, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν
7497830 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
7409320 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
7368887 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
7294990 ρκε
πάλιν ποίησον τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς
μδ λδ , ἡ δ ' ἐπὶ τῆς ΓΘ μοιρῶν ρκε κϚ ι . ἀκολούθως δὲ καὶ ἡ μὲν ὑπὸ
7267470 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
7243853 φοϚʹ
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα
7156257 ἑξακις
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ
7145951 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
7089103 λϚ
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς
7086877 χλʹ
τε τῶν χμʹ καὶ ὁ τῶν χμηʹ καὶ ὁ τῶν χλʹ . ὡς ἔχουσιν αἱ καταγραφαί . Ὅτι δὲ οὐ
στάδια ͵ατʹ : Κῶ περίμετρος στάδια φνʹ : Σάμου στάδια χλʹ . Ἰκαρία δὲ ἐστὶ μακρὰ , τραχεῖα , μῆκος
7049921 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
7009804 λβ
. . . . . . . . πζ δʹ λβ δʹ Ἄρδεα . . . . . . .
καὶ ἡ μὲν ἐπὶ τῆς ΕΗ περιφέρεια τοιούτων ἐστὶν λθ λβ , οἵων ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ
7001701 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
6998399 ψξη
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ
6869476 ρμδ
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ
6863988 κʹʹʹ
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ
6853959 ιη
ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος ,
οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ
6830131 ιγʹʹ
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο
6830007 κζ
ἐστιν Αἰγυπτιακὰ ͵αι καὶ νυχθήμερα σνθ κβ ν νϚ ιϚ κζ ν ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις υογ , ὁ δὲ
τὰ μὲν ἄλλα ὡσαύτως τῷ πρώτῳ , ἐπὶ στίχους δὲ κζ καὶ σελίδια δ διὰ τὸ τὴν μὲν ἐκ τοῦ
6824476 τξα
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα :
6808570 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6801636 μθ
ὁμοίως β ιγ , ἡ δὲ ΝΖ τῶν λοιπῶν νε μθ . διὰ τοῦτο δὲ καὶ ἡ ΔΖ ὑποτείνουσα τοιούτων
ἔγγιστα # λϚ ν κδ , λοιπαὶ γίνονται ριζ ιβ μθ νδ . Ἐπὶ δὲ τοῦ δευτέρου τὰς ἐπιλαμβανούσας ἐν
6783373 ρμδʹ
οὕτως : τὰ ιβʹ τοῦ μήκους ἐφ ' ἑαυτὰ γίνονται ρμδʹ : καὶ τὰ εʹ τοῦ πλάτους ἐφ ' ἑαυτὰ
διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ σπθʹ πρὸς ρμδʹ . καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς
6777306 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ
6724074 ἀποτελουμενοι
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν ,
6704690 σιϚ
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ '
6699979 ρϘε
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς
6689750 τεταρτων
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ
6685586 ιϚʹ
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν
6663807 ξδʹ
, ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ
- ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν
6661202 ρπζ
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ
6656940 πολλαπλασιαζων
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν
6630386 σμγ
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ
6610311 ιθ
α κθ ο Ϙθ ζ ια ο λε ια θ ιθ κ ζ α κ δ ζ ιγ κ μγ
ἀκρόποδι λαμπρὸς κοινὸς Ὕδατος . . . . . Ταύρου ιθ ∠ ʹ γʹ νο λα ∠ ʹ αʹ ὁ
6605797 μοναδες
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι :
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες
6590199 ρεʹ
ἀνθρακωδῶν ἑλκῶν ρδʹ . Πρὸς τὰ ἐν μήτρᾳ ἀκάθαρτα ἕλκη ρεʹ . Πρὸς ὑγρὸν φερόμενον ἀπὸ τοῦ γυναικείου αἰδοίου ρϚʹ
ἐστὶν ] τὴν Ψυττάλειάν φησιν , ἥτις ἀπέχει τῆς Σαλαμῖνος ρεʹ σταδίους , ὅπου εὑρεθέντες οἱ ἡγεμόνες τῶν Περσῶν ὑπὸ
6578277 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
6576763 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
6544886 ρκʹ
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον .
6539720 ιγ
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ
6523716 ρξθ
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ
6515657 κδ
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ ,
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ ,
6504646 ἐννακις
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο
6449442 ρκα
Πρασώδης κόλπος . . . . . . . . ρκα β Νούβαρθα πόλις . . . . . .
. . . . . . . . . . ρκα δʹ ιθ γοʹ Ἱππόκουρα , βασίλειον Βαλεοκούρου . .
6423041 πεντακις
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν
6413931 ρϞβʹ
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος
6380260 ἐπιδιτριτος
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα .
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν
6379194 ἀρτιοι
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ ,
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις
6378477 κγ
ιγ , ιε , ιζ , ιθ , κα , κγ , κε , κζ : β , δ ,
. . . . . . . . ϘϚ γʹ κγ Κόμμανα . . . . . . . .
6377103 ϘϚ
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . .
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ
6376628 κη
πολὺ * γὰρ * πλῆθος Ἑλλήνων τὸ μὲν ναυαγῆσαν βρωθήσεται κή - τεσι θαλασσίοις , οἱ δὲ τοῖς ἀνέμοις εἰς
διὰ τοῦτο προσειληφότες τὸ Τ ἄνακτος κλίνομεν . Καν . κή . Ὁ μύρμηξ . Ἔστι μὲν καὶ αὐτὸς τῶν
6363424 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6362530 οʹ
, Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη
ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα :
6362432 ρβ
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν
6357703 ἀρτιακις
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς
6339889 μο
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν
6335528 τετραγωνοι
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον
6334418 μοναδων
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν
6307838 εὐτακτοι
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι
6292565 βδ
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα
6290103 ἰσοι
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς
6278875 διαστατοι
καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ
λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον
6271261 ρϘϚʹ
ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς
τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ
6269104 ἐπιτεταρτοι
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ
6246595 τριγωνοι
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι
6241951 σϘ
Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ σϘγ Νάρκιϲϲοϲ σϘδ
ἐπουσίας μήκους μὲν μοίρας σνη ιγ , ἀνωμαλίας δὲ μοίρας σϘ νη , ἐὰν ταύτας ἀφέλωμεν τῶν κατὰ τὴν τήρησιν
6238199 σκε
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος
6216408 Ϟου
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ
6184845 ὁμοταγεις
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται
6173932 οθʹ
, τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ
τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ
6172349 ἀσυνθετοι
καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ
ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ
6167930 ΚΥ
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ .
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν
6164738 Ϟον
λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π
κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα
6161690 ἀσυνθετος
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν
6146245 ογʹ
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν
6127939 ͵Ϛ
τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου
ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ
6118064 ὀγδοα
τὰ μέρη ἐπὶ τοῦ πρώτου , ἐπὶ δὲ τοῦ ἑξῆς ὄγδοα , εἶτα ἑνδέκατα , εἶτα τεσσαρεσκαιδέκατα , ἑξῆς ἀκολούθως
πλευραὶ ἦσαν ε δʹ . Εὑρέθη δὲ ὁ ἀριθμὸς ιζ ὄγδοα . Ἔσται ὁ λοιπὸς ε δʹ τῶν η :
6115168 υπʹ
ἐστιν ὁμοῦ πέντε , τετράκις ποιῶ τὰ ρκʹ , γίνεται υπʹ , μερίζω παρὰ τὸν εʹ καὶ ἔχω μέρος ἓν
. Σικύου ἀγρίου ῥίζης ⋖ φοϚʹ , σκίλλης καθαρᾶς ⋖ υπʹ , ἀσφοδέλου ῥίζης ⋖ ρμδʹ , ἐλαίου ῥαφανίνου ⋖
6103473 δεκακι
μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ ι ρ καὶ τετράκι ι μ , δεκάκι
ἀποβολὴ τοῦ ς ἐγένετο , ὡς ἐν τῷ πολλάκι καὶ δεκάκι , καὶ τὸ χωρίς ἀποβάλλον τὸ ς ἐγίνετο χῶρι
6089582 κβ
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ
6064895 ρʹ
δαφνίδων ἐπίθεμα πθʹ . Περὶ ἀποστήματος ἐν μήτρᾳ , Ἀρχιγένους ρʹ . Ὅπως δεῖ ἐνεργεῖν περὶ τὸ στόμιον τῆς μήτρας
μάρπω , τὸ καταλαμβάνω γίνεται μαρπεῖν , καὶ ἀποβολῇ τοῦ ρʹ μαπέειν κατ ' ἐπέκτασιν . Καὶ τὸ ΒΑΙΝΟΥΣΕΩΝ δὲ
6055692 τριπλασιος
ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε
δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ
6032085 μονασι
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . .
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ
6030909 τετραπλασιων
ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω
καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ
6025823 πολλαπλασιων
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα
6010440 αγ
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς
6006972 νϚ
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . .
6000384 κδʹ
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ
5988908 τριπλασιων
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ
5983260 πολλαπλασιασθεις
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους
5978610 περισσαρτιων
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε ,
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς
5967356 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
5965519 ἀριθμοι
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία :
5961846 ἡμισους
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ :
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ
5955408 σιϚʹ
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι .
5953439 κυβος
στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ
οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος
5924154 ἐμβολιμοι
δὲ ] εἰς ἁπλότητα : καὶ Εὔπολις Ἱπποκράτους τε παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα κοὐδαμῶς γε τοῦ τρόπου . εἴξεις
συώδεις καὶ ἀνόητοι . καὶ Εὔπολις ἐν Δήμοις Ἱπποκράτους παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα : καὶ οὐδαμῶς τοῦ τρόπου .
5918067 κθ
τουτέστιν ἡ ΡΥ ] παραλλάξεως οὖσα τῆς σελήνης Καρκίνου μοίραις κθ ιδ τῆς πρὸ γ ∠ ὡρῶν ἰσημερινῶν τῆς μεσημβρίας
νζ μ ν ιε . τὸ ἥμισυ τῆς ΑΒ α κθ κβ , τὸ ἀπὸ τῆς ἡμισείας τῆς ΑΒ β
5907017 ἐννακοσιοι
τῷ Ϛ : ἑξάκις γὰρ ϘϚ φοϚ καὶ ἑξάκις ρν ἐννακόσιοι . ὥστε ἡ εἰκοσιτεσσαράπους καὶ ἡ τριακοντάπους μήκει μὲν
] πάντες πεζοὶ μὲν μύριοι καὶ ἑξακισχίλιοι , ἱππεῖς δὲ ἐννακόσιοι , οἱ δ ' Ἀντιγόνου χωρὶς τῶν ἐλεφάντων πεζοὶ
5904772 λγ
ὑποτείνουσα ρκ , τοιούτων καὶ ἡ μὲν ΕΛ ἔσται ιγ λγ , ἡ δ ' ἐπ ' αὐτῆς περιφέρεια τοιούτων
. . . . . . . . ι γʹ λγ ∠ ʹδʹ Τοκολόσιδα . . . . . .

Back