λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται | ||
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα : |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἐν ἴσῃ ὑπεροχῇ , ὁ σύμπας πολυπλασιασθεὶς ἐπὶ τὸν ὀκταπλασίονα τῆς ὑπεροχῆς αὐτῶν , καὶ προσλαβὼν | ||
α . Πῶς ; Ϟ α δὲ ἐπὶ Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν | ||
δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι , |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς | ||
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν |
τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
: τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον | ||
, ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ |
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς | ||
ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι , |
δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
πρῶτος τετράγωνος ᾖ καὶ ὁ τρίτος ἔσται τετράγωνος , καὶ μετροῦντος τετράγωνον τετραγώνου καὶ πλευρὰ πλευρὰν μετρήσει , καὶ πᾶς | ||
' ὃν μετρεῖται , καὶ ἀπὸ τοῦ μείζονος , τοῦ μετροῦντος καὶ καθ ' ὃν μετρεῖ , ἀφέλωμεν τὸν ἐλάσσονα |
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν | ||
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ |
ἀντὶ μελικράτου κέχρησο ἀπομέλιτι ὥσπερ καὶ τῷ μελικράτῳ ὀλίγον , ὁσάκις ἂν δυσχεραίνῃ ἐπὶ τὴν ἀνάπτυσιν ἐπιρροφεῖν ἐξ αὐτοῦ κελεύων | ||
μέντοι πλεῖον τοῦ ἱκανοῦ συνάγεται , ὅθεν οὐκ ὀκνητέον , ὁσάκις ἂν πλήθους σημεῖα προσπέσῃ , συναιρεῖν αὐτὸ τῷ δεδηλωμένῳ |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς | ||
Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ | ||
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . . | ||
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
πρώτη διμερὴς γερανίς . Περιειλήσαντες τὴν μονομερῆ γερανίδα ἄγομεν ἐκ περισσοῦ τὴν ἐπείλησιν , ἐγκύκλιον μὲν κατὰ στέρνου , βραχίονος | ||
. Καὶ μὴν εἰς δύο διαιρουμένων ἴσα , τοῦ μὲν περισσοῦ μονὰς ἐν μέσῳ περίεστι , τοῦ δὲ ἀρτίου κενὴ |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
τὸν κζ λόγον , ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμὸν τετραγώνων ἀμφοτέρων ὄντων καὶ τοῦ λϚ καὶ τοῦ κζ ; | ||
τῆς ΑΓ ἔλαττόν ἐστι τῶν ἀπὸ τῶν ΓΒ , ΒΑ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΒ , ΒΔ περιεχομένῳ ὀρθογωνίῳ |
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε : | ||
τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν |
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
κύβου . Ἐὰν τοίνυν τοῦτον τὸν Ϟὸν τὸν λβ δηλονότι πολλαπλασιάσῃ ἀριθμὸς ὁ β πλευρὰ τῆς ἐξ ἀρχῆς δυνάμεως , | ||
τὸν ιϚ τετράγωνον ὄντα ἐκ πλευρᾶς τοῦ δ εἴ τις πολλαπλασιάσῃ ἐφ ' ἑαυτὸν ὡς γενέσθαι σνϚ , καὶ οὗτος |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
σελήνης πλούσιον ἅμα τῷ ἡλίῳ καταδυομένῳ ἀνατελλούσης . καὶ τὸν ἥμισυν ἀριθμὸν ἔχει τοῦ πλήθους , ἐν ᾧ τὸν κύκλον | ||
στρατιώτου πατήρ : ἐγὼ δὲ τὸν πολὺν Κυναίγειρον ἐκ Μαραθῶνος ἥμισυν ἐδεξάμην : ἑτέρωθι μὲν γὰρ ἡ δεξιά , ἑτέρωθι |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
, ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
. τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ | ||
ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην | ||
τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
τῶν τεσσάρων , ΔΥ τοσούτων ὅσων ἐστὶ δπλ . τοῦ ἐμβαδοῦ , τὸν μὲν αον ΔΥ ͵δνϚ , τὸν δὲ | ||
μεῖζον , τῶν δὲ μετ ' αὐτὴν ἡ περίμετρος τοῦ ἐμβαδοῦ ἐλάσσων . πρῶτος τετράγωνος καὶ ἐν ἀρτίοις πρώτη τετρακτύς |
ταῦτα δίς , γίνονται μετὰ κύκλων πηʹ : οὗτος ὁ ὡροσκοπικὸς γνώμων . Οἷον ἔστω Ἥλιος Αἰγόκερω μοίρᾳ ιθʹ : | ||
ἐν Σκορπίῳ εὗρον περὶ μοίρας κβʹ : οὗτος ἔσται ἡλιακὸς ὡροσκοπικὸς γνώμων . εἰσελθὼν καὶ κατὰ τὰς λʹ τῆς Σελήνης |
πλευρὰς ἔχουσιν , [ ὡς ἀριθμοὺς τρεῖς ἴσους ἐπὶ ἴσους πολλαπλασιάζεσθαι , ] οἱ δὲ ἀνίσους . τούτων δ ' | ||
πλεῖον , ἀλλὰ ἐκ τοῦ αὐτὸν καθ ' αὑτὸν μὴ πολλαπλασιάζεσθαι , ἀλλ ' ὑπὸ ἑνὸς καὶ ἑτέρου , οἷον |
ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω | ||
καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ |
βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |
ἀνθρακωδῶν ἑλκῶν ρδʹ . Πρὸς τὰ ἐν μήτρᾳ ἀκάθαρτα ἕλκη ρεʹ . Πρὸς ὑγρὸν φερόμενον ἀπὸ τοῦ γυναικείου αἰδοίου ρϚʹ | ||
ἐστὶν ] τὴν Ψυττάλειάν φησιν , ἥτις ἀπέχει τῆς Σαλαμῖνος ρεʹ σταδίους , ὅπου εὑρεθέντες οἱ ἡγεμόνες τῶν Περσῶν ὑπὸ |