τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
ἐπειδὴ διὰ τοῦ λόγου τῶν μέσων κινήσεων ἐπιβάλλουσιν περιοδικοῦ μήκους μοῖραι κ νη κα , ταύταις μὲν ἀντὶ τῶν κα | ||
καὶ τὰς τοῦ ὡροσκόπου μοίρας ια . ὁμοῦ αἱ πᾶσαι μοῖραι τμα : ἀπολύσομεν ἀπὸ τοῦ Λέοντος , κατέληξεν ἐν |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππωι πθʹ . Ἀπὸ τροπῶν | ||
πθʹ . Περὶ τυροῦ . Ϙʹ . Περὶ ἰχθύων . Ϙαʹ . Περὶ ὀϲτρακοδέρμων . Ϙβʹ . Περὶ μαλακίων . |
, μίαν δὲ αὐτῶν ἴσην τῇ Ε . Ὅσον γὰρ ὑπερέχουσιν αἱ ΑΒ ΒΓ τῆς Ε , ἔστω ἡ Ζ | ||
: παροιμία ἐπὶ τῶν τολμώντων τὶ λέγειν ἐπὶ τοῖς τοσοῦτον ὑπερέχουσιν , ὅσον οἱ θεοὶ τῶν ἀνθρώπων . Καὶ τόπος |
τῶν ἰγνύων καὶ ἀπὸ τῶν σφυρῶν ἔσωθεν . Αἱ δὲ τρίται φλέβες ἐκ τῶν κροτάφων διὰ τοῦ αὐχένος ἐπὶ τὰς | ||
[ οὐδὲ ] προσεχῶς ἀπὸ τῆς Νυκτός εἰσιν , ἀλλὰ τρίται καὶ πολλοσταὶ ἀπ ' ἐκείνης . Πρὸς δὴ τοῦτο |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
τοῦ οὐρανοῦ καὶ τὰ πύρινα πνεύματα . Αὗταί εἰσιν αἱ ὀνομασίαι τῶν ὡρῶν , ἃς ἐποίησεν ὁ θεὸς ἐν ταῖς | ||
δρόμον , τὴν αὐτὴν πορείαν ἰσοχρόνως [ ] , τῆι ὀνομασίαι διαλλάσσων . Στίλβων [ ὁ Ἑρμοῦ ] τὴν ἕλικα |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
ἐπιπαρουσίας ἐπιχρησιμεύουσιν οἵδε : πάντα τὰ κέντρα καὶ αἱ τούτων ἐπαναφοραὶ καὶ τὸ ἕκτον ἀπὸ ὡροσκόπου , προκεκριμένου μέντοι γε | ||
τι καὶ μὴ ἀκμαῖον εἶναι μηδὲ λαμπρόν . αἱ μέντοι ἐπαναφοραὶ εἰ κατὰ κόμμα γίνοιντο , γοργὸν ποιοῦσι τὸν λόγον |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
προηγούμενα τῶν ζῳδίων μοίρας ια θ , αἷς ὑπερέχουσιν αἱ διπλασίονες τῆς ἀποχῆς μοῖραι κδ κγ τὰς τοῦ πλάτους ιγ | ||
Τούτοις προστεθέντος καὶ τοῦ τρίτου , γίνονται οἱ τρεῖς ὁμοῦ διπλασίονες τοῦ τρίτου καὶ ἔτι ὑπερέχοντες μονάδων κ . Ἐὰν |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' | ||
, ἀνακήρυξις , ἀνάρρησις , ἀναγγελία καὶ μὴν καὶ αἱ λοιπαὶ τιμαί , δωρεαί , γέρα , προτιμήσεις , χάριτες |
δανειζομένου , ἐκ δὲ τῶν ὠφελούντων ἢ βλαπτόντων ἀστέρων αἱ προαγορεύσεις ἀκολούθως ἕπονται . τινὲς δὲ ἐπισκέπτουσι τὸν Ἥλιον καὶ | ||
τῶν ἀποτελεσμάτων ἔκβασιν , καὶ ἀφ ' ὧν μάλιστα τὰς προαγορεύσεις ποιοῦνται , τέσσαρά φασιν εἶναι τὸν ἀριθμόν , ἅπερ |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
δεξιὸν κατ ' ὦμον : δύο γάρ εἰσιν ἐνταῦθα ἰωνικαὶ συζυγίαι καὶ μετὰ ταῦτα τὸ ἰθυφαλλικὸν καλούμενον μέτρον ἐκ τριῶν | ||
διάλεκτον ἀναγκαίοις , γλώττῃ καὶ φάρυγγι καὶ λάρυγγι , καὶ συζυγίαι τρεῖς εἰσιν ἀδενωδῶν σωμάτων ἐπιτήδειον ὑγρότητα παρασκευάζουσαι , ἀλλ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
ηʹ Ἄμωσις ἔτη μδʹ . θʹ Ψαμμεχερίτης μῆνας Ϛʹ . Ὁμοῦ ἔτη ρνʹ καὶ μῆνας Ϛʹ . : Ἕκτη καὶ | ||
μεγάλης [ καὶ ] Καρίας ἕως Ἐφέσου στάδια ͵γπϘʹ . Ὁμοῦ ἀπὸ Γάγγου εἰς Ἔφεσον σταδίων μυριάδες δʹ καὶ ͵ζσϘʹ |
τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
πόλους κλίμασι στρεφομένου τοῦ κόσμου . Ἑτερόσκιοι δέ εἰσιν αἱ εὔκρατοι , ἐπεί , ὅταν περὶ μεσημβρίαν γένηται ὁ ἥλιος | ||
ὑπαγορεύουσιν εἰς μίαν τοῦ περιέχοντος φύσιν συναγόμεναι , αἵ τε εὔκρατοι παραπλησίως εἰς μίαν τὴν μεσότητα ἄγονται , εἰς δὲ |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
. . . : πονηρὸν γὰρ εἰς ὑπόκρισιν αἱ μακραὶ περίοδοι καθάπερ καὶ παρὰ [ Δημητρίῳ ] [ ] κεῖται | ||
' ἡμέρα τε καὶ νὺξ ὀφθεῖσαι μῆνές τε καὶ ἐνιαυτῶν περίοδοι καὶ ἰσημερίαι καὶ τροπαὶ μεμηχάνηνται μὲν ἀριθμόν , χρόνου |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
καὶ μέγας ἔδοξεν . Τοῦ βʹ εἴδους τῶν Πυθίων αἱ στροφαὶ καὶ ἀντιστροφαὶ κώλων ἑκάστη ιηʹ . Τὸ αʹ τροχαϊκὸν | ||
ποιῶσι τοὺς ὕμνους καὶ παιᾶνας τοῖς θεοῖς . αἱ δὲ στροφαὶ ἢ περίοδοι ἀπεπλήρωσαν τὸ πᾶν . καὶ Δᾶλον ἀμφιρρύταν |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ | ||
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα |
ὅτι δέκα δικαστήρια ἦσαν ἐν Ἀθήναις , ἐπεὶ καὶ δέκα φυλαί : τούτων δὲ μία ἦν καὶ ἡ Ἡλιαία . | ||
βλέπειν δυναμένοις ἀγαθῶν τῶν ἐθνικῶν ἐναργῆ σημεῖα καὶ δείγματα : φυλαί τε γάρ εἰσι τοῦ ἔθνους δώδεκα , ὧν ἑκάστη |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
τὰ πέρατα ἐπέχει μοίρας ιδʹ γοʹʹ μβʹ ∠ ʹʹ καὶ ιϚʹ μγʹ καὶ ἡ Ἰδουβέδα , ἧς τὰ πέρατα ἐπέχει | ||
χώρᾳ τὸν σπονδεῖον ἀλλ ' ἐν τῇ βʹ . Τὸ ιϚʹ ἐπιωνικὸν καθαρὸν δίμετρον ἀκατάληκτον , καθαρὰν ἰαμβικὴν ἔχον τὴν |
Αἴτνην ὁμώνυμον τῷ ὄρει . συνέβη δὲ νικήσαντα αὐτὸν τὴν οηʹ Ὀλυμπιάδα ἐν ταύτῃ τελευτῆσαι . τὸ δὲ ὄνομα τοῦ | ||
τοῦ δὲ τοῦ Ἑρμοῦ ἡμέρας μὲν ξϚʹ , νυκτὸς δὲ οηʹ . γίνεται τὸ πᾶν τξʹ . τούτων μὲν οὖν |
συμπέρασμα αἱ τοῦ ἐνδεχομένου προτάσεις ἐν δευτέρῳ σχήματι , ἐνδεχόμενον συνάγουσιν , ἐπεὶ ἀμφότεραί εἰσιν ἐνδεχόμεναι : καὶ τοῦτο πάντως | ||
ἀπεδείξαμεν γάρ , ὅτι αἱ δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς |
ΤΗ ἴσαι εἰσίν , ἄνισοι ἄρα εἰσὶν αἱ ΡΩ ΩΟ ἀρχόμεναι ἀπὸ μεγίστης τῆς ΡΩ . πάλιν ἐπεὶ αἱ ΘΨΚ | ||
αἱ ΖΛ , ΛΞ , ΞΓ ἄρα μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΛ . διὰ τὰ αὐτὰ δὴ |
ἐν τῇ θαλάσσῃ νῆσοι πετρώδεις οὐ πάνυ μεγάλαι δύο , ἀπέχουσαι ὀλίγον τῆς ἠπείρου . Ὁμοῦ ἀπὸ τοῦ στομίου τῆς | ||
αἱ ΘΚ , ΛΚ , ἐν ἴσῳ δὲ αἱ ἴσον ἀπέχουσαι τοῦ ἰσημερινοῦ καὶ δύνουσι καὶ ἀνατέλλουσιν . . . |
, τούτωι δεύτερος τρίτου ὑπερέχει . καὶ ἐν ταύται τᾶι ἀναλογίαι συμπίπτει ἦιμεν τὸ τῶν μειζόνων ὅρων διάστημα μεῖον , | ||
ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ δὲ |
καὶ τὰ λίαν δὲ ψυχρὰ τῶν ὑδάτων καὶ οἱ λίαν κατάψυχροι τόποι ἄγονοι . ἔστιν οὖν τις ἀνεκλάλητος καὶ ὡρισμένη | ||
κακούργων προπετῶν καὶ * * αἱ δὲ ἑξῆς εʹ Κρόνου κατάψυχροι στειρώδεις βάσκανοι ἐπισινεῖς . Ταύρου δὲ αἱ μὲν πρῶται |
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
: αἱ δέ γε παρ ' ἡμῶν ῥηθεῖσαι πᾶσαι ὧραι ἰσημεριναί εἰσιν . Ὑπόδειγμα τῆς τοιαύτης χρήσεως . κατήντησεν ἔτος | ||
ἀπὸ τοῦ μεσημβρινοῦ Ἰχθύων ἀρχῆς . καὶ ἐπεὶ ζ ὧραι ἰσημεριναί εἰσιν κατὰ τὸ διὰ Ῥόδου κλίμα , χωρὶς τοῦ |
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
τῶν Αἰγινητῶν . τάχει ] τῷ . ἤγουν σζʹ ἢ σιδʹ . . κατὰ κοινοῦ τὸ δίς , ἵν ' | ||
Καρκίνου ιεʹ ἕως τῆς τοῦ Αἰγόκερω ιεʹ : συνάγονται ἀναφοραὶ σιδʹ : τούτων τὸ ἥμισυ ρζʹ . ταύταις προσθεὶς τὰς |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
ἔτυπε Δυ . ἐτύπετον ἐτυπέτην Πληθ . ἐτύπομεν ἐτύπετε ἔτυπον Μέλλοντοϲ αʹ Ἑν . τύψω τύψειϲ τύψει Δυ . τύψετον | ||
τύποι Δυ . τύποιτον τυποίτην Πληθ . τύποιμεν τύποιτε τύποιεν Μέλλοντοϲ αʹ Ἑν . τύψοιμι τύψοιϲ τύψοι Δυ . τύψοιτον |
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ | ||
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ . |
καὶ ὥρας κ , μοίρας δὲ ὁμοίως λδ λδ : συνάγονται δὲ καὶ τῆς μέσης κατὰ μῆκος παρόδου κατὰ τὸ | ||
οὗτοι ἐξ ὑποθέσεώς τέ εἰσι καὶ διά τινος τῶν σχημάτων συνάγονται . ἐξ ὑποθέσεως μὲν οὖν εἰσιν , ὅτι , |
τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον | ||
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς |
ἡμικυκλίῳ ἡμέραι αἱ προγεγενημέναι τοῦ ἡλίου πορευομένου ἀπὸ τροπῶν χειμερινῶν μακρότεραι ἔσονται τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν , νύκτες | ||
, ὡς ἔν τισιν , ἔχει τὸν τρόπον τοῦτον : μακρότεραι τέρψιες ἕψονται ἐρίτιμοί τ ' ἀοιδαί . εἰ δὲ |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ στεγνοί : καὶ οἱ σφυγμοὶ | ||
συνεπιμερίζων ὑπάρχουσι κατὰ πῆξιν ἐν δισώμῳ ζῳδίῳ , πολλάκις αἱ σημασίαι αὐτῶν ἀνακαινίζονται : εἰ δὲ ἐν τροπικῷ εἴησαν ζῳδίῳ |
ὁ πλείων καὶ τοῦ πέριξ ἦχος . Πῶς γὰρ ἂν σύμφωνοι ἐγίγνοντό τινες φθόγγοι εἰ μὴ ἰσότης ἦν ; ἀσύγκριτον | ||
, ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ τούτοις δὲ καὶ |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
δὲ χρῶνται καὶ μαχαίραις καὶ θώραξι καὶ σαγάρεσι χαλκαῖς , ζῶναι δὲ αὐτοῖς εἰσι χρυσαῖ καὶ διαδήματα ἐν ταῖς μάχαις | ||
ἐν τῷ Ἑρμῇ ταύτῃ διηκρίβωσεν εἰπών : Πέντε δέ οἱ ζῶναι περιηγέες ἐσπείρηνται : αἱ δύο μὲν γλαυκοῖο κελαινότεραι κυάνοιο |
ὑπὸ τοῦ ζῳδιακοῦ ἐπὶ τὰ πρὸς ἄρκτους , ἐκείνων αἱ ἑῷαι δύσεις τῶν ἑῴων ἐπιτολῶν προηγοῦνται , ὅσα δὲ ἀπολαμβάνεται | ||
ἑῴα . Τῶν δ ' ἄλλων αἱ πλεῖσται τῶν ὀνομαζομένων ἑῷαι οἷον Πλειάδος καὶ Ὠρίωνος καὶ κυνός . Τῶν δὲ |
ἔπη † ἐπὶ † τὸ θέατρον παραβῆναι . Θεοπόμπου δράματα ιζʹ . Στράττιδος δράματα ιϚʹ . Φερεκράτους δράματα ιηʹ . | ||
διεδέξατο Βαλεάζωρος , βιώσας ἔτη μγʹ , ὃς ἐβασίλευσεν ἔτη ιζʹ . μετὰ τοῦτον Ἀβδάστρατος , ὃς βιώσας ἔτη κθʹ |
ὅλου σὺν τῷ προσκειμένῳ καὶ ὁ ἀπὸ τοῦ προσκειμένου οἱ συναμφότεροι τετράγωνοι διπλάσιοί εἰσι τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου καὶ | ||
ἱππεὶς μὲν ἀμφὶ τοὺς πεντακισχιλίους , ὁπλῖται δὲ καὶ πεζοὶ συναμφότεροι δισμύριοι . ὁ δὲ Λογχάτης ἀγνοούμενος παρελθὼν ἐς τὸν |
ἐν τῷ χειμῶνι , αἱ δὲ γυναῖκες τῷ θέρει . χρόνοι δὲ ἱστάμενοι ταῖς κυούσαις καθάπερ τοῖς ἄλλοις ζῴοις οὐκ | ||
παρ ' οὗ [ καὶ ] οἱ καιροὶ καὶ οἱ χρόνοι . Πλὴν αἴτιον οὐ πάντων ἀλλὰ μόνων ἀγαθῶν καὶ |
λοιπὰς ιη κ τοῦ Σκορπίου ἔσχον ἀρχὴν μὲν τοῦ μεσουρανοῦντος δωδεκατημορίου , τέλος δὲ τοῦ καλουμένου θεοῦ . ταῖς δὲ | ||
καὶ μοίρας ὀνομάσαντες : καὶ τόπον μὲν ὑποτιθέμενοι τὸ τοῦ δωδεκατημορίου δωδεκατημόριον , τουτέστι μοίρας βʹ ἥμισυ καὶ διδόντες αὐτοῦ |
πρὸς τὴν ΛΓ , διὰ τὸ νῦν ἄρα δειχθὲν τοῦ ογʹ τὸ πρῶτον λόγος τοῦ ΓΜ πρὸς τὸ ΕΗ δοθείς | ||
ἐν τῷ γʹ ὅρῳ ἔτη ογʹ : καὶ ἐτελεύτησεν τῷ ογʹ ἔτει . εἰ δὲ ὁ τῆς Σελήνης γνώμων ὑπερεῖχεν |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |
αἱ ἄλλαι τέχναι καὶ ἐπιστῆμαι : ἀλλὰ μὴν ἐκεῖναι οὐ περιτταί , καὶ τοῦτο δῆλον , ὅτι , ἐὰν ἐκεῖναι | ||
ἡ ῥητορικὴ , ἢ αὐτὴ περιττὴ τυγχάνει ἢ ἄλλαι τέχναι περιτταί : ἐρωτηθεὶς δέ τις τὸ πῶς ἐπίσταται ταῦτα ἡ |
παισὶν ἀρχὴν συγκαθεῖλε τὴν Πριάμου , γενεαὶ δὲ ἀπὸ Θόαντος ἀνήκουσιν ἓξ ἐς Αἰτωλὸν τὸν Ἐνδυμίωνος . ἦσαν δὲ οἱ | ||
, παραβαινομένων δὲ τῷ χρόνῳ ἐς τὸν θάνατον αἱ πολλαὶ ἀνήκουσιν : καὶ τοῦτο ὅμως παραβαίνεται . ἢ τοίνυν δεινότερόν |
δὲ ΒΕ τῇ ΔΖ . αἱ δὲ ΑΕ , ΕΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι : καὶ αἱ ΓΖ , | ||
πλειόνων ἄκρων . διὰ γὰρ τοῦτο ἡ ψυχὴ καὶ αἱ μέσαι φύσεις πᾶσαι πλείοσι μαθήμασιν ἀναδιδάσκονται , ὡς πρὸς πλείονας |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
, τὰ δὲ πέρατα ἐπὶ μασχάλην ἀπαθῆ . Κεφ . οθʹ . Ἡ μεσότης ὑπὸ μασχάλην βραχίονος πεπονθότος αἱ ἀρχαὶ | ||
τῶν ρηʹ ἐτῶν νδʹ καὶ τὰς ἐλαχίστας κεʹ : γίνονται οθʹ . τῷ δὲ Ἄρει τῆς αὐτῆς αἱρέσεως ὄντι ἡ |
ὑποτείνουσαν ιζ . ἔστιν οὖν τὸ ἀπὸ τῆς ὑποτεινούσης τετράγωνον σπθ . ἀλλὰ καὶ τὸ ἀπὸ τῆς καθέτου μετὰ τοῦ | ||
σπϚ Μυρίκη σπζ Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ |
καὶ τοῦτο ἐγκωμιολογικόν . Τὸ εʹ ἰθυφαλλικόν , γʹ δηλονότι τροχαῖοι . ἐπὶ τῷ τέλει τὰ συνήθη σημεῖα . . | ||
μέτρον ἐπίτριτον οὐ καλῶς λέγουσιν : οὐ γάρ εἰσι δʹ τροχαῖοι , ἵν ' ᾖ ἐπίτριτον . Τὸ βʹ Ἰωνικὸν |
δέ τινες ἐν ἀριθμητικῇ λόγοι ἀριθμῶν οὐ μόνον πολλαπλάσιοι καὶ ἐπιμόριοι , ἀλλὰ καὶ ἐπιμερεῖς καὶ πολλαπλασιεπιμερεῖς καὶ ἔτι πλείους | ||
τεθέντων [ αʹ αʹ αʹ ] καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
Καλλίππωι Ϙβʹ . Ἀπὸ ἰσημερίας μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , | ||
, ποτῷ τε ὡς ἐλαχίστῳ χρέεσθαι , μέχρις ἂν ἑπτὰ ἡμέραι παρέλθωσιν . Καὶ ἢν μὲν οὕτως ἐθέλωσιν ἰέναι : |
ἐν νυκτί . ἐπισημαίνεται δὲ τοῦτο Ἄρατος λέγων ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο : δυωδεκάδες γὰρ εἶπε τὰ δωδεκατημόρια τῶν | ||
δὲ , τὴν πρώτιστον δὲ ταύτης Ὑάδες σὺν τῷ Λαγωῷ δύνουσι πρὸς τὸν ὄρθρον , καὶ τὴν δευτέραν τὸ αὐτὸ |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
τὸ ξηρὸν ἐν τῷ ἀφεψήματι καταιόνησον ἑπτάκις τῆς ἡμέρας ἐξ ὡριαίου διαστήματος , τῇ δ ' ἐπιούσῃ ἕτερον ὁμοίως σκευάσας | ||
μέρος ἐστὶ τοῦ δρόμου , καὶ τοῦτο ἐκκρούειν ἐκ τοῦ ὡριαίου μεγέθους . Ἄλλως . Ἐπεξεύρομεν δὲ καὶ ἄλλως τὸ |
, Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη | ||
ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα : |
τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
. Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
καὶ ἐνδεχόμενα , ἔτη νομιζέσθω : ἐὰν δὲ πολλά , μῆνες : ἐὰν δὲ ὑπέρμετρα , ἡμέραι . ἀναστρέφει δὲ | ||
θʹ : Ἡλίου ἔτη ιθʹ , τὸ τέταρτον ἔτη δʹ μῆνες θʹ . Ἀφροδίτης ἔτη ηʹ , τὸ τέταρτον ἔτη |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
περὶ τὸ ὂν ᾗ ὂν στρεφομένῳ . τίνες οὖν αἱ κατασκευαὶ τοῦ ταὐτὸν εἶναι τὸ ἓν καὶ τὸ ὄν ; | ||
τὰ ὑφ ' ἑκάστου πραχθέντα . ἑξῆς δὲ κατετάχθησαν αἱ κατασκευαὶ τῶν πυραμίδων τῶν ἀναγραφομένων ἐν τοῖς ἑπτὰ θαυμαζομένοις ἔργοις |
τῆς ΚΒ εὐθείας , ἴσον ἀεὶ φανεῖται τὸ ὁρώμενον . λγʹ . Ἴσον δὲ ἀεὶ τοῦ ὄμματος ἀπὸ τοῦ κώνου | ||
τούτου ἔτος δʹ , ζʹ , ιαʹ , κβʹ , λγʹ , μϚʹ , νβʹ , ξγʹ , οβʹ : |
προτεταγμένοις ἔτη ͵αχλθʹ τῶν ὀκτὼ δυναστειῶν . : Ὀγδόη δυναστεία Μεμφιτῶν βασιλέων πέντε , οἳ ἐβασίλευσαν ἔτη ἑκατόν . Γίνονται | ||
καὶ τὰ παρ ' ἐκείνων παραγράφεται . Ὅτι ἀπὸ τοῦ Μεμφιτῶν ἄστεος εἰς τὴν Θηβαΐδα πέντε εἰσὶ μεταξὺ νομοὶ ἐθνῶν |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
θαλασσίας . ἦν δὲ λέβης χαλκοῦς , εἰς ὃν αἱ ψῆφοι κατήγοντο : καὶ κυλιόμεναι ἦχον ἀπετέλουν ἐοικότα βροντῇ . | ||
, καθαιροῦσι τὸ κρέσσον : ἐν ἀναισθήτοισι γάρ εἰσιν αἱ ψῆφοι : οὔτε δ ' οἱ πάσχοντες συνομολογέειν ἐθέλουσιν , |
σύγκειται ἀλλήλοις ἤγουν μέμικται ἢ κατὰ παράθεσιν ἅπτεται μόνον , ἕψονται πολλὰ ἄτοπα : τὰ γὰρ τοιαῦτα δύνανται καὶ χωρισθῆναι | ||
ἕψονται ἕως μελιτώδους συστάσεως : εἶτα τοῦ χυλοῦ λι εʹ ἕψονται σὺν ἐλαίῳ παλαιῷ λι δʹ ςʹʹ ἕως μέτριον καταλειφθῇ |