| ἀνθρακωδῶν ἑλκῶν ρδʹ . Πρὸς τὰ ἐν μήτρᾳ ἀκάθαρτα ἕλκη ρεʹ . Πρὸς ὑγρὸν φερόμενον ἀπὸ τοῦ γυναικείου αἰδοίου ρϚʹ | ||
| ἐστὶν ] τὴν Ψυττάλειάν φησιν , ἥτις ἀπέχει τῆς Σαλαμῖνος ρεʹ σταδίους , ὅπου εὑρεθέντες οἱ ἡγεμόνες τῶν Περσῶν ὑπὸ |
| Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
| ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
| γύναια . οἱ δὲ κλιμακτῆρες ἔτος ζʹ , ιγʹ , κγʹ , μγʹ , νβʹ , ξϚʹ , οδʹ , | ||
| ὡρῶν ιε : Προκύων ἑῷος δύνει . Ἱππάρχῳ νότος . κγʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ |
| , Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη | ||
| ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα : |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας | ||
| ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον . |
| ὥστε εἶναι ἐν ὅλῃ τῇ φάλαγγι κέρατα μὲν δύο , φαλαγγαρχίας δὲ δ , μεραρχίας δὲ η , χιλιαρχίας δὲ | ||
| ἐφ ' ᾗ ὁ στρατηγός , κέρατα ἔχουσα δύο , φαλαγγαρχίας ἤτοι ἀποτομὰς δ , μεραρχίας η , χιλιαρχίας ιϚ |
| , τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
| ' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
| : ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
| . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
| Περὶ ἐμφυϲήματοϲ . κθʹ . Περὶ ϲτρεμμάτων καὶ θλαϲμάτων . λʹ . Περὶ ϲαρκοθλαϲμάτων καὶ ἐκχυμωμάτων . λαʹ . Περὶ | ||
| * ἡδύλογος . * ἀγαθοῦ : ὑπῆρξε τοῖς Ὀλιγαιθίδαις : λʹ γὰρ ἐν ἑκατέρῳ ἀγῶνι ἐνίκησε τῶν Ὀλιγαιθιδῶν . ἔργα |
| πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα | ||
| πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ |
| ἑαυτόν : πεντάκις εʹ , κεʹ . ὁμοῦ ὅλα , μʹ . ὁ μʹ ἀριθμὸς πεπολλαπλασιάσθω ἐπὶ τὸ ἐμβαδὸν τοῦ | ||
| ∠ ʹʹ Φόρος Ποπιλίου λθʹ ∠ ʹʹδʹʹ μαʹ δʹʹ Καπύη μʹ μαʹ Ϛʹʹ Ἀβέλλα μʹ γʹʹ μαʹ Ϛʹʹ Ἀτέλλα μʹ |
| πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
| ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
| δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας | ||
| μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ |
| ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
| ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
| τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ | ||
| στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος |
| ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
| Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |
| ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
| . νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
| ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς | ||
| τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ |
| : πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
| τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| Ἀντιγόνεια ἡ καὶ Μαντίνεια μθʹ γοʹʹ λεʹ ∠ ʹʹδʹʹ Στύμφαλος νʹ γʹʹ λϚʹ γʹʹ Κλείτωρ νʹ γʹʹ ιβʹʹ λϚʹ Λίλαια | ||
| μγʹ ιβʹʹ Βιζύη νδʹ ∠ ʹʹγʹʹ μγʹ ∠ ʹʹδʹʹ Σαρδική νʹ Ϛʹʹ μγʹ Τέρτα ναʹ γοʹʹ μγʹ ιβʹʹ Φιλιππόπολις νβʹ |
| πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
| ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| ἔπη † ἐπὶ † τὸ θέατρον παραβῆναι . Θεοπόμπου δράματα ιζʹ . Στράττιδος δράματα ιϚʹ . Φερεκράτους δράματα ιηʹ . | ||
| διεδέξατο Βαλεάζωρος , βιώσας ἔτη μγʹ , ὃς ἐβασίλευσεν ἔτη ιζʹ . μετὰ τοῦτον Ἀβδάστρατος , ὃς βιώσας ἔτη κθʹ |
| καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς , | ||
| δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ |
| , ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
| τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
| Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
| . . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| ἐλάσσων ἄρα ἡ ΕΥ τῆς ΞΨ , ὅπερ : ∼ ιθʹ . Δεδειγμένων δὴ τούτων ἑξῆς ἀποδείξομεν εἰς ὃ ταῦτα | ||
| , ἐπὶ ηʹ ὥρᾳ τῆς νυκτός , Ὑδροχόος . Φευρουαρίου ιθʹ , ἐπὶ κʹ ὥρᾳ τῆς νυκτός , Ἰχθύες . |
| τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
| χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
| ʹʹγʹʹ Σεμνόνων μεσόγειοι Σούασα λεʹ ∠ ʹʹ μγʹ γοʹʹ Ὄστρα λϚʹ μγʹ ∠ ʹʹ Πικηνῶν μεσόγειοι Τραΐανα λϚʹ ∠ ʹʹ | ||
| θερινὰ μέρη τοῦ ἀνταρκτικοῦ ιβʹ : αἱ πᾶσαι γὰρ ἦσαν λϚʹ : ὧν ἀφέλωμεν κδʹ : λοιπαὶ ιβʹ . αἷς |
| . Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
| Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
| Αἴγυπτον . λδʹ . Ἀπόστασις Πασιφίλου στρατηγοῦ ἀπὸ Ἀγαθοκλέους . λεʹ . Ὡς Καρχηδόνιοι συνέθεντο τὴν εἰρήνην πρὸς Ἀγαθοκλέα . | ||
| ὑπὸ ΑΒΓ γωνία , ἡ προειρημένη τετραγωνίζουσα γραμμὴ γίνεται . λεʹ . Ὥσπερ ἐν ἐπιπέδῳ νοεῖται γινομένη τις ἕλιξ φερομένου |
| , ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
| - ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
| τῆς σελήνης τοὺς τῶν ἀστέρων , τὴν μὲν ἐν τῷ λβʹ ἔτει φησὶ γεγονέναι τοῦ Μεχὶρ κζʹ πρωίας , τὴν | ||
| δραχ . κʹ κόμμεως . . . . δραχ . λβʹ τοῦ φαρμάκου . . . δραχ . λϚʹ ὕδωρ |
| πᾶς ἀριθμὸς αὐτῷ τῆς στρατιᾶς ἀπόμαχός τε καὶ μάχιμος μυριάδες φʹ πλοῖα δὲ βσξʹ υʹ δ ' ἦσαν τάλαντα ἡμερησία | ||
| ' ὃν καιρὸν συμβαίνει ἐργάζεσθαι τὸν Ἥφαιστον , ὥστε ἐπὶ φʹ στάδια ἀκούεσθαι τὸν ἦχον . οἱ δὲ ἐκ τοῦ |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
| αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
| σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| Αἴτνην ὁμώνυμον τῷ ὄρει . συνέβη δὲ νικήσαντα αὐτὸν τὴν οηʹ Ὀλυμπιάδα ἐν ταύτῃ τελευτῆσαι . τὸ δὲ ὄνομα τοῦ | ||
| τοῦ δὲ τοῦ Ἑρμοῦ ἡμέρας μὲν ξϚʹ , νυκτὸς δὲ οηʹ . γίνεται τὸ πᾶν τξʹ . τούτων μὲν οὖν |
| δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ δʹ , μονόμετρα κϚʹ , ὧν τὸ κεʹ μονόμετρον , παρατελευταῖον ὀνομαζόμενον , | ||
| οζʹ Ἄρεως ἑνδέκατος , δύσκολος καὶ θανατηφόρος . οηʹ Κρόνου κϚʹ , Σελήνης ἕκτος , χαλεπός . πʹ Ἀφροδίτης ιϚʹ |
| ∠ ʹʹ μθʹ Πασυρίς νηʹ ∠ ʹʹ μθʹ Ϛʹʹ Ἔρκαβον νηʹ ∠ ʹʹ μθʹ δʹʹ Τρακάνα νηʹ ∠ ʹʹ μθʹ | ||
| τοῦ δευτέρου τῶν σφαιρικῶν [ τῷ προτέρῳ λήμματι ] . νηʹ . Ἔστω διὰ τῶν πόλων τῆς σφαίρας κύκλος ὁ |
| : τοῦτον γὰρ μετρεῖ μετὰ τὸν ιε ἐφ ' ἑαυτὸν πολλαπλασιαζόμενος : πεντάκις γὰρ ε κε . τὸν δὲ τρίτον | ||
| , ὅσαι εἰσὶν ἐν αὐτῷ μονάδες , τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος , καὶ γένηταί τις . Ὅταν δὲ δύο ἀριθμοὶ |
| κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
| ͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
| δύο τετάρτου καὶ δευτέρου ἀντὶ ἰωνικοῦ καὶ διιάμβου . τὸ νεʹ ἀντισπαστικὸν δίμετρον ἀκατάληκτον . τὸ νϚʹ ἰαμβικὸν πενθημιμερές . | ||
| ∠ ʹʹ Κιστουία λζʹ γʹʹ νδʹ ∠ ʹʹ Ἀλεισός ληʹ νεʹ Λακιβούργιον λθʹ νϚʹ Βουνίτιον λθʹ ∠ ʹʹ νεʹ ∠ |
| Ἄρατος . ἀκολούθως δὲ ταύτηι καὶ Ὄνους λέγουσι περὶ τὸν Καρκίνον ἀστέρας εἶναι . τοὺς δὲ κομήτας καὶ τοὺς τοιούτους | ||
| ' ἄλλοι δύο Χορευταὶ , ἰσολαμπεῖς οἱ πάντες . Ἰδὲ Καρκίνον Ἥλιος τέμνει κατὰ τὸ μέσον ἀπὸ Παϋνὶ τὰς δεκαεπτὰ |
| , ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
| πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| . . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
| ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
| γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
| ιεʹ , ὁλκὰϲ ριβʹ ʂ . Ἡ λίτρα ἔχει ὁλκὰϲ Ϙʹ . Τὸ δὲ δηνάριον ἔχει γράμματα δʹ . Τὸ | ||
| ᾗ ὅρμος ναυσὶ , στάδιοι σʹ , μίλια κϚʹ , Ϙʹ Ϛʹ . Ὀδησσὸν κτίζουσι Μιλήσιοι , ὅτε Ἀστυάγης ἦρχε |
| , καὶ ἐπὶ τῶν ἄλλων ὁμοίως ἄλλας χορδὰς εἶπον . ρκβʹ Πολλῶν δὴ οὕνεκα Διὰ δὴ σύμπαντα ταῦτα τὰ εἰρημένα | ||
| τὸν ριϚʹ , τὸν ριηʹ , τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα . |
| γʹ τροχαικὰ τετράμετρα γʹ ἀναπαιστικὰ γʹ οἱ ἑξῆς τροχαικοὶ τετράμετροι νϚʹ κεδνῆς ] γράφε κενῆς ἐκτελευτήσειν ] ~ σαι στίχοι | ||
| τοῦ ποταμοῦ λδʹ νβʹ ∠ ʹʹ Ἄλβιος ποταμοῦ ἐκβολαί λαʹ νϚʹ δʹʹ αἱ πηγαὶ τοῦ ποταμοῦ λθʹ νʹ Κιμβρικῆς Χερσονήσου |
| οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ | ||
| διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς |
| Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι | ||
| ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων |
| . Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
| ͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
| ὁ ὀκτάκις ιʹ , οἵτινές εἰσιν ὁ ηʹ κδʹ μηʹ πʹ . τετράγωνοί εἰσιν οἱ ἐκ τῶν κατὰ τὸ ἑξῆς | ||
| σταδίους ρνʹ ] . Ἀπὸ Ἄνδρου εἰς λιμένα Γαυρίου σταδίους πʹ . Ἀπὸ Γαυρίου ἐπὶ [ τὸ Παιώνιον ] ἀκρωτήριον |
| ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
| , τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
| ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
| ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
| μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
| ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
| πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
| καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
| ταῦτα δίς , γίνονται μετὰ κύκλων πηʹ : οὗτος ὁ ὡροσκοπικὸς γνώμων . Οἷον ἔστω Ἥλιος Αἰγόκερω μοίρᾳ ιθʹ : | ||
| ἐν Σκορπίῳ εὗρον περὶ μοίρας κβʹ : οὗτος ἔσται ἡλιακὸς ὡροσκοπικὸς γνώμων . εἰσελθὼν καὶ κατὰ τὰς λʹ τῆς Σελήνης |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| τὸ διὰ τῆς αἰγείρου Γαληνοῦ . νηʹ Ἔλαιον σαμψύχινον . νθʹ Ἄκοπον ἄλειμμα τὸ μαρκιᾶτον . ξʹ Ἄλειμμα τοῦ ὀρχηστοῦ | ||
| θʹ , ιϚʹ , κβʹ , λϚʹ , μθʹ , νθʹ , ξϚʹ , οζʹ . ὁ δὲ ἐπὶ τοῦ |
| ἑῷος δύνει . Ἱππάρχῳ νότος ἢ βορέας , χειμάζει . κʹ . Αἰγυπτίοις χειμῶνος ἀήρ . καʹ . ὡρῶν ιδ | ||
| συγκαταδύνει μὲν αὐτοῖς ὁ ζῳδιακὸς ἀπὸ Ὑδροχόου μοίρας γʹ καὶ κʹ ἕως Κριοῦ μοίρας εʹ : μεσουρανεῖ δὲ ἀπὸ Ταύρου |
| , καὶ τὴν ηκ πηʹ ηʹʹ , τὴν δὲ κε Ϟʹ ηʹʹ . φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε | ||
| μὲν οʹ τριπλασιασθεῖσαι τοῦ σιʹ ποιητικαί εἰσιν , αἱ δὲ Ϟʹ τοῦ σοʹ , ἑπταμήνου καὶ ἐννεαμήνου . ὅτι καὶ |
| Ἄλπεσι Σεγούσιον κηʹ ∠ ʹʹ μγʹ ∠ ʹʹγʹʹ ιβʹʹ Βριγάντιον κθʹ μδʹ ιβʹʹ Νερουσίων ἐν Παραλίοις Ἄλπεσιν Οὐίντιον κηʹ ∠ | ||
| αʹ . Ἄλλη . Ἀντωνίνου ἔτος καʹ Ἀθὺρ κηʹ εἰς κθʹ ὥρα νυκτερινὴ γʹ . Ἥλιος Τοξότῃ Ϛʹ , Σελήνη |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| ἄλλο τι τῶν συμφώνων , ὁ πρῶτος φθόγγος πρὸς τὸν ἕβδομον οὐ ποιήσει τὸ διὰ πασῶν . εἴτε δὴ μὴ | ||
| παράθεσις καὶ ἐπὶ τῶν εἰς ΩΝ ληγόντων . Τὸ δὲ ἕβδομον ἀπὸ τῶν εἰς ΜΟΣ μέχρι τῶν εἰς ΠΟΣ . |
| ξʹ , πλευρὰς δὲ ρνʹ . Ταῦτα μὲν οὖν τὰ ιγʹ σχήματα [ ἤτοι ἀνομοιογώνια ὄντα ἢ ] ὑπὸ ἀνίσων | ||
| ιζʹ : ιβʹ ♎ ιζʹ ιβʹ , κλῆρος πατρὸς Ϛʹ ιγʹ , ☿ Ϛʹ κβʹ . Ὁ Ἥλιος καὶ ὁ |
| ἦγον τοὺς μῆνας . ὁ δὲ τῆς σελήνης μήν ἐστιν εἰκοσιεννέα τέταρτον ἡμερῶν . τρίτῃ δὲ εἰκάδι . τοῦ πατριάρχου | ||
| ἡ σελήνη , ὁ καλούμενος μήν : ἔστι γοῦν ἡμερῶν εἰκοσιεννέα τέταρτον , ὥστε εὐλόγως τὴν τριακάδα κοινὴν γενέσθαι τῶν |
| γοʹʹ Κόρνακον μδʹ γʹʹ μεʹ δʹʹ Ἀκούμινκον , λεγίων μεʹ μεʹ γʹʹ Ῥίττιον μεʹ ∠ ʹʹ μεʹ Ταύρουνον μεʹ μδʹ | ||
| συμπτω - μάτων . ἐν δὲ περισσοῖς ὅροις τῷ τε μεʹ καὶ τῷ εʹ ὁ αὐτὸς κεʹ μεσεμβοληθεὶς ὁμοίως ποιήσει |
| . ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
| δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
| ποταμοῦ ἐπὶ τὰς πηγὰς τοῦ αὐτοῦ ποταμοῦ στάδιοι ͵γτνʹ , στάδιοι ͵βυʹ . Ἀπὸ τοῦ ἀνατολικωτέρου στόματος τοῦ Βαίτιος ποταμοῦ | ||
| φʹ : τὸν δὲ ἐπίτομον διὰ πόρου εἰς τὰς Χελιδονίας στάδιοι χʹ . Ἔστι δὲ ἀπὸ τῶν Χελιδονίων [ ἐπὶ |
| Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
| τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
| . Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
| καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
| ' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν | ||
| καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς |
| ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
| μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
| μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππωι πθʹ . Ἀπὸ τροπῶν | ||
| πθʹ . Περὶ τυροῦ . Ϙʹ . Περὶ ἰχθύων . Ϙαʹ . Περὶ ὀϲτρακοδέρμων . Ϙβʹ . Περὶ μαλακίων . |
| λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
| κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
| τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
| θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
| ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
| Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
| ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ | ||
| γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ |
| τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
| τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| . . . . . . . . . . Ἰχθύων κδ Ϛʹ βο ιζ ∠ ʹ δʹ ὁ ἐπὶ | ||
| . . . . . . . . . . Ἰχθύων κϚ γʹ βο κζ δʹ ὁ ἐν τῷ ἀριστερῷ |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| ΒΓ . ἄλογον ἄρα διὰ τὸν ὅρον . Διὰ τὸ κζʹ τοῦ ιʹ δυνατόν ἐστι πορίσασθαι τὸ δεδομένον τῆς προτάσεως | ||
| καὶ οὐκ εἰς τὰ προηγούμενα , σελήνη μὲν ἐν ἡμέραις κζʹ καὶ τρίτῳ μάλιστα ἡμέρας καὶ νυκτὸς διέρχεται : ὁ |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| ἡ ρξʹ : κοινὴ προσειλήφθω ἡ ροʹ : ἡ ἄρα ξοʹ ὅλῃ τῇ ρπʹ ἴση ἐστίν : ἡ δὲ ξοʹ | ||
| : ἡ δὲ νθʹ ἡμίσους ἐστὶ ζῳδίου : καὶ ἡ ξοʹ ἄρα ἡμίσους ἐστὶ ζῳδίου περιφέρεια : καὶ ἐπεὶ τοῦ |
| τετάρτης ἴσον ἐστὶ τῷ ὑπὸ τῆς δευτέρας καὶ τρίτης , πολλαπλασιάζομεν τὴν τοῦ Ϛ πλευρὰν μετὰ τῆς εὑρεθείσης μέσης , | ||
| παραδείγματα τὰ καὶ ἐν τῷ προλαβόντι κεʹ ληφθέντα θεωρήματι : πολλαπλασιάζομεν αὐτὰς πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου |
| : Πούπουλον πόλις λʹ ∠ ʹʹγʹʹ λεʹ γοʹʹ Σόλκοι πόλις λαʹ Ϛʹʹ λεʹ ∠ ʹʹγʹʹ Σόλκοι λιμήν λαʹ δʹʹ λεʹ | ||
| ∠ ʹʹδʹʹ καθ ' ὃ ἐκτρέπεται ἐπὶ τὴν Βαίνακον λίμνην λαʹ ∠ ʹʹδʹ μγʹ ∠ ʹʹ αὐτῆς τῆς λίμνης θέσις |
| , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
| δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
| τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου | ||
| ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
| δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| ἄν τις ἄφετος ᾖ , τὸν δὲ δῆμον τετράκις ἑκάστης πρυτανείας : καὶ προγράφουσι πρὸ τῆς βουλῆς καὶ πρὸ τῆς | ||
| ὄφλημα : μὴ ἐκτεισθέντος δὲ τοῦ ὀφλήματος ἐπὶ τῆς ἐνάτης πρυτανείας , διπλοῦν ἔμελλεν ἔσεσθαι τὸ ὄφλημα καὶ ἐγγραφήσεσθαι Ἀπολλόδωρος |
| γοʹʹ καὶ ἡ Ἀχιλλέως ἢ Λευκὴ νῆσος νζʹ ∠ ʹʹ μζʹ γοʹʹ Ἡ Θρᾴκη περιορίζεται ἀπὸ μὲν ἄρκτων τῇ κάτω | ||
| πόλις νϚʹ γοʹʹ μζʹ γοʹʹ Τύρα ποταμοῦ ἐκβολαί νϚʹ γʹʹ μζʹ γοʹʹ Ἑρμώνακτος κώμη νϚʹ δʹʹ μζʹ ∠ ʹʹ Ἄρπις |