, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
δεξιὸν κατ ' ὦμον : δύο γάρ εἰσιν ἐνταῦθα ἰωνικαὶ συζυγίαι καὶ μετὰ ταῦτα τὸ ἰθυφαλλικὸν καλούμενον μέτρον ἐκ τριῶν | ||
διάλεκτον ἀναγκαίοις , γλώττῃ καὶ φάρυγγι καὶ λάρυγγι , καὶ συζυγίαι τρεῖς εἰσιν ἀδενωδῶν σωμάτων ἐπιτήδειον ὑγρότητα παρασκευάζουσαι , ἀλλ |
ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' | ||
, ἀνακήρυξις , ἀνάρρησις , ἀναγγελία καὶ μὴν καὶ αἱ λοιπαὶ τιμαί , δωρεαί , γέρα , προτιμήσεις , χάριτες |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ τῆς ψυχῆς στιγμαὶ ἐν τῷ αὐτῷ ἔσονται τόπῳ ταῖς ἐν τῷ σώματι | ||
τῷ μεγέθει πηχυαῖα , ἐκ πάχους ἐπὶ λεπτὸν ἠγμένη : στιγμαὶ δὲ καθ ' ὅλον τὸ σῶμα εἰσὶ κιρραὶ καὶ |
, τούτωι δεύτερος τρίτου ὑπερέχει . καὶ ἐν ταύται τᾶι ἀναλογίαι συμπίπτει ἦιμεν τὸ τῶν μειζόνων ὅρων διάστημα μεῖον , | ||
ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ δὲ |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ | ||
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
ΙΑ πρὸς ΑΜ , διὰ τὴν ὁμοιότητα τῶν τριγώνων . τέσσαρες ἄρα αἱ ΔΑ ΑΚ ΑΙ ΑΜ ἑξῆς ἀνάλογόν εἰσιν | ||
τῶν ἄκρων ἴσος ᾖ τῷ ὑπὸ τῶν μέσων , οἱ τέσσαρες ἀριθμοὶ ἀνάλογόν εἰσιν : ἔστιν ἄρα ὡς ὁ Ε |
δὲ ΒΕ τῇ ΔΖ . αἱ δὲ ΑΕ , ΕΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι : καὶ αἱ ΓΖ , | ||
πλειόνων ἄκρων . διὰ γὰρ τοῦτο ἡ ψυχὴ καὶ αἱ μέσαι φύσεις πᾶσαι πλείοσι μαθήμασιν ἀναδιδάσκονται , ὡς πρὸς πλείονας |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
, ἃς ἀναλογίας [ τινὰς ] τινὲς καλοῦσι , καὶ τοσαῦται αἱ ἁπλαῖ τοῦ ἀνίσου σχέσεις . αἷς πάντ ' | ||
στρατιώτης δὲ ἐν χερσὶν ἔχων μάχην οἶδεν εἰ ζήσεται ; τοσαῦται τῶν θανάτων εἰσὶν ὁδοί . αἴτησαί μοι παρὰ τῆς |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
ἄρτιοι ἀπὸ ῥίζης προχειρισθῶσιν εἰς μίαν μεσότητα , ἀντιπαρωνυμήσουσιν αἱ ἀκρότητες ἐν αὐτοῖς καὶ αἱ μετ ' ἐκείνας καὶ αἱ | ||
τουτονὶ καὶ νῦν ἐκκαλυπτέον , ὅτι ἄρα τούτων αἱ μὲν ἀκρότητες κατ ' ἐναντιότητα τοῦ ποιοῦ θεωροῦνται , τὰ δὲ |
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
. ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
τοῖς πάθεσιν αὐτοῖς ἀλλὰ καὶ ἐν τοῖς περὶ τὰ πάθη μεσότητές εἰσι , καθάπερ ἐπὶ τῆς αἰδοῦς φαίνεται . καὶ | ||
ἐπανιτέον δὲ ἐπὶ τὸν τῶν ἀναλογιῶν καὶ μεσοτήτων λόγον . μεσότητές εἰσι πλείονες , γεωμετρικὴ ἀριθμητικὴ ἁρμονικὴ ὑπεναντία πέμπτη ἕκτη |
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
ἐπειδὴ διὰ τοῦ λόγου τῶν μέσων κινήσεων ἐπιβάλλουσιν περιοδικοῦ μήκους μοῖραι κ νη κα , ταύταις μὲν ἀντὶ τῶν κα | ||
καὶ τὰς τοῦ ὡροσκόπου μοίρας ια . ὁμοῦ αἱ πᾶσαι μοῖραι τμα : ἀπολύσομεν ἀπὸ τοῦ Λέοντος , κατέληξεν ἐν |
ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
, φησὶν ὁ Ἀριστοτέλης , οὕτω κεῖσθαι τὰς τοῦ ἀναγκαίου ἀντιφάσεις , ἴσον λέγων τῷ ἀδύνατον οὕτω κειμένας ὑγιῆ ἔχειν | ||
γὰρ αὐτούς , πότερον ἕκαστον τῶν ὄντων πάσας δέχεται τὰς ἀντιφάσεις ἢ οὔ , ἀλλὰ τάσδε μὲν τάδε ἄλλας δὲ |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
αἰσθητῶν ἤπερ τὰ ἄκρατα , οἷον ἐν ψόφοις μὲν αἱ συμφωνίαι , ἐν χυμοῖς δὲ οἱ μεμιγμένοι , καὶ τῶν | ||
ψυχῆς καὶ σώματος , ἀληθὲς ἄρα καί , ὅτι αἱ συμφωνίαι πᾶσαι κατ ' αὐτὸν τελοῦνται . πεντὰς πρώτη περιέλαβε |
. ἀλλὰ πρῶτον εἴπωμεν διὰ τί λέγονται διαλεκτικαὶ μέθοδοι καὶ πόσαι εἰσὶ καὶ τὴν τάξιν αὐτῶν , καὶ οὕτω λέγωμεν | ||
ἀλλ ' ἵνα μὴ παρὰ θύραν πλανᾶσθαι δοκῶμεν , ὑποδεικτέον πόσαι τέ εἰσι γραμματικαὶ καὶ περὶ τίνος αὐτῶν πρόκειται ζητεῖν |
τὰ τοιαῦτα ἐπιρρήματα εἰρήσεται , ᾧ λόγῳ καὶ αἱ μονογράμματοι συλλαβαί , οὐκ οὖσαι συλλήψεις στοιχείων . μή ποτε δὲ | ||
ἑπτακαίδεκα συλλαβῶν οὐσῶν ἐν τῷ στίχῳ δέκα μέν εἰσι βραχεῖαι συλλαβαί , ἑπτὰ δὲ μακραὶ οὐδ ' αὗται τέλειοι : |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
ἔπεστι κολοσσὸς λίθινος κατήμενος ἐν θρόνῳ . Οὕτω αἱ μὲν πυραμίδες εἰσὶ ἑκατὸν ὀργυιέων , αἱ δ ' ἑκατὸν ὀργυιαὶ | ||
. , ] αἱ γὰρ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις : ἴσαι δὲ |
, καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
δὲ τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχὴ Ϟοὶ ιβ μο λϚ . Δεήσει ἄρα Ϟοὺς ιβ μο λϚ ἴσους εἶναι | ||
Διὶ ἡμέρας κβ , Ἄρει ἡμέρας κη , Ἡλίῳ ἡμέρας λϚ , Ἑρμῇ λη , Σελήνῃ ἡμέρας ιζ : Ἑρμῆς |
Σαφηνισθέντων δὴ τῶν πολλαπλασιασμῶν , δεικτέον ἑξῆς πῶς τε δεῖ πολλαπλασιάζειν καὶ ἔτι πῶς μερίζειν , πρῶτον ὁρισαμένους τί ἐστι | ||
αὐτὸς θ καὶ σύνθετός ἐστι καὶ ἀσύνθετος . Ἀριθμὸς ἀριθμὸν πολλαπλασιάζειν λέγεται : οἷον ὁ θ καὶ ὁ γ : |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
καὶ ἐνδεχόμενα , ἔτη νομιζέσθω : ἐὰν δὲ πολλά , μῆνες : ἐὰν δὲ ὑπέρμετρα , ἡμέραι . ἀναστρέφει δὲ | ||
θʹ : Ἡλίου ἔτη ιθʹ , τὸ τέταρτον ἔτη δʹ μῆνες θʹ . Ἀφροδίτης ἔτη ηʹ , τὸ τέταρτον ἔτη |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
τοιοῦτον . ἐν δὲ τῷ τρίτῳ ἔμπαλιν αἱ μὲν προτάσεις ἐνδεχόμεναι τὸ δὲ συμπέρασμα ἀναγκαῖον : οὕτω γὰρ κειμένων τῶν | ||
ἐνδεχόμενον γινόμενον τὸ συμπέρασμα . εἰ δὲ εἶεν ἀμφότεραι ἀποφατικαὶ ἐνδεχόμεναι , ἡ μὲν καθόλου ἡ δὲ ἐπὶ μέρους , |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
τῶν ἰγνύων καὶ ἀπὸ τῶν σφυρῶν ἔσωθεν . Αἱ δὲ τρίται φλέβες ἐκ τῶν κροτάφων διὰ τοῦ αὐχένος ἐπὶ τὰς | ||
[ οὐδὲ ] προσεχῶς ἀπὸ τῆς Νυκτός εἰσιν , ἀλλὰ τρίται καὶ πολλοσταὶ ἀπ ' ἐκείνης . Πρὸς δὴ τοῦτο |
ἡμικυκλίῳ ἡμέραι αἱ προγεγενημέναι τοῦ ἡλίου πορευομένου ἀπὸ τροπῶν χειμερινῶν μακρότεραι ἔσονται τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν , νύκτες | ||
, ὡς ἔν τισιν , ἔχει τὸν τρόπον τοῦτον : μακρότεραι τέρψιες ἕψονται ἐρίτιμοί τ ' ἀοιδαί . εἰ δὲ |
σὴν ὑπόστασιν ἐξ ἀιδίου καὶ τὴν τούτου σύμβασιν . Εἴτε ἄτομοι εἴτε φύσις , πρῶτον κείσθω ὅτι μέρος εἰμὶ τοῦ | ||
ὅλον [ ] ἰσοταχεῖς [ εἰσιν ] [ ] αἱ ἄτομοι λέγειν [ ] δ ' [ ἔστιν ] ε |
ἐστι τὸν ὑπὸ αου καὶ γου μετὰ συναμφοτέρου : ποιεῖ ΔΥא ρμδ # Μο α : ταῦτα ἴσα Μο κδ | ||
δοθέντος ἀριθμοῦ , τουτέστιν ʂא γ . Μο Ϛ # ΔΥא ι [ ἴσ . ⃞ῳ ] , καὶ ϚκιϚ |
εὑρέσεις , αἱ δὲ εὑρέσεις οὐ περιέχουσι τὰ κεφάλαια ἀλλὰ περιέχονται . Καὶ τὸ πάντων μέγιστον , ὅτι τὰ μὲν | ||
εἰ ἀσώματοί εἰσι μόνως οἱ θεοί ; ὅτι δὴ οὐ περιέχονται ὑπὸ τῶν σωμάτων , φαμὲν ἡμεῖς , ἀλλὰ ταῖς |
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ ' | ||
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
τῆς γῆς ἑξηκοστῶν μὲν λʹ σταδίων μυριάδων δὲ ιβʹ καὶ ͵Ϛ . καλοῦνται δὲ οἱ μὲν ἐπὶ τοῦ αὐτοῦ ἡμισφαιρίου | ||
ἀρχῆς στερεόν , αἱ ἄρα μυριάδες ρʹ ἐπὶ τὰς μονάδας ͵Ϛ γενόμεναι ποιοῦσιν μυριάδας ξʹ διπλᾶς , ὥστε ὁ ἐκ |
τὰς ἑπτὰ χιλιάδας , ἵνα μή τοι ἐπιδευέες ἔωσι αἱ τετρακόσιαι μυριάδες ἑπτὰ χιλιάδων , ἀλλὰ ᾖ τοι ἀπαρτιλογίη ὑπ | ||
τῇ τοῦ Διονύσου πομπῇ διενεχθέντων . Εἶτ ' ἀργυρωμάτων ἅμαξαι τετρακόσιαι , καὶ χρυσωμάτων εἴκοσι , ἀρωμάτων δὲ ὀκτακόσιαι . |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
γνώσεων αἱ μὲν πρακτικαὶ αἱ δὲ θεωρητικαί , ἄμφω δὲ πεπερασμέναι . αἵ τε γὰρ πρακτικαί , ἐπεὶ πᾶσαι ἑτέρων | ||
ἀριθμὸν δὲ οὔ , ἢ καὶ κατ ' ἀριθμόν εἰσι πεπερασμέναι , ὡς εἶναι ἓν κατ ' ἀριθμὸν τὸ ποιητικὸν |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
ὢν καὶ τροπῇ τοῦ δ εἰς λ φειδωλός . αἱ περισσαὶ προθέσεις δηλοῦσι τὴν ὑπερβολὴ τῆς φιλαργυρίας . ὅρα ὑπερβολήν | ||
αὐτῶν δυνάμεις ἀντιπαίουσιν , ἄρτιαι μὲν οὖσαι περισσωνυμούντων ἐκείνων , περισσαὶ δὲ ἀρτιωνυμούντων . καὶ οὐ κατὰ τοῦτο μόνον ἀντικεῖσθαι |
: ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν | ||
Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
καὶ τοῦτο ἐγκωμιολογικόν . Τὸ εʹ ἰθυφαλλικόν , γʹ δηλονότι τροχαῖοι . ἐπὶ τῷ τέλει τὰ συνήθη σημεῖα . . | ||
μέτρον ἐπίτριτον οὐ καλῶς λέγουσιν : οὐ γάρ εἰσι δʹ τροχαῖοι , ἵν ' ᾖ ἐπίτριτον . Τὸ βʹ Ἰωνικὸν |
ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
. Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
ἐτύπητε , ἐτύπησαν . Ἑνικά . Ἐτυψάμην : οἱ μέσοι ἀόριστοι ἀπὸ τῶν ἐνεργητικῶν γίνονται προσόδῳ τῆς μην , ὁ | ||
τοῦ ι : ἀεὶ γὰρ οἱ ἀπὸ βαρυτόνων θεμάτων δεύτεροι ἀόριστοι βραχεῖαν θέλουσιν ἔχειν τὴν παραλήγουσαν . διὰ τοῦτο καὶ |
, φοινίκων # ε , μέλιτοϲ # ε , ὄξουϲ κοτύλαι β , κολυμβάδων # α , ϲχιϲτῶν δηλονότι : | ||
τὸ τεταρτημόριον τῆς χοίνικος καὶ τῷ ἤδη ἀπέφθῳ γεγενημένῳ δύο κοτύλαι μιχθεῖσαι ὕδατος καὶ ἐλαίου . χρήσαιο δ ' ἂν |
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
: πεντάκις γὰρ εʹ κεʹ , πεντάκις κεʹ ρκεʹ , ἑξάκις Ϛʹ λϚʹ , καὶ ἑξάκις λϚʹ σιϚʹ . τῶν | ||
τῆς ΕΖ τετράγωνον μονάδων οὔσης ἓξ γίνεται μονάδων λϚ : ἑξάκις γὰρ τὰ Ϛ λϚ . ἔστι δὲ καὶ τὸ |
. . . : πονηρὸν γὰρ εἰς ὑπόκρισιν αἱ μακραὶ περίοδοι καθάπερ καὶ παρὰ [ Δημητρίῳ ] [ ] κεῖται | ||
' ἡμέρα τε καὶ νὺξ ὀφθεῖσαι μῆνές τε καὶ ἐνιαυτῶν περίοδοι καὶ ἰσημερίαι καὶ τροπαὶ μεμηχάνηνται μὲν ἀριθμόν , χρόνου |
γὰρ αἱ ΑΒ , ΒΓ , ΓΑ καὶ ταύταις παραπλησίως λαμβανόμεναι ἀδιαφοροῦσιν εὐθειῶν . καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΒΓ | ||
τῶν ὅρων ὁ δὲ ἐν μέρει , ὅσαι ἐξ ὑπαρχουσῶν λαμβανόμεναι προτάσεων συζυγίαι ἐν τῷ τρίτῳ σχήματι συλλογιστικὰς ἐποίουν συμπλοκάς |
καὶ ἡ ἀόριστος δυάς , ἧς κατὰ μετοχὴν αἱ ὡρισμέναι δυάδες εἰσὶ δυάδες . Καὶ ὅτι ταῖς ἀληθείαις αὗταί εἰσι | ||
καὶ ἡ ἀόριστος δυάς , ἧς κατὰ μετοχὴν αἱ ὡρισμέναι δυάδες εἰσὶ δυάδες . πρὸς δὲ τούτοις ἔτι μᾶλλον αἱ |
καὶ μέγας ἔδοξεν . Τοῦ βʹ εἴδους τῶν Πυθίων αἱ στροφαὶ καὶ ἀντιστροφαὶ κώλων ἑκάστη ιηʹ . Τὸ αʹ τροχαϊκὸν | ||
ποιῶσι τοὺς ὕμνους καὶ παιᾶνας τοῖς θεοῖς . αἱ δὲ στροφαὶ ἢ περίοδοι ἀπεπλήρωσαν τὸ πᾶν . καὶ Δᾶλον ἀμφιρρύταν |
καὶ τὸ ἐναντίον : τῶν δὲ τοιούτων ἑνωτικαί πως αἱ ἁρμονίαι , μεταξὺ δὲ ἀέρος καὶ πυρὸς πειθώ : κατ | ||
ἑκατέρῳ τῶν στίχων : ἔπειτα πᾶσαι διαβεβήκασιν αἱ τῶν ὀνομάτων ἁρμονίαι διαβάσεις εὐμεγέθεις καὶ διεστήκασι πάνυ αἰσθητῶς , ἢ τῶν |
συμπληροῦντα τὴν ἀρίστην μαῖαν εἰπεῖν ἀναγκαῖον , ἵνα αἱ μὲν ἄρισται γινώσκωσιν ἑαυτάς , αἱ δὲ ἀρτιμαθεῖς ὡς εἰς ἀρχετύπους | ||
δὲ ἄλλαι αἱ ἐς τὰ κάτω τρεπόμεναι πᾶσαι ἀγαθαί : ἄρισται δὲ καὶ ἐνταῦθα πολλῷ αἱ αἱματηρόταται . Ὁκόσοι δὲ |
ἐκκειμένων τῶν εὐτάκτων ἐπιμορίων γεννῶνται διὰ τῶν αὐτῶν προσταγμάτων οἱ πολλαπλασιεπιμόριοι : διπλασιεφήμισυς μὲν ἐκ τοῦ πρώτου ἡμιολίου , διπλασιεπίτριτος | ||
' ἐπιτριμερὴς καὶ ἐπιτετραμερὴς καὶ ἑξῆς ἀκολούθως : αἱ δὲ πολλαπλασιεπιμόριοι ἀντιπεπονθότως δὶς μὲν τὸ μέτρον προσβάλλουσι πληρούντως , ἓν |
λόγος ἀποδοθῇ , καταριθμεῖσθαι πρὸς ὑμᾶς ὡς ἄρα τῇ πόλει τέτταρες ἤδη γεγένηνται καιροὶ ἐν οἷς αὐτὸς πεπολίτευται . Ὧν | ||
τῶν προειρημένων νήσων . κατὰ δὲ τὸν ἐκ Τροίας ἀπόπλουν τέτταρες τῶν Ἀγαμέμνονος νεῶν ἐξέπεσον περὶ Κάλυδναν , καὶ τοῖς |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
αὐτὸ μέρος τοῦ τῶν γωνιῶν κανόνος ἐπισκεψόμεθα τὰς παρακειμένας τῷ ἀριθμῷ τῶν ὡρῶν μοίρας , ἐὰν μὲν πρὸ τοῦ μεσημβρινοῦ | ||
διαφέρον : τὸ οὖν γένος κατηγορεῖται κατὰ πολλῶν διαφερόντων τῷ ἀριθμῷ καὶ τῷ εἴδει . ἐδείχθη οὖν ὅτι μόνον τὸ |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
ὅτι δέκα δικαστήρια ἦσαν ἐν Ἀθήναις , ἐπεὶ καὶ δέκα φυλαί : τούτων δὲ μία ἦν καὶ ἡ Ἡλιαία . | ||
βλέπειν δυναμένοις ἀγαθῶν τῶν ἐθνικῶν ἐναργῆ σημεῖα καὶ δείγματα : φυλαί τε γάρ εἰσι τοῦ ἔθνους δώδεκα , ὧν ἑκάστη |
ἐστιν ὁ ἀστήρ , διδοὺς ἑκάστῳ ζῳδίῳ μοίρας λ , καταλείπονται κγ . λέγομεν εἶναι τὸ δωδεκατημόριον τοῦ Ἑρμοῦ Λέοντος | ||
ἴσαι : οὕτω δὲ μᾶλλον : αἵδε αἱ τοῦ ἰσοσκελοῦς καταλείπονται ἀπὸ ἴσων ἴσων ἀφῃρημένων : πάντα τὰ καταλειπόμενα μετὰ |