| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
| τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
| ηζθʹ κύκλου ἐπιπέδῳ : ἡ αβʹ ἄρα πρὸς ἑκατέραν τῶν ηθʹ κμʹ ὀρθή ἐστιν : ὥστε ἡ ὑπὸ τῶν κμθʹ | ||
| γὰρ τῶν ηζʹ ζθʹ ἀνὰ ἥμισύ ἐστιν ζῳδίου : ἡ ηθʹ ἄρα ζῳδίου ἐστίν , ὥστε καὶ ἡ λμʹ : |
| ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
| ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
| τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα | ||
| δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου |
| ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον , | ||
| Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων |
| τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
| καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
| δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
| τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
| : ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ | ||
| συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ |
| ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω | ||
| εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο . |
| , ἤπερ κόσμου τέ ἐστι περιστροφὴ καὶ τῆς ΛΜ περιφερείας δύσις : ἐν ἄρα κόσμου περιστροφῇ καὶ τῆς ΛΜ περιφερείας | ||
| διφυές , κάθυγρον , ἡμιτελές , κυρτοειδές , χωλόν , δύσις κόσμου , μόχθων καὶ πόνων δηλωτικόν , λαοξοϊκόν , |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
| σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
| ἐπὶ Τάραντα ἀπὸ ἄλλου ἀκρωτηρίου νοτιωτέρου τῆς Κασσιόπης ὃ καλοῦσι Φαλακρόν . μετὰ δὲ Ὄγχησμον Ποσείδιον καὶ Βουθρωτὸν ἐπὶ τῷ | ||
| : Δυστυχῆ . ῥυσὸν : Ῥυτίδας ἔχοντα . μαδῶντα : Φαλακρόν . νωδόν : Ἐστερημένον ὁδοῦ . . ἐστερημένον ὀδόντων |
| ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
| δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
| ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
| μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
| κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
| ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
| μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
| ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
| ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ | ||
| τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς |
| δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
| διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
| . . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . . | ||
| , ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ |
| Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
| καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
| ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
| ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
| λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
| , ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
| γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ , | ||
| λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός . |
| ' αὐτοῖς ὁρίζοντος ὁ ἄξων διάμετρος γίνεται , καὶ οὔτε ἀειφανὲς οὔτε ἀφανές τι τῶν ἄστρων παρ ' αὐτοῖς ἐστιν | ||
| στήθεα γυμνώσας καὶ γαστέρα σήματα φαίνει , ὅττι γένος περίφοιτον ἀειφανὲς οὐρανιώνων οὔτε πολυρραφέος μεθέπει σπείρημα χιτῶνος οὔτε χαμαιγενέων ἐπιδεύεται |
| τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
| περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
| πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
| τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
| ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
| κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
| , ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
| κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
| τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν τὸ βʹ ἄστρον | ||
| ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γζʹ περιφέρειαν διαπορεύεται : λέγω ὅτι τοῦ ἡλίου τὴν γζʹ |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| Κριοῦ ἐστιν ἀρχή , κατὰ δὲ τὸ ἕτερον ἡ τῶν Χηλῶν . τοῦ μέντοι θερινοῦ τροπικοῦ πλέον ἢ τὸ ἥμισυ | ||
| τοῦ ἐπικύκλου , ὅταν ὑπὸ τὴν ιʹ μοῖραν ᾖ τῶν Χηλῶν , τὸ δὲ Γ , καθ ' οὗ γίνεται |
| τρόπον . Ἀνατελλέτω γὰρ ὁ ἥλιος πρὸς τῷ Ζ , δυνέτω δὲ πρὸς τῷ Η , καὶ ἔστω ἐλάσσων ἡ | ||
| διέρχεται τὸν μεσημβρινὸν ὅ τε Κριὸς καὶ ὁ Ταῦρος . δυνέτω δὲ τὸν αὐτὸν τρόπον ἡ ἀρχὴ τοῦ Κριοῦ , |
| αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
| ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
| ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
| ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
| γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
| ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
| τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
| ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
| : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
| χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
| ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
| τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
| , τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
| ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| . Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές | ||
| δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν |
| , οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
| . ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
| , ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
| τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
| ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . | ||
| ἀντίπορθμον : ἀντίπορθμον εἶπεν ἐπειδὴ ἡ μὲν Κρῖσα ὥς φασιν ἀνατολική οὐ γὰρ εἶδον αὐτήν ἡ δὲ Κροτώνη δυτική . |
| οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ κύκλον . Οἱ τῶν αὐτῶν ἐφαπτόμενοι μέγιστοι κύκλοι ὧν | ||
| εἰσι τῶν ἀληθινῶν . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
| δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον | ||
| . καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες |
| εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ | ||
| . ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης |
| νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
| ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| λυκάβαντα κεράσσας , καὶ τροπικὴν ἐκάλεσσεν ἀμειβομένης πάλιν ὥρης λοξὸν ζωιδιακὸν μετανεύμενος οἶκον ἀπ ' οἴκου , ἀλλοίην πισύρων τελέσας | ||
| σφαίρας , καί ἐστι τῶν μεγίστων . τέμνει δὲ τὸν ζωιδιακὸν καὶ τέμνεται ὑπ ' αὐτοῦ . ὅλοι δ ' |
| ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν | ||
| ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος |
| τοῦ τροπικοῦ , ὁ δὲ ἀριστερὸς τρίτῳ μέρει ἑνὸς ζῳδίου νοτιώτερός ἐστι τοῦ τροπικοῦ : ὁ μὲν γὰρ δεξιὸς ὦμος | ||
| ἀλεκτρυόνες ὑπεράγαν οὐκ ᾄδουσιν ἐν τοῖς ὑγροῖς χωρίοις καὶ ἔνθα νοτιώτερός ἐστιν ὁ ἀήρ . ψυχροὶ δὲ ἄρα ὄντες τὴν |
| χρήσιμον ἕκαστον τὸ γένος . ἐπὶ δὲ τὸ πλεῖστον αἱ κόλουροι καὶ φορμύνιοι καὶ δίφοροι καὶ Μεγαρικαὶ καὶ Λακωνικαὶ συμφέρουσιν | ||
| ἐαρινὴν ἐν Κριῶι , τὴν δὲ μετοπωρινὴν ἐν Χηλαῖς . κόλουροι δὲ κέκληνται , διότι δοκοῦσιν ἡμῖν κεκολοῦσθαι ὥσπερ τὰς |
| τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
| , νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
| ι , ἡ δὲ ἰσημερινὴ λθʹ ∠ , ἡ δὲ χειμερινὴ Ϙγ ιβʹ . ιαʹ . ἑνδέκατός ἐστι παράλληλος , | ||
| ἡ δὲ ἰσημερινὴ ξγʹ ∠ γʹ ιβʹ , ἡ δὲ χειμερινὴ ροα Ϛʹ . ιζʹ . ἑπτακαιδέκατός ἐστιν παράλληλος , |
| : „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως | ||
| πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν |
| προσκείσθωσαν αἱ ΕΖ , ΓΔ : ὅλη ἄρα ἡ ΑΕΖ περίμετρος ὅλης τῆς ΑΓΔ περιμέτρου ἐλάττων ἐστί . μείζων ἄρα | ||
| διήχθω τις ἡ ΔΕ . ὅτι ἐστὶν ὡς ἡ ΑΒΓ περίμετρος τοῦ κύκλου πρὸς τὴν ΒΖΕ περιφέρειαν , οὕτως ὁ |
| ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
| πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
| κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
| , ἐφ ' ὅσον τέμνει τοὺς τροπικοὺς ὁ ὁρίζων , ἑῴα μὲν ἀνατολικὴ φάσις ἡ πρώτη τῶν φαινομένων ἀνατολή , | ||
| : τῷ βʹ ἄρα ἄστρῳ ἡ ἀπὸ ἑῴας ἀληθινῆς ἐπιτολῆς ἑῴα ἀληθινὴ δύσις γίγνεται διὰ πλείονος χρόνου ἡμίσους ἐνιαυτοῦ : |
| ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
| μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
| ἐλάσσων ἡ αδʹ , τοῦτο γὰρ φανερόν : ἡ ἄρα αδʹ εὐθεῖα ἐλαχίστη ἐστὶ πασῶν τῶν ἀπὸ τοῦ δʹ πρὸς | ||
| ὁρίζοντι . Συμβαλλέτω κατὰ τὸ λʹ σημεῖον καὶ ἐπεζεύχθωσαν αἱ αδʹ δλʹ αγʹ . Ἐπεὶ ἐν σφαίρᾳ μέγιστος κύκλος ὁ |
| μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
| ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
| ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
| ἀπὸ Μαίου ιγʹ ἕως κγʹ τοῦ Ἰουνίου , ἡ δὲ ἑσπερία ἀνατολὴ ἀπὸ Ὀκτωβρίου μέχρι Δεκεμβρίου ιθʹ . τοῦ Οὐρανοῦ | ||
| ∠ ʹ : γέγονεν ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑσπερία μοιρῶν κϚ ∠ ʹ . ὡσαύτως δὲ καὶ τῷ |
| χρόνῳ τὸ δʹ τὴν δζʹ διαπορεύεται καὶ τὸ δʹ τὴν δηʹ : καὶ εἰσὶν τοῦ αὐτοῦ κύκλου : ἴση ἄρα | ||
| ἀνατέλλουσα οὐχ ὁρᾶται . Στρεφομένου δὲ τοῦ κόσμου ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ δεʹ οὐχ |
| ἐστιν , οἵων ὁ γνώμων ξ , τοιούτων ἡ μὲν ἰσημερινὴ σκιὰ κϚʹ ∠ , ἡ δὲ χειμερινὴ ξεʹ ∠ | ||
| ἑξηκοστὰ Ϛʹ , ἡ δὲ θερινὴ εʹ , ἡ δὲ ἰσημερινὴ ηʹ ἐξ ἑκατέρου μέρους τοῦ ἰσημερινοῦ ἑξηκοστὰ δʹ , |
| ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δεʹ , καὶ πάλιν ἡ ζγʹ καὶ ἡ γηʹ καὶ ἡ θδʹ : φανερὸν δὴ | ||
| τὰ ζηʹ δυτικὰ δὲ τὰ βγʹ : λέγω ὅτι ὁ ζγʹ κύκλος αἰεὶ διὰ μὲν τῆς ζηʹ περιφερείας ἀνατέλλει , |
| πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ | ||
| πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| . . . . . . . . . . Ἰχθύων κδ Ϛʹ βο ιζ ∠ ʹ δʹ ὁ ἐπὶ | ||
| . . . . . . . . . . Ἰχθύων κϚ γʹ βο κζ δʹ ὁ ἐν τῷ ἀριστερῷ |
| τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
| ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| μεθοπωρινῆς ἐπὶ χειμερινὰς τροπὰς Εὐδόξωι ἡμέραι Ϙβʹ , Δημοκρίτωι ἡμέραι Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππωι πθʹ . Ἀπὸ τροπῶν | ||
| πθʹ . Περὶ τυροῦ . Ϙʹ . Περὶ ἰχθύων . Ϙαʹ . Περὶ ὀϲτρακοδέρμων . Ϙβʹ . Περὶ μαλακίων . |
| ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
| ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
| ἔκπτωσιν δηλοῖ : ὁμοίως δὲ καὶ ἡ σύνοδος καὶ ἡ πανσέληνος παρατηρεῖται . γʹ περὶ ἀδελφῶν ζωῆς , καὶ γονεῦσι | ||
| . Ἥλιος Ἀφροδίτη Καρκίνῳ , Σελήνη ὡροσκόπος Ἰχθύσιν , Κρόνος πανσέληνος Τοξότῃ , Ζεὺς Αἰγόκερῳ , Ἄρης Σκορπίῳ , Ἑρμῆς |
| ΑΒΓΔ , μέγιστος δὲ τῶν ἀεὶ φανερῶν ὁ ΕΖ , θερινὸς δὲ τροπικὸς ὁ ΒΗΑ , καὶ ἔστω τὸ μετὰ | ||
| ' αὐτῶν ὁ μὲν ἀρκτικὸς καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δὲ ἰσημερινός , ὁ δὲ χειμερινὸς |
| νῆσον ἐπακτῆρες : τῇσι δὲ βουκόλιαί τε βοῶν χάλκειά τε δύνειν τεύχεα πυροφόρους τε διατμήξασθαι ἀρούρας ῥηίτερον πάσῃσιν Ἀθηναίης πέλεν | ||
| τῷ δύπτειν ἐπὶ κεφαλὴν κατενεχθέντες . δύπτειν δέ ἐστι τὸ δύνειν , δύπται δὲ αἴθυιαι , ὡς παρὰ Καλλιμάχῳ : |
| φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
| τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |
| ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
| , τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
| . Κριοῦ κδ γʹ νο η ∠ ʹ δʹ ὁ νοτιώτατος τῶν δ . . . . . . . | ||
| δὲ νῦν ἐπὶ τοῦ ὁρίζοντος πρὸς τῇ δύσει κείμενος ὁ νοτιώτατος ἀστὴρ τῶν ἐν τῷ ἀριστερῷ ποδὶ τοῦ Ἀρκτοφύλακος . |
| ἐν ᾧ ὁ ἥλιος τὴν ΖΘ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ζ : συνδύνει ἄρα τῷ Θ : ὥστε | ||
| φησιν ἀνατέλλειν . . . . . . , Βορρόθεν συνανατέλλει τὰ λειπόμενα τῆς Ἀνδρομέδας καὶ τὰ λοιπὰ τοῦ Περσέως |
| καθ ' ὃν ὁ ἥλιος εἰς τὸν Σκορπίον ἐμβάλλει , Ὀκτωβρίου καὶ Νοεμβρίου . αἳ δή τοι νύκτας : αἵτινες | ||
| ἐνάτης μέχρις Ἰουνίου κγʹ , ἡ δὲ τούτων δύσις ἀπὸ Ὀκτωβρίου ηʹ μέχρι Δεκεμβρίου ἐνάτης . |
| ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ | ||
| νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ |
| , τὸ δ ' ἐνθένδε ἕως [ τοῦ ] τῆς Κινναμωμοφόρου παραλλήλου , ὅσπερ ἐστὶν ἀρχὴ τῆς διακεκαυμένης , τρισχίλιοι | ||
| μερῶν . Φησὶ δὴ τοῖς οἰκοῦσιν ἐπὶ τῷ διὰ τῆς Κινναμωμοφόρου παραλλήλῳ , ὃς ἀπέχει τῆς Μερόης τρισχιλίους σταδίους πρὸς |
| καὶ πίπτει εἰς Ὑδροχόου τὰ τελευταῖα . ὡροσκοπήσει οὖν ὁ Ὑδροχόος ἢ οἱ Δίδυμοι ἢ ὁ Ζυγός . ἀλλ ' | ||
| Ἵππος ἀπὸ πρωίας , ὀγδόῃ δὲ τὰ Ὄρνεα φαίνονται , Ὑδροχόος , τῇ δὲ ἐννάτῃ Ἴκτινος ἄρχεται προσανίσχειν . ὁ |
| . Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
| καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
| καρπὸν ἀέξειν . τῆς δ ' ἂν ἴδοις προτέρω , νοτιώτερον οἶμον ὁδεύσας , Ἀραβικοῦ κόλπου μύχατον πόρον , ὅστε | ||
| Ἡρόδοτός φησιν . ὅθεν Κλύσμα λέγεται . . Εὐξείνου πόντου νοτιώτερον : ἀντὶ τοῦ κατὰ νότιον μέρος ἐξ ἐναντία τοῦ |
| ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ εθʹ ἑσπερίαν δύσιν . Ἡ μὲν γὰρ δηʹ περιφέρεια ὑπὲρ | ||
| τοῦ ἡλίου ἔστω δωδεκατημόριον τὸ δηʹ , ἀκολουθοῦν δὲ τὸ εθʹ : λέγω ὅτι ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν |
| Τοσαῦται δὲ περιφέρειαι καὶ γωνίαι συνάγονται καθ ' ἑκάστην ὥραν ἰσημερινὴν ἀπὸ τοῦ μεσημβρινοῦ Ἰχθύων ἀρχῆς . καὶ ἐπεὶ ζ | ||
| ἰσημερινὴν δύσιν ἀποκλίνουσιν αἱ σκιαί , δυομένου δέ , πρὸς ἰσημερινὴν ἀνατολήν , ἐν δὲ χειμεριναῖς τροπαῖς ἀνατέλλοντος μέν , |
| . Σκορπίου κε Ϛʹ νο λδ Ϛʹ δʹ με ὁ βορειότερος αὐτῶν . . . . . . . . | ||
| καὶ τοῦ ἐλαχίστου ἀποστήματος ε μοίραις ἑκάτερος αὐτῶν τὸ πλεῖστον βορειότερος καὶ νοτιώτερος γίνεται τῶν ἐναντίων κατὰ τὸν ἐπίκυκλον παρόδων |
| τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
| . ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
| Κατὰ μὲν γὰρ Μερόην τῆς Αἰθιοπίας ἕνδεκα ὡρῶν εἶναι ἡ θερινὴ νὺξ ἱστορεῖται , κατὰ δὲ Ἀλεξάνδρειαν δέκα , κατὰ | ||
| τροπή , ἐν αἰγοκέρῳ δὲ χειμερινή , ἐν καρκίνῳ δὲ θερινὴ καὶ ἐν ζυγῷ φθινοπωρινή . στερεὰ δὲ ὑπειλήφασι ταῦρόν |
| , Ὠρίων ξίφος ἐν χερσὶ κατέχων φασγανῶδες σὺν Ἅρμα τε Ἡνίοχος καὶ ὕπτιος Ὀσίρις , Κύων ἐπάνω τῶν ποδῶν ὁ | ||
| ὁ ἐν μέσῃ τῇ νοτίᾳ χηλῇ . Δύνει δὲ ὁ Ἡνίοχος μικρῷ πλεῖον ἢ ἐν ὥραις τρισίν . Εἰρηκότες δὴ |
| χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
| ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
| ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν | ||
| τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους | ||
| γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ |