γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα | ||
δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
' αὐτοῖς ὁρίζοντος ὁ ἄξων διάμετρος γίνεται , καὶ οὔτε ἀειφανὲς οὔτε ἀφανές τι τῶν ἄστρων παρ ' αὐτοῖς ἐστιν | ||
στήθεα γυμνώσας καὶ γαστέρα σήματα φαίνει , ὅττι γένος περίφοιτον ἀειφανὲς οὐρανιώνων οὔτε πολυρραφέος μεθέπει σπείρημα χιτῶνος οὔτε χαμαιγενέων ἐπιδεύεται |
: ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ | ||
συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ | ||
τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς |
τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν τὸ βʹ ἄστρον | ||
ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
, ἤπερ κόσμου τέ ἐστι περιστροφὴ καὶ τῆς ΛΜ περιφερείας δύσις : ἐν ἄρα κόσμου περιστροφῇ καὶ τῆς ΛΜ περιφερείας | ||
διφυές , κάθυγρον , ἡμιτελές , κυρτοειδές , χωλόν , δύσις κόσμου , μόχθων καὶ πόνων δηλωτικόν , λαοξοϊκόν , |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον , | ||
Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων |
ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω | ||
εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο . |
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
ἀκτῖνες χειμερινὸν τὸ σημεῖον . Καὶ ὅταν καυματίας δύηται καὶ ἀνατέλλῃ , ἐὰν μὴ ἄνεμος γένηται ὕδατος τὸ σημεῖον . | ||
προαποδεδειγμένης τῶν γωνιῶν πραγματείας , ὅταν ἡ ἀρχὴ τοῦ Καρκίνου ἀνατέλλῃ κατὰ τὸ ὑποκείμενον κλῖμα , τὴν ὑπὸ ΒΕΔ γωνίαν |
Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
λυκάβαντα κεράσσας , καὶ τροπικὴν ἐκάλεσσεν ἀμειβομένης πάλιν ὥρης λοξὸν ζωιδιακὸν μετανεύμενος οἶκον ἀπ ' οἴκου , ἀλλοίην πισύρων τελέσας | ||
σφαίρας , καί ἐστι τῶν μεγίστων . τέμνει δὲ τὸν ζωιδιακὸν καὶ τέμνεται ὑπ ' αὐτοῦ . ὅλοι δ ' |
καρπὸν ἀέξειν . τῆς δ ' ἂν ἴδοις προτέρω , νοτιώτερον οἶμον ὁδεύσας , Ἀραβικοῦ κόλπου μύχατον πόρον , ὅστε | ||
Ἡρόδοτός φησιν . ὅθεν Κλύσμα λέγεται . . Εὐξείνου πόντου νοτιώτερον : ἀντὶ τοῦ κατὰ νότιον μέρος ἐξ ἐναντία τοῦ |
οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ κύκλον . Οἱ τῶν αὐτῶν ἐφαπτόμενοι μέγιστοι κύκλοι ὧν | ||
εἰσι τῶν ἀληθινῶν . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
καθ ' ὃν ὁ ἥλιος εἰς τὸν Σκορπίον ἐμβάλλει , Ὀκτωβρίου καὶ Νοεμβρίου . αἳ δή τοι νύκτας : αἵτινες | ||
ἐνάτης μέχρις Ἰουνίου κγʹ , ἡ δὲ τούτων δύσις ἀπὸ Ὀκτωβρίου ηʹ μέχρι Δεκεμβρίου ἐνάτης . |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
, τὸ δ ' ἐνθένδε ἕως [ τοῦ ] τῆς Κινναμωμοφόρου παραλλήλου , ὅσπερ ἐστὶν ἀρχὴ τῆς διακεκαυμένης , τρισχίλιοι | ||
μερῶν . Φησὶ δὴ τοῖς οἰκοῦσιν ἐπὶ τῷ διὰ τῆς Κινναμωμοφόρου παραλλήλῳ , ὃς ἀπέχει τῆς Μερόης τρισχιλίους σταδίους πρὸς |
. Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας . | ||
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
. . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . . | ||
, ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ | ||
. ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης |
ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δεʹ , καὶ πάλιν ἡ ζγʹ καὶ ἡ γηʹ καὶ ἡ θδʹ : φανερὸν δὴ | ||
τὰ ζηʹ δυτικὰ δὲ τὰ βγʹ : λέγω ὅτι ὁ ζγʹ κύκλος αἰεὶ διὰ μὲν τῆς ζηʹ περιφερείας ἀνατέλλει , |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
: „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως | ||
πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν |
ἐπὶ Τάραντα ἀπὸ ἄλλου ἀκρωτηρίου νοτιωτέρου τῆς Κασσιόπης ὃ καλοῦσι Φαλακρόν . μετὰ δὲ Ὄγχησμον Ποσείδιον καὶ Βουθρωτὸν ἐπὶ τῷ | ||
: Δυστυχῆ . ῥυσὸν : Ῥυτίδας ἔχοντα . μαδῶντα : Φαλακρόν . νωδόν : Ἐστερημένον ὁδοῦ . . ἐστερημένον ὀδόντων |
μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππωι πθʹ . Ἀπὸ τροπῶν | ||
πθʹ . Περὶ τυροῦ . Ϙʹ . Περὶ ἰχθύων . Ϙαʹ . Περὶ ὀϲτρακοδέρμων . Ϙβʹ . Περὶ μαλακίων . |
τρόπον . Ἀνατελλέτω γὰρ ὁ ἥλιος πρὸς τῷ Ζ , δυνέτω δὲ πρὸς τῷ Η , καὶ ἔστω ἐλάσσων ἡ | ||
διέρχεται τὸν μεσημβρινὸν ὅ τε Κριὸς καὶ ὁ Ταῦρος . δυνέτω δὲ τὸν αὐτὸν τρόπον ἡ ἀρχὴ τοῦ Κριοῦ , |
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
χρήσιμον ἕκαστον τὸ γένος . ἐπὶ δὲ τὸ πλεῖστον αἱ κόλουροι καὶ φορμύνιοι καὶ δίφοροι καὶ Μεγαρικαὶ καὶ Λακωνικαὶ συμφέρουσιν | ||
ἐαρινὴν ἐν Κριῶι , τὴν δὲ μετοπωρινὴν ἐν Χηλαῖς . κόλουροι δὲ κέκληνται , διότι δοκοῦσιν ἡμῖν κεκολοῦσθαι ὥσπερ τὰς |
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
ἐπὶ τὰ αὐτὰ μέρη θέσιν ἔχῃ , εἰ πρὸς τὰ βορειότερα τοῦ ἰσημερινοῦ ἢ νοτιώτερα προσείη ἡ λόξωσις , καὶ | ||
ἐστι καὶ ἡ Μηδία καὶ ἡ Ἀρμενία , τὰ δὲ βορειότερα πρόσβορρα , κατ ' ἄλλην καὶ ἄλλην διάταξιν τούτου |
τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
, ἐφ ' ὅσον τέμνει τοὺς τροπικοὺς ὁ ὁρίζων , ἑῴα μὲν ἀνατολικὴ φάσις ἡ πρώτη τῶν φαινομένων ἀνατολή , | ||
: τῷ βʹ ἄρα ἄστρῳ ἡ ἀπὸ ἑῴας ἀληθινῆς ἐπιτολῆς ἑῴα ἀληθινὴ δύσις γίγνεται διὰ πλείονος χρόνου ἡμίσους ἐνιαυτοῦ : |
πρῶτος ἔστω σοι καιρὸς τῆς ἀντιδότου ἀρχομένου ἔαρος καὶ ἡλίου διαπορευομένου τὸν κριόν . εἰ δέ τι κωλύσειεν ἄρχεσθαι τῆς | ||
ἴσας περιφερείας διέρχεται . νυνὶ δὲ τοῦ μὲν ἡλίου ὁμαλῶς διαπορευομένου τὸν κύκλον , αὐτοῦ δὲ τοῦ κύκλου ἀνωμάλως τὰς |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
ὑπὸ τοῦ ζῳδιακοῦ ἐπὶ τὰ πρὸς ἄρκτους , ἐκείνων αἱ ἑῷαι δύσεις τῶν ἑῴων ἐπιτολῶν προηγοῦνται , ὅσα δὲ ἀπολαμβάνεται | ||
ἑῴα . Τῶν δ ' ἄλλων αἱ πλεῖσται τῶν ὀνομαζομένων ἑῷαι οἷον Πλειάδος καὶ Ὠρίωνος καὶ κυνός . Τῶν δὲ |
νῆσον ἐπακτῆρες : τῇσι δὲ βουκόλιαί τε βοῶν χάλκειά τε δύνειν τεύχεα πυροφόρους τε διατμήξασθαι ἀρούρας ῥηίτερον πάσῃσιν Ἀθηναίης πέλεν | ||
τῷ δύπτειν ἐπὶ κεφαλὴν κατενεχθέντες . δύπτειν δέ ἐστι τὸ δύνειν , δύπται δὲ αἴθυιαι , ὡς παρὰ Καλλιμάχῳ : |
γὰρ ἡ τῶν προειρημένων λεπίδων ἐργασία διὰ τῶν Κελτικῶν καὶ Ἱσπανῶν καλουμένων μαχαιρῶν . ταύτας γὰρ ὅταν βούλωνται δοκιμάζειν εἰ | ||
διοικῶν , προςέθηκε μεγάλοις μείζονα . Τὸν γὰρ βασιλέα τῶν Ἱσπανῶν μεγάλῃ νικήσας μάχῃ μετὰ ταῦτα πρὸς αὐτὸν ἐσπείσατο . |
κεῖται Λέων . μέσαις δὲ θεριναῖς ἐν τροπαῖσι Καρκίνος , Δίδυμοι δ ' ἔνερθεν προσθίων κεῖνται ποδῶν . κεφαλὴν δ | ||
ἴσον ἀπέχοντα τῶν ἰσημερινῶν , οἷον Ταῦρος καὶ Ἰχθύες , Δίδυμοι καὶ Ὑδροχόος , Καρκίνος καὶ Αἰγόκερως , Λέων καὶ |
ἀπὸ Μαίου ιγʹ ἕως κγʹ τοῦ Ἰουνίου , ἡ δὲ ἑσπερία ἀνατολὴ ἀπὸ Ὀκτωβρίου μέχρι Δεκεμβρίου ιθʹ . τοῦ Οὐρανοῦ | ||
∠ ʹ : γέγονεν ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑσπερία μοιρῶν κϚ ∠ ʹ . ὡσαύτως δὲ καὶ τῷ |
φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |
οἷστισιν ἔθνεσι πρὸς τὰς αὐγὰς παρὰ τῷ Ἰνδῷ ποταμῷ οἱ νότιοι Σκύθαιοἱ καὶ Ἰνδοσκύθαι καλούμενοικατοικοῦσιν , ὅστις Ἰνδικὸς κατέναντι τῆς | ||
. Καίσαρι βορέαι παύονται πνέοντες . ιεʹ . Εὐδόξῳ ἄνεμοι νότιοι . ιϚʹ . Καλλίππῳ καὶ Κόνωνι ἐπισημαίνει . ιζʹ |
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς | ||
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς |
. . . . . . . . . . Ἰχθύων κδ Ϛʹ βο ιζ ∠ ʹ δʹ ὁ ἐπὶ | ||
. . . . . . . . . . Ἰχθύων κϚ γʹ βο κζ δʹ ὁ ἐν τῷ ἀριστερῷ |
μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους | ||
γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
, Ὠρίων ξίφος ἐν χερσὶ κατέχων φασγανῶδες σὺν Ἅρμα τε Ἡνίοχος καὶ ὕπτιος Ὀσίρις , Κύων ἐπάνω τῶν ποδῶν ὁ | ||
ὁ ἐν μέσῃ τῇ νοτίᾳ χηλῇ . Δύνει δὲ ὁ Ἡνίοχος μικρῷ πλεῖον ἢ ἐν ὥραις τρισίν . Εἰρηκότες δὴ |
κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς | ||
] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ , | ||
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός . |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
. Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές | ||
δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
. . ἐν δὲ τῇ δ Εὐδόξῳ τροπαὶ χειμεριναί : χειμαίνει . . Οὐρ . διδ . Εὐδόξῳ , Δημοκρίτῳ | ||
χειμαίνει . Ἐν δὲ τῇ βᾳ Εὐκτήμονι Δελφὶς ἐπιτέλλει : χειμαίνει . Ἐν δὲ τῇ δῃ Εὐδόξῳ τροπαὶ χειμεριναί : |
ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
, τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
τὸν Ταῦρον διϊόντος φαίνονται , ἀλλὰ καὶ εἰς Ζυγὸν ἤδη ἐπιτέλλουσι . Πληιάδων : Ἄτλαντος τοῦ Ἰαπετοῦ καὶ Αἴθρας τῆς | ||
ἑῷος ὅλος δύνει . Ἐν δὲ τῇ κβῃ Εὐδόξῳ Πλειάδες ἐπιτέλλουσι : καὶ ἐπισημαίνει . Ἐν δὲ τῇ λαῃ Εὐκτήμονι |
τρίγωνον Ἀφροδίτης , νυκτὸς δὲ Σελήνης , Δίδυμοι δὲ καὶ Ζυγὸς καὶ Ὑδροχόος ἡμέρας μὲν Κρόνου τρίγωνον , νυκτὸς δὲ | ||
ἀλλ ' ἔνδοξοι , ἀλλὰ καὶ στρατηγίαι . Ὁ δὲ Ζυγὸς τὸ ζῴδιον ἐξουσιάζει χώρας Λιβύην Κυρηνίαν τε , Βακτριανὴν |
ἐν νυκτί . ἐπισημαίνεται δὲ τοῦτο Ἄρατος λέγων ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο : δυωδεκάδες γὰρ εἶπε τὰ δωδεκατημόρια τῶν | ||
δὲ , τὴν πρώτιστον δὲ ταύτης Ὑάδες σὺν τῷ Λαγωῷ δύνουσι πρὸς τὸν ὄρθρον , καὶ τὴν δευτέραν τὸ αὐτὸ |
, τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ εʹ ἑσπέριον ἀνατέλλει : ἀπὸ ἄρα ἑῴας ἐπιτολῆς ἐπὶ ἑσπερίαν ἐπιτολὴν | ||
εὐρυνθεῖσα τιταίνεται Ἀδριὰς ἅλμη πρὸς βορέην , αὖτις δὲ πρὸς ἑσπέριον μυχὸν ἕρπει , ἥντε καὶ Ἰονίην περιναιέται ηὐδάξαντο . |
: Πούπουλον πόλις λʹ ∠ ʹʹγʹʹ λεʹ γοʹʹ Σόλκοι πόλις λαʹ Ϛʹʹ λεʹ ∠ ʹʹγʹʹ Σόλκοι λιμήν λαʹ δʹʹ λεʹ | ||
∠ ʹʹδʹʹ καθ ' ὃ ἐκτρέπεται ἐπὶ τὴν Βαίνακον λίμνην λαʹ ∠ ʹʹδʹ μγʹ ∠ ʹʹ αὐτῆς τῆς λίμνης θέσις |
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
ἐν ᾧ ὁ ἥλιος τὴν ΖΘ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ζ : συνδύνει ἄρα τῷ Θ : ὥστε | ||
φησιν ἀνατέλλειν . . . . . . , Βορρόθεν συνανατέλλει τὰ λειπόμενα τῆς Ἀνδρομέδας καὶ τὰ λοιπὰ τοῦ Περσέως |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
δὲ κεʹ : καὶ τὸν τρίτον δὲ ἐκ βιβλίων μὲν χʹ , συγγραφέων δὲ κϚʹ : τὸν μέντοι τέταρτον ἐκ | ||
Ἀπὸ δὲ Ἀγρίσης πόλεως ἐπὶ Ὄμμανα ἐμπόριον τῶν ἐπισήμων στάδιοι χʹ . Ἀπὸ δὲ Ὀμμάνων ἐπὶ Ῥόγανα στάδιοι ρνʹ . |
ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . | ||
ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . |
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
ἐπὶ τῆς δύσεως ἔστω πρὸς μεσημβρίαν τὸ εʹ , καὶ συνδυνέτω τῷ γʹ : τῶν ἄρα ἑπομένων τινὶ τῷ γʹ | ||
ἔστω ἐπὶ τῆς δύσεως πρὸς μεσημβρίαν τὸ εʹ , καὶ συνδυνέτω τῷ γʹ , συνανατελλέτω δὲ τῶν ἑπομένων τινὶ τῷ |
ποιούντων ἔγγιστα ε περιόδους τὰ μὲν υη ἔτη συνάγει περιόδους σνε , τὸ δὲ λοιπὸν ἔτος ἓν μετὰ τῶν ἐπιλαμβανομένων | ||
σφαῖραν μεταλαμβανομένοις ϠϘγσιν , ἅ ἐστιν Αἰγυπτιακὰ ϠϘγ καὶ νυχθήμερα σνε # νδ μϚ να ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις ποιείσθω |
ἄτομοι γραμμαὶ οὐκ εἰσίν , εἴπερ πλευρὰν τὴν ἐκκειμένην δυνατὸν διχοτομεῖν . Καὶ τὸ ἑνδέκατον πρόβλημά ἐστιν : ποιεῖ γὰρ | ||
βραδύτερον . ἔστι δὲ καὶ οὗτος ὁ αὐτὸς λόγος τῶι διχοτομεῖν , διαφέρει δ ' ἐν τῶι διαιρεῖν μὴ δίχα |
ταύταις παράκειται κατὰ τὸ δʹ κλίμα τῷ μὲν πρώτῳ ὅρῳ κβʹ λγʹ , τῷ δὲ βʹ ὅρῳ μβʹ κζʹ , | ||
Ἁδριανὸς ἔτη κʹ μῆνας ιʹ ἡμέρας κηʹ . Ἀντωνῖνος ἔτη κβʹ μῆνας ζʹ ἡμέρας κϚʹ . Οὐῆρος ἔτη ιθʹ ἡμέρας |