . . ρλε η ∠ ʹ Σουσουάρα . . . . .
7295902 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
7292434 οεʹ
καὶ ἀναδρομῆς μήτρας , Ἀσπασίας οδʹ . Περὶ ἐμπνευματώσεως μήτρας οεʹ . Περὶ ὑδρωπιώσης μήτρας οϚʹ . Περὶ μύλης ,
ἐπελογισάμεθα πάλιν διὰ δύο τῶν ὑποκειμένων . ἔτους μὲν γὰρ οεʹ κατὰ Χαλδαίους Δίου ιδʹ ἑῷος ἐπάνω ἦν τοῦ νοτίου
7289434 Ἰανουαριου
Σύναξον ταύτην τὴν βοτάνην ἀπὸ τῆς πρὸ ιϚʹ καλανδῶν τοῦ Ἰανουαρίου : Αἰγοκέρωτος βοτάνη λάπαθον . Αὕτη δυνάμεις μὲν οὐκ
τὰ δὲ ἐμβάμματα καὶ τὰς ὀπώρας ὡς τὰ προλεχθέντα τοῦ Ἰανουαρίου . ἐκ δὲ τῶν κοδιμέντων καὶ λαχάνων ὁμοίως ὡς
7281726 χουϲ
ηʹ . Τὸ Ἰταλικὸν κεράμιον ἔχει χόαϲ ηʹ . Ὁ χοῦϲ ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ [ κοχλιάρια ἢ ]
λίτραϲ μηʹ . Τὸ ἡμιμέδιμνον ἔχει λίτραϲ κδʹ . Ὁ χοῦϲ ἔχει λίτραϲ δέκα . Ὁ χοῖνιξ ἔχει λίτραϲ ἕξ
7274401 ιθʹ
ἐλάσσων ἄρα ἡ ΕΥ τῆς ΞΨ , ὅπερ : ∼ ιθʹ . Δεδειγμένων δὴ τούτων ἑξῆς ἀποδείξομεν εἰς ὃ ταῦτα
, ἐπὶ ηʹ ὥρᾳ τῆς νυκτός , Ὑδροχόος . Φευρουαρίου ιθʹ , ἐπὶ κʹ ὥρᾳ τῆς νυκτός , Ἰχθύες .
7274044 εὐθυμετρικον
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
7269586 δακτυλικα
ἰσόμετρα . ὧν τὰ μὲν πρῶτα καὶ τρίτα καὶ πέμπτα δακτυλικά . ἀλλὰ τὰ μὲν ἑφθημιμερῆ , τὰ δὲ πέμπτα
δακτυλικὸν ὂν δίμετρον ἀκατάληκτον . κατὰ γὰρ μονοποδίαν μετρεῖται τὰ δακτυλικά . τὰ δὲ τοῦ χοροῦ κῶλά εἰσι δυοκαίδεκα ,
7265192 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
7252690 ιβʹ
σημείῳ τοῦ κέντρου τῆς σελήνης ὄντος ὑπόκειται τὸ ἥμισυ καὶ ιβʹ ἐκλείπουσα ἡ σελήνη τῆς ἰδίας διαμέτρου , δῆλον ὅτι
κατὰ τὰ αὐτὰ τριχῶς : τά τε τοῦ ὅλου κύκλου ιβʹ πρὸς τὰ θʹ τῆς ΑΒΔ περιφερείας , καὶ τὰ
7247369 ἐπιτεταρτον
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις
7247097 ρκηʹ
ξδʹ , ὅς ἐστι τετράγωνος ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος
τῶν σνηʹ λόγῳ πρὸς τὰ σνϚʹ , ὅς ἐστιν ἐπὶ ρκηʹ . Τὴν δὲ βραχεῖαν οὕτω παραλλαγὴν δυνατὸν εἶναι κρῖναι
7246542 ἐπιδιτριτος
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα .
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν
7240602 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
7236591 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
7230719 ἐπιδιμερης
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη :
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ ,
7229025 τκδ
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη
7219168 τριμετρα
δὲ ζʹ ἀκατάληκτον δίμετρον : τὰ ηʹ θʹ ιαʹ δακτυλικὰ τρίμετρα : τὸ ιʹ τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ
ἰαμβικά . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι
7215170 ρκα
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . .
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . .
7215019 ογʹ
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν
7208778 ρκʹ
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον .
7207693 ιδʹ
κεʹ πεντάμοιρα τῆς κατὰ μοῖραν ἐπιδιαιρέσεως ἀρκεθησομένης ἐπὶ μόνων τῶν ιδʹ πενταμοιριῶν τῶν περιεξουσῶν τὰς μεταξὺ τῶν ἄκρων φθόγγων μοίρας
δὲ Μοῖσαι . τῶν γὰρ ἄλλων στροφῶν καὶ ἀντιστροφῶν ἀνὰ ιδʹ ἐχουσῶν κῶλα αὕτη μόνη εἶχεν , ὅπερ ἦν ἄτοπον
7192379 σνε
ποιούντων ἔγγιστα ε περιόδους τὰ μὲν υη ἔτη συνάγει περιόδους σνε , τὸ δὲ λοιπὸν ἔτος ἓν μετὰ τῶν ἐπιλαμβανομένων
σφαῖραν μεταλαμβανομένοις ϠϘγσιν , ἅ ἐστιν Αἰγυπτιακὰ ϠϘγ καὶ νυχθήμερα σνε # νδ μϚ να ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις ποιείσθω
7187415 ἀκαταληκτος
οἶμαί γε τῶν νεωτέρων τὰς καρδίας ” στίχος τρίμετρος ἰαμβικὸς ἀκατάληκτος : τὸ βʹ “ πηδᾶν ὅ τι λέξει ”
δʹ κῶλα . μεθ ' ὃ ἐν εἰσθέσει ἰαμβικὸς τρίμετρος ἀκατάληκτος . τῆς βʹ περιόδου κῶλα Ϛʹ , ὧν ὁ
7187244 τετραπλασιῳ
διπλασίων γάρ ἐστιν ἡ ΔΖ τῆς ΔΕ . τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς
τῷ τετράκις ἀπὸ τῆς ΕΓ τετραγώνῳ . ἀλλὰ τῷ μέν τετραπλασίῳ τοῦ ὑπὸ τῶν ΒΔ , ΔΓ ἴσον ἐστὶ τὸ
7181064 ἐννακις
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο
7180456 κηʹ
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ
7175246 λδʹ
ἐπιθυμίας . λγʹ . πρὸς τὸ ἀνανήφειν τοὺς μεθύοντας . λδʹ . ὅτι οὐ μόνον ὁ οἶνος ἀλλὰ καὶ ἕτερά
φαίνεται τὸ ὁρώμενον τοῦ κώνου ἤπερ πρὸς τῷ Σ . λδʹ . Ἐν κύκλῳ ἐὰν ἀπὸ τοῦ κέντρου πρὸς ὀρθάς

Back