μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ
δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν
7892281 ἀναφοραι
τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν .
εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι
7768409 βγ
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ ,
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ
7540767 δωδεκατημοριοις
καὶ ταῦτα εἰς τριάκοντα μοίρας διαιρεθῇ παραπλησίως τοῖς τοῦ ζῳδιακοῦ δωδεκατημορίοις , ἑκάστη γενήσεται μοῖρα μυριάδων ρηʹ τρίτου . Τὰ
ἢ ἀκρονύκτους φάσεις ποιῶνται , συσχηματιζόμενοι τοῖς τὴν αἰτίαν ἔχουσι δωδεκατημορίοις , ἐπειδήπερ ἀνατέλλοντες μὲν ἢ στηρίζοντες ἐπιτάσεις ποιοῦνται τῶν
7475771 αβ
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα
7390987 ἡμισους
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ :
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ
7328476 τετραπλασιοι
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς ,
7315364 βδ
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα
7211350 γιγνωσκομενης
ἐστὶ τῇ τοῦ κατὰ διάμετρον ζῳδίου καταδύσει . Τῆς ὑπεροχῆς γιγνωσκομένης ᾗ ὑπερέχουσιν ἀλλήλων αἱ τῶν ἑξῆς δωδεκατημορίων τοῦ ζῳδιακοῦ
, καὶ τούτων ἐξ ἑαυτῶν , μὴ καταλαμβανομένης τῆς ῥύσεως γιγνωσκομένης . πῶς οὖν εὔλογον φαίνεσθαι αὐτὴν λέγειν ; καὶ
7188238 τριπλασιοις
μεγέθεσιν ἢ βάρεσιν ἢ χρόνοις ἤ τισιν ἄλλοις διπλασίοις ἢ τριπλασίοις ἤ τισι τοιούτοις πολλαπλασίοις ἢ ἐπιμορίοις ] . γεωμετρικὴ
: ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε καὶ τετράγωνός
7143325 ἐλαττονες
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων .
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ
7127355 λειψις
ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια : λοιποὶ ʂ
ταῦτα ἴσα ʂ α Μο κ . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια . λοιποὶ ʂ
7105434 τριπλασιοι
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί
7102432 γδ
, τοιούτων ἐστὶ τὸ γδ τεσσάρων , οἵων δὲ τὸ γδ τεσσάρων , τοιούτων τὸ εζ τριῶν , καὶ οἵων
τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ τὸ αη ἄρα τοῦ εζ ἐστι τριπλάσιον
7044115 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
7023436 αγ
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς
7006197 ἐπιτριτοι
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ
6998238 δβ
δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ ,
δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν
6987202 ἀνατελλουσι
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω -
6976128 τριπλασιων
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ
6956774 τριγωνοι
. τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας
ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι
6945147 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6938143 συναμφοτερῳ
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ
6935599 ΡΒ
ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς
καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ
6915839 διπλασιοις
ἔχει προνομίαν : ἀεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος ἐν διπλασίοις ἢ τριπλασίοις ἢ συνόλως ἀναλογοῦσιν ἕβδομος ἀριθμὸς κύβος τε
καὶ τετράγωνοί εἰσι , δῆλον οὕτως . ἐν μὲν τοῖς διπλασίοις , κειμένων πλειόνων ἀριθμῶν οἷον αʹ βʹ γʹ δʹ
6909718 τετραγωνοις
ἀπὸ τοῦ ὅλου τετράγωνος ἴσος ἐστὶ τοῖς ἀπὸ τῶν μερῶν τετραγώνοις καὶ τῷ δὶς ἐκ τῶν μερῶν ἐπιπέδῳ . Ἀριθμὸς
τῆς ὅλης τετράγωνον ἴσον ἐστὶ τοῖς τε ἀπὸ τῶν τμημάτων τετραγώνοις καὶ τῷ δὶς ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ :
6905176 ἐπιτεταρτοι
δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία
χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ
6899764 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6893448 νοτιωτεροι
δύναμιν διαρρέουσαν συνιστᾶσιν , εὐαισθησίας δὲ ποιητικοί : οἱ δὲ νοτιώτεροι συμπληρωτικοὶ κεφαλῆς καὶ τῶν αἰσθητηρίων ἀμβλυντικοί , κοιλίαν δὲ
γνωριζομένων : ἤδη δὲ τἀπέκεινα διὰ ψῦχος ἀοίκητά ἐστι . νοτιώτεροι δὲ τούτων καὶ οἱ ὑπὲρ τῆς Μαιώτιδος Σαυρομάται καὶ
6878759 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6866720 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
6849619 ὁποτερασουν
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ .
6842581 ἰσοι
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς
6840910 πολλαπλασιων
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα
6839890 ἀρχομεναι
ΤΗ ἴσαι εἰσίν , ἄνισοι ἄρα εἰσὶν αἱ ΡΩ ΩΟ ἀρχόμεναι ἀπὸ μεγίστης τῆς ΡΩ . πάλιν ἐπεὶ αἱ ΘΨΚ
αἱ ΖΛ , ΛΞ , ΞΓ ἄρα μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΛ . διὰ τὰ αὐτὰ δὴ
6835084 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
6828597 διαμετρων
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς
6819529 ὁμοταγεις
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται
6814774 τετραπλασιων
ἐκ δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω
καὶ ὀκτάδος οὐκ ἔσται ῥυθμός : οὐ γὰρ ἔρρυθμος ὁ τετραπλασίων λόγος , ὥστ ' οὐδὲ ὁ δεκάσημος ἔσται ἐκ
6814287 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
6807290 γνωμονων
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται
6786960 ἀφῃρησθω
μονάδες ρ , οἵτινές εἰσιν ἴσοι μονάσι ρκ . Καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια , ἤτοι ἀπὸ ἴσων ἴσα .
λοιπὸς περισσὸς ἔσται . Ἀπὸ γὰρ ἀρτίου τοῦ ΑΒ περισσὸς ἀφῃρήσθω ὁ ΒΓ : λέγω , ὅτι ὁ λοιπὸς ὁ
6771884 ἐπογδοων
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν
6771184 ὁσοιδηποτουν
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι ,
6762716 ἐκκειμενων
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν
6761390 ἐπιπεδοις
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν
6751563 τροχαιοι
καὶ τοῦτο ἐγκωμιολογικόν . Τὸ εʹ ἰθυφαλλικόν , γʹ δηλονότι τροχαῖοι . ἐπὶ τῷ τέλει τὰ συνήθη σημεῖα . .
μέτρον ἐπίτριτον οὐ καλῶς λέγουσιν : οὐ γάρ εἰσι δʹ τροχαῖοι , ἵν ' ᾖ ἐπίτριτον . Τὸ βʹ Ἰωνικὸν
6742998 νοτιωτερος
τοῦ τροπικοῦ , ὁ δὲ ἀριστερὸς τρίτῳ μέρει ἑνὸς ζῳδίου νοτιώτερός ἐστι τοῦ τροπικοῦ : ὁ μὲν γὰρ δεξιὸς ὦμος
ἀλεκτρυόνες ὑπεράγαν οὐκ ᾄδουσιν ἐν τοῖς ὑγροῖς χωρίοις καὶ ἔνθα νοτιώτερός ἐστιν ὁ ἀήρ . ψυχροὶ δὲ ἄρα ὄντες τὴν
6722863 διπλασιοι
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι
6714854 ἰσημεριων
τόπων ἐπίσκεψιν ἢ τῆς τοῦ ἡλίου κινήσεως τῆς ἀπὸ τῶν ἰσημεριῶν ἐπὶ τοὺς μέσους τῶν ἐκλείψεων χρόνους ἢ μὴ ἀληθῶς
' ἡμῶν κατὰ τὸ υξγʹ ἔτος ἀπὸ τῆς Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος
6714823 ΗΠ
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ
6713318 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6687765 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6659718 τμημασιν
τοσαύτην κατὰ πλάτος παραχώρησιν ὁ ἥλιος διορθοῦται πρὸς τοῖς ἰσημερινοῖς τμήμασιν τέταρτον μιᾶς μοίρας κατὰ μῆκος ἐπὶ τοῦ λοξοῦ κύκλου
] ὡς ὕλη , ἐπειδὴ δύναται χωρίζεσθαι ἐφ ' οἷς τμήμασιν ἐπιγίνεται τὸ τοῦ κύκλου εἶδος . τὰ γοῦν τμήματα
6651500 ΓΡ
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν
6641311 τεταρτων
πορθεῖσθαι ἀπὸ τῶν σῶν παίδων , ἁλωθήσεται δὲ ὑπὸ τῶν τετάρτων ἀπὸ σοῦ : ἔστι δὲ ὁ Πύρρος . ἅμα
πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ διπλασιεπιτετραμεροῦς πέμπτων ἐν ἐννάτῳ
6633478 ἰσαριθμοι
. ἄρτοι δὲ προτίθενται ταῖς ἑβδόμαις ἐπὶ τῆς ἱερᾶς τραπέζης ἰσάριθμοι τοῖς μησὶ τοῦ ἐνιαυτοῦ , δυσὶ θέμασιν ἀνὰ ἕξ
τὴν ἀνάρρυσιν ἐξῃτήσατο καὶ ἔλαβε ταύτην : πρὸς δὲ καὶ ἰσάριθμοι στατῆρες ὅσα καὶ ἔπη ταῖς βίβλοις ἐναπετέθησαν . Ὀππιανὸς
6611155 διαστημασι
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων ,
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι
6599635 ΛΡ
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων
6597321 περιφερειαι
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ ,
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις
6594022 προσκεισθω
ἴση ἐστὶν ἡ ΚΑ περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ
η . ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια :
6589361 ΚΡΛ
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ
6583660 πενταγωνοις
τις πρόληψίς ἐστιν εἰς ἐγγραφὴν καὶ περιγραφὴν πενταγώνων καὶ ἐν πενταγώνοις τῷ στοιχειωτῇ συμβαλλόμενον . ἐδείχθη τῆς μὲν ὑπὸ ΖΚΓ
τῆς ΚΛ . καὶ ὑπόκειται κʹ τρίγωνα τὰ ΔΕΖ ιβʹ πενταγώνοις τοῖς ΑΒΓ ἴσα : μεῖζον ἄρα τὸ εἰκοσάεδρον τοῦ
6567697 ὀκτακις
αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ
ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους .
6564097 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
6562559 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
6556538 μεσουρανουσης
ταῖς θέσεσιν . πρῶτον μὲν ὡς ὡροσκοποῦντος τοῦ ἀφέτου , μεσουρανούσης δὲ τῆς ἀρχῆς τοῦ Αἰγοκέρωτος ὡς ἀπέχειν τὴν ἀρχὴν
” . ταύτης γὰρ „ ὕψι μάλα „ φερομένης καὶ μεσουρανούσης , οὐχ ὁ Τοξότης ἀνατέλλει , ἀλλ ' ὁ
6554583 διπλασιασθεισης
ἐθελοντὶ στρατιῶται πρὸς τὴν ἐλπίδα τοῦ κέρδους . τέλος δὲ διπλασιασθείσης τῆς μετ ' Εὐαγόρου καὶ Φωκίωνος δυνάμεως οἱ βασιλεῖς
τὴν ἄνευ ἑξάδος . . . § . . . διπλασιασθείσης ἑξάδος , τῆς γονιμωτάτης . . . . ,
6541097 ἐπιτεταρτου
δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον
, ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ
6536515 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6536504 τετραπλευρων
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα ,
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ
6521012 ἰσημερινης
εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ
. ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης
6519740 εζ
μὲν αβ τοῦ γδ διπλάσιον , τὸ δὲ γδ τοῦ εζ τριπλάσιον . ἐπεὶ οὖν τὸ μὲν γδ τοῦ εζ
γδ λόγου πηλικότης πολλαπλασιασθῇ ἐπὶ τὴν τοῦ γδ πρὸς τὸ εζ λόγου πηλικότητα , ποιεῖ τὴν τοῦ αβ πρὸς εζ
6509769 διαστασεων
Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία
6506420 εὐτακτοι
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι
6501249 περισσοις
κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά ,
γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ
6498184 δγ
α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν
, ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων
6497167 ἐκτεθεντος
καὶ ἀεὶ οὕτως . γεννᾶται δὲ τοῦ φυσικοῦ ἀριθμοῦ στοιχηδὸν ἐκτεθέντος καὶ ἀεὶ ἀπ ' ἀρχῆς τῶν συνεχῶν κατὰ ἕνα
, συνεχεῖς δὲ τούτους ἑτερογενῶς . ὑπόδειγμα δ ' αὐτῆς ἐκτεθέντος ἀπὸ μονάδος τοῦ ἐφεξῆς ἀριθμοῦ καὶ ὡντινωνοῦν τριῶν ὅρων
6494875 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
6488078 διπλασιεπιτεταρτος
, ποιήσεις τοὺς διπλασιεπιτετάρτους , οἷον ὁ θ τοῦ δ διπλασιεπιτέταρτός ἐστι , καὶ ὁ ιη τοῦ η καὶ ὁ
δὲ Β ιϚ . ὅ τε οὖν Γ τοῦ Δ διπλασιεπιτέταρτός ἐστι καὶ ὁ Α τοῦ Β . ἔχει οὖν
6485141 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
6477726 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
6467324 τεταρτημοριου
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς
6460360 εὐτακτων
ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν
δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι ,
6459567 δωδεκατημοριῳ
Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν
καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ
6455950 ιγʹʹ
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο
6451021 διπλασιων
τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ :
διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ
6447462 ΠΗ
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν
6445072 γονιμωτατης
. . § . . . διπλασιασθείσης ἑξάδος , τῆς γονιμωτάτης . . . . , ὁ γὰρ ἕξ ἀριθμὸς
δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης ἑξάδος τῆς γονιμωτάτης , ἥτις ἐστὶν ἀρχὴ τελειότητος , ἐκ τῶν ἰδίων
6437787 ἀφοριζομενη
τῶν πεντακισχιλίων σταδίων οὐ μείζων καὶ τοῖς ἄκροις τοῖς ἀντικειμένοις ἀφοριζομένη . ἀντίκειται γὰρ ἀλλήλοις τά τε ἑῶια ἄκρα τοῖς
ἡ μὲν τῶν πολλῶν δόξα ἡ τὸ πέρας τοῦ περιέχοντος ἀφοριζομένη τόπον , καθ ' ὅσον ἐστὶ διαστατόν , τὸ
6431788 Ϙβʹ
κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς
] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία .
6430767 μειζονες
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ .
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα
6430173 νξ
ζη τῷ κν . ἔστι δὲ καὶ ὁ θη τῷ νξ ἴσος : ἑκάτερος γάρ ἐστιν ὁ ἀπὸ τοῦ γβ
βδ τετράγωνος ὁ κλ , ἀπὸ δὲ τοῦ δγ ὁ νξ , ἐκ δὲ τῶν βδ , δγ ἑκάτερος τῶν
6425821 ἀνισοι
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ
6422520 ΑΝΘΡΩΠΟΙΣΙ
, ἤγουν ἡ Εἱμαρμένη . . ΤΟΥΝΕΚ ' ΑΡ ' ΑΝΘΡΩΠΟΙΣΙ . Τούτου δὴ ἕνεκα , ἤγουν τῆς παρὰ τοῦ
, ἢ ἀπὸ τοῦ γέρας . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙ ΝΟΜΟΝ . Καὶ τοῦτο ἄξιον ποιητοῦ νικήσαντος Ὅμηρον .
6414699 καταριθμησις
. τοσαύτη μὲν ἡ περὶ τῶν ἁπαλῶν κλυσμῶν καὶ ἐνεμάτων καταρίθμησις : οἱ δὲ δριμεῖς κλυσμοὶ ἁρμόζουσιν ἀλγήμασι πλευροῦ ,
αὐτοῖς δεόντως χρήσασθαι . Οὐκ ἔστιν οὖν ἡ τῶν κεφαλαίων καταρίθμησις ἡ ῥητορικὴ τέχνη , ἀλλὰ τὸ δύνασθαι καλῶς τοῖς
6413455 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
6408703 ἐκκειμενου
ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι .
τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει
6407310 πολυγωνοι
δὲ τετράγωνοι , οἱ δὲ πεντάγωνοι καὶ κατὰ τὸ ἑξῆς πολύγωνοι . γεννῶνται δὲ οἱ τρίγωνοι τὸν τρόπον τοῦτον .
, ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι . πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν
6407149 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
6395960 κυλινδρων
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις

Back