καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
ἥτις καὶ τὸ ἄστρον φέρει , περὶ λοξοῦ τινος κύκλου στρέφεται πόλους ἰδίους καθ ' ἕκαστον , ἐν ἴσῳ μέντοι | ||
τε μάλιστα , δι ' ὀκτὼ μετρηθέντος πέντε μὲν ἔνδια στρέφεται καὶ ὑπέρτερα γαίης , τὰ τρία δ ' ἐν |
ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν : | ||
τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα |
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ | ||
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
τῶν τεττάρων προϊὸν τὸ τοιοῦτο , ὥστε δεκάδος καὶ οὕτως ψαύει : γίνεται γάρ πως ἡ μὲν πρώτη πυραμὶς μίαν | ||
οὐδαμόθι γὰρ ἀλλαχόθι τέτρηται τὸ χόριον , ἀλλ ' οὐδὲ ψαύει κατὰ τὰς μήτρας ἢ κατὰ ταῦτα μόνα : τὸ |
βραχυτέρη ἐοῦσα , καὶ καμπυλωτέρη , καὶ ἰθυτέρη , καὶ κυκλοτερής : καὶ πολλαὶ ἄλλαι ἰδέαι τοῦ τοιουτέου τρόπου , | ||
ἀσπίδος περιφέρειαν . ἅλωα : ἀπὸ τοῦ ἅλωνος , ἐπεὶ κυκλοτερής ἐστιν , ὥσπερ καὶ οἱ περὶ τὸν ἥλιον καὶ |
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
χαλκεύς , οὐ ποιεῖ τὸν χαλκόν , οὕτως οὐδὲ τὴν σφαῖραν , τουτέστι τὸ εἶδος αὐτὸ καθ ' αὑτό , | ||
ἑκάστῳ τῶν τριῶν πλανήτων Ἄρεος καὶ Ἀφροδίτης καὶ Ἑρμοῦ προσετίθει σφαῖραν , τίνος ἕνεκεν προσετίθει , συντόμως καὶ σαφῶς ὁ |
πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
. . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . . | ||
, ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ |
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
μὲν καρπὸν ἀπολέγων κινδυνεύειν τοῖς ὀφθαλμοῖς , τὴν δὲ ῥίζαν τέμνων ἐκπίπτειν τὴν ἕδραν . Φυλάττεσθαι δὲ καὶ τὴν κενταυρίδα | ||
τοῦτο δὲ ὡς βυρσέα σκώπτει . ΓΘ ὑποτέμνων ] πλαγίως τέμνων καὶ οὐκ ὀρθῶς . μοχθηροῦ ] πολλὰ μοχθήσαντος καὶ |
ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω | ||
εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο . |
μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ ' | ||
: οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως |
προσδοκῶσα σαρκικῶς αὐτῷ συμμιγῆναι , αὐτὸς δὲ ὡς ἰδίαν μητέρα περιλαμβάνων , καὶ τοῖς ὀφθαλμοῖς περιλάμπων οὓς ἐθήλασε μασθούς , | ||
μὲν τοῦ φάναι ὃν ἀριθμὸς πρὸς ἀριθμὸν ἐπλεόναζεν ὁ ὅρος περιλαμβάνων καὶ τὰ μὴ συμμέτρους ἔχοντα τὰς πλευράς , διὰ |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
' ἕλεν ὕπνος . ἆμος δὲ στρέφεται μεσονύκτιον ἐς δύσιν Ἄρκτος Ὠρίωνα κατ ' αὐτόν , ὃ δ ' ἀμφαίνει | ||
τοῦ πανσέπτου καὶ παντάρχου . Τέλος τοῦ πρώτου βιβλίου . Ἄρκτος θηρίον ἐστί , ζῷον δασὺ καὶ νωθρόν , κατὰ |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν | ||
κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου |
τὴν ἡμέραν τε καὶ τὴν ὁδόν . μία τε οἷον ζώνη διὰ παντὸς τοῦ ἀέρος ἦγεν εἰς τὸ ἱερὸν κατ | ||
ἐπεζεύχθωσαν αἱ ΚΞ ΞΜ . Ἐν μὲν ἄρα κόσμῳ μέση ζώνη ἐστὶν ἡ ΚΑΜ , ἐν δὲ γῇ ἡ ΟΕΠ |
ἀέρι διὰ παντὸς φαινόμενος , διὰ δὲ τὴν λευκόχροιαν ὀνομαζόμενος γαλαξίας . καὶ τῶν Πυθαγορείων τινὲς ἀστέρος εἶναι διάκαυσιν ἐκπεσόντος | ||
μὲν γράφονται πρὸς αἴσθησιν , ὅ τε ζωιδιακὸς καὶ ὁ γαλαξίας , οἱ δὲ ὁρίζοντες ἐπινοίαι μόνον λαμβάνονται , τῶν |
ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν | ||
ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους |
καλεῖ Πύλον ὁμωνύμως τῇ πόλει . ὅτι δὲ διώριστο ἡ κοίλη Ἦλις ἀπὸ τῶν ὑπὸ τῷ Νέστορι τόπων , ὁ | ||
. Νυμφῶν ἄντρον ἦν , πέτρα μεγάλη , τὰ ἔνδοθεν κοίλη , τὰ ἔξωθεν περιφερής . Τὰ ἀγάλματα τῶν Νυμφῶν |
κωνοειδῆ ἀναγκαῖον ἀποπέμπεσθαι τὴν τῆς γῆς σκιάν : οὔτε δὲ κυλινδροειδὴς οὔτε καλαθοειδής ἐστι : κωνοειδὴς ἄρα : εἰ δὲ | ||
φωτίζηται σφαιροειδοῦς σφαιροειδές , ἐὰν μὲν ἴσα ᾖ ἀλλήλοις , κυλινδροειδὴς ἀποπέμπεται ἡ τοῦ φωτιζομένου σκιά , ὁπόταν δὲ μεῖζον |
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
κύκλῳ . ἀλλὰ καὶ παράλληλος : ὁ ΑΒΓ ἄρα κύκλος ἐφάπτεται καὶ ἑτέρου κύκλου τοῦ ΒΗ ἴσου τε καὶ παραλλήλου | ||
πολλῶν τῶν κατ ' ἀλήθειαν σύν τισι Μούσαις καὶ Χάρισιν ἐφάπτεται ἑκάστοτε . Περὶ δὲ τῆς ἐρωτικῆς καὶ μουσικῆς τί |
τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |
μοῖρα μέρος τὸ δῦνον : οὗτος δ ' ἀνακυκλούμενος ὁ πόλος ἅπας πάλιν προσενυψοῖ τὴν πρώτιστον τὴν τοῦ Κριοῦ μοιρίτζαν | ||
κέντρον ἐστὶ τοῦ ΑΒΓ , τὸ δὲ Ζ ὁ ἕτερος πόλος . Ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
ἢ τὸν ἥλιον αὐτὸν οὐχ ὁρᾷς , ὅτι τἀναντία καὶ ἀνατέλλων καὶ δυόμενος ἐργάζεται ; ἐπειδὰν γὰρ ἀνίσχῃ , τὰ | ||
, ἐπὶ δὲ τῶν χειμερινῶν ἐναντίως τοῖς προειρημένοις , ἐὰν ἀνατέλλων ἢ δυόμενος τὰς τροπὰς ποιήσηται . ιγʹ Ἐὰν πρὸ |
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
ἔχει , καὶ τῶν μορίων τὰ μὲν ὑπερέχει τὰ δὲ εἰσέχει , καὶ ποιεῖ τὴν τραχύτητα . διττὸν δὲ τὸ | ||
. . . . . . . . τὴν ἑσπέραν εἰσέχει ἀπὸ τοῦ καλουμένου Ἀτλαντικοῦ πελάγους τὴν εἰσροὴν ἔχουσα , |
ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ δύο : ὅπερ ἐστὶν ἀδύνατον | ||
ὡς ἀληθῶς τὰ πράγματα , ποτὲ δὲ ἀμφότερα , καὶ τέμνει καὶ δοκεῖ τέμνειν . κείσεται δὲ αὐτοῦ καὶ παραδείγματα |
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
' ἀπὸ τῶν ἄρκτων καὶ τῆς μεσημβρίας τὰ μὲν ὁ ὠκεανὸς περιείληφεν ἀρξάμενος ἀπὸ τῶν βορείων ἄκρων τῆς Πυρήνης μέχρι | ||
βόρειος λέγεται , ἤδη δὲ αὐτοῦ τὸ μὲν ἀνατολικώτερον Σκυθικὸς ὠκεανὸς , τὸ δὲ δυτικώτερον Γερμανικός τε καὶ Βρεττανικὸς καλεῖται |
οὗ τοῖς πολλοῖς τὸ εἶναι ὑπάρχει , ὥσπερ καὶ ἑνὰς νοητή , ἐξ ἧς ἡ συνέχεια πᾶσι τοῖς ἐνταῦθα . | ||
εἴδη τῶν οὐσιῶν διατρίψει : τῶν δὲ οὐσιῶν ἡ μὲν νοητή τε καὶ ἀίδιος , ἡ δὲ αἰσθητή τε καὶ |
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
ΑΒΓΔ , μέγιστος δὲ τῶν ἀεὶ φανερῶν ὁ ΕΖ , θερινὸς δὲ τροπικὸς ὁ ΒΗΑ , καὶ ἔστω τὸ μετὰ | ||
' αὐτῶν ὁ μὲν ἀρκτικὸς καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δὲ ἰσημερινός , ὁ δὲ χειμερινὸς |
ὑπάρχειν , ὑφ ' ᾧ πυρώδης στεφάνη : καὶ τὸ μεσαίτατον πασῶν περὶ ὃ πάλιν πυρώδης : τῶν δὲ συμμιγῶν | ||
τὸν ὁρίζοντα καὶ νυχθήμερον ἀποτελεῖ : τὸ ἥμισυ ἄρα καὶ μεσαίτατον τῆς γῆς ιβʹ ὡρῶν ἔχει διάστημα . Ἐπὶ δὲ |
καὶ Μακεδονίᾳ . ὀπίζεται δ ' ἡ ῥίζα ἐπί τι τεμνομένη ἄρτι βλαστανόντων καυλῶν : ἀνίησι δὲ λευκὸν ὀπόν , | ||
ὀξέϊ παλμῶι , ἧιχι φαεινομένων σελάων πολυαύχενος ὁρμὴ εἰς δέκα τεμνομένη θωρήσσεται : ἀλλ ' ἐνὶ μέσσωι ἀνδρομέη μόρφωσε φύσις |
εἶναι καὶ ἱστίον τῷ ἅρματι , ἀφ ' οὗ καὶ αὐγή τις ἐπὶ τὸ μέτωπον καὶ τὴν κεφαλὴν ἥκει οὔπω | ||
φαίνηται , ἀεξομένοιο διδάσκει μηνός : ὅτε πρώτη ἀποκίδναται αὐτόθεν αὐγή , ὅσσον ἐπισκιάειν , ἐπὶ τέτρατον ἦμαρ ἰοῦσα : |
τὸ εἶδος , ἐπὶ γραμμῆς δὲ οὐκέτι . ἄλλη δὲ ἀκίνητος , καὶ ταύτην φασί τινες εἶναι χωριστήν , οἱ | ||
ἐστὶ πρώτη φιλοσοφία : εἰ δὲ καὶ ἔστι τις οὐσία ἀκίνητος , ὥσπερ καὶ ἔστιν , αὕτη ἐστὶ προτέρα φιλοσοφία |
' ᾗ τινὸς ἄλλης φύσεως κεκοινώνηκεν : διὸ ἐκεῖνο μὲν ὁρᾶται καὶ ἐν τῷ σκότει , τὰ λοιπὰ δ ' | ||
τοῖς οὖν σοφοῖς τῶν προφητῶν αἰνίττεται , ὅπως θεὸς ἐκεῖνος ὁρᾶται : σοφὸς δὲ ἱερεὺς τὸ αἴνιγμα συνιεὶς ἀληθινὴν ἂν |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
κύκλον μᾶλλον κέκλιται ἤπερ ὁ ΟΠΡ , ἔτι δὲ οἱ πόλοι αὐτῶν ἐπὶ ἑνός εἰσι κύκλου παραλλήλου τε καὶ ἐλάσσονος | ||
ὅμοιαί εἰσιν . Ἔστω σφαῖρα ἧς ἄξων ὁ αβʹ , πόλοι δὲ τὰ αʹ βʹ σημεῖα , καὶ εἰλήφθω τινὰ |
ζῶντας εὖ δρᾶν : κατθανὼν δὲ πᾶς ἀνὴρ γῆ καὶ σκιά : τὸ μηδὲν εἰς οὐδὲν ῥέπει . τερπνὸν τὸ | ||
ὅτι δοκεῖ νῦν οὐδὲν ὑπάρχειν . πότνια τ ' Οἰδίπου σκιά : σκιὰν Οἰδίποδος αὐτὸν καλεῖ τὸν Οἰδίποδα : τυφλωθεὶς |
, ἡ δὲ ἐπ ' εὐθείας αὐτῇ ἐκτός . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , | ||
ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ κῶνος ἔσται . ἔστω κωνικὴ ἐπιφάνεια , ἧς κορυφὴ μὲν τὸ Α σημεῖον , |
ἐλπίδος πεποίηται . ὁ δὲ ἐν τοῖς δημιουργικοῖς μέτροις ἕκαστα ἀφορίζων καὶ γινώσκων τὰ ὄντα , ᾗ γέγονε , καὶ | ||
μεσημβρινὸν ἐπιπέδου νοείσθω ὁ μέγιστος κύκλος ὁ τὸ φαινόμενον ἡμισφαίριον ἀφορίζων ὁ ΑΒΓΔ , καὶ τοῦ μὲν διχοτομοῦντος τὸ ἡμισφαίριον |
; ὅτι δίυγρος καὶ ἁπαλός ἐστι . τὸ δὲ μέσον κορυφή , ὅτι τῆς κάρας ἐστὶν ὀροφή . τὸ δὲ | ||
ῥηματικὸν ὄνομα ἱστὸς καὶ ἱστία . . . . . κορυφή : κορυφή : . . . ὁ δὲ Φιλόξενος |
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ | ||
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν | ||
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε |
τὸ εἶναι , οὗ καὶ νοουμένη ἀχώριστος , ὡς δὲ κοιλότης κεχωρισμένη καὶ οὐδὲν δεῖ τῷ νῷ προσεπινοεῖν τὸ ὑποκείμενον | ||
. καὶ ἡ γαστὴρ αὐτή . καὶ ἡ τῶν ἑλκῶν κοιλότης . κράδης : οἱ μὲν τὰ τῆς συκῆς φύλλα |
καὶ οἰστρουμένη , τὰς πτέρυγας ἁπλώσασα ὡς ἱστίον , δρόμῳ φερομένη συντόνῳ καὶ ῥοίζῳ ἐσήλατο ἐς τὴν ἑαυτῆς καλιὰν καὶ | ||
, καὶ ἡ δυστυχία ἄλλοτε πρὸς ἄλλον προσιζάνει πλανωμένη καὶ φερομένη ἤγουν ἄστατός ἐστι καὶ οὐκ ἀεὶ τοῦ αὐτοῦ καταφέρεται |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
καὶ τὸ δʹ ἐπὶ τὸ ηʹ . [ Ἄλλως . Σφαῖρα γὰρ στρεφέσθω ὁμαλῶς περὶ τὸν ἑαυτῆς ἄξονα τὸν αβʹ | ||
ὑπὸ μείζονος ἑαυτῆς σφαίρας φωτίζηται , μεῖζον ἡμισφαιρίου φωτισθήσεται . Σφαῖρα γάρ , ἧς κέντρον τὸ Β , ὑπὸ μείζονος |
ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
, τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
ὡς μηκέτι μηδὲ πυρῆνα μήλης παραδέχεσθαι . εἰ δ ' ἕλιξ ἐντέρου κατωλισθηκέναι τύχοι , ἀπὸ τῶν κενεώνων ἀρξάμενοι τοῦ | ||
ἀποβολῇ τοῦ ω λάψ , ὡς φυλάξω φύλαξ , ἑλίξω ἕλιξ , καὶ κατὰ ἀναδιπλασιασμὸν λάλαψ , μετὰ προσθέσεως τοῦ |
ταῦτα δείξομεν , ὅτι ποιεῖταί τινα καὶ δευτέραν ἀνωμαλίαν ἡ σελήνη παρὰ τὰς πρὸς τὸν ἥλιον ἀποστάσεις μεγίστην μὲν γινομένην | ||
καὶ λοιπὴ ἄρα ἡ ΛΒ περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ ἀπογειοτάτου κατὰ τὸν ἐκκείμενον μέσον χρόνον τῆς δευτέρας |
ψυχῆς ἦλθε δύναμις , ἀὴρ δὲ πᾶς καὶ αἰθὴρ καὶ οὐρανὸς σύμπας ψυχῆς ἄμοιρος , ἀλλ ' ἐκεῖ ψυχαὶ ἀγαθαὶ | ||
ὀρφναίοιο πόλου χρυσήνιος ἠὼς ἀντολίας ἤνοιγεν , ἐδέχνυτο δ ' οὐρανὸς ὄρθρον : καὶ τότ ' ἀριστῆες Μινύαι νέκυν εἰσενόησαν |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
ἑξήκοντα ψήφοις . πόπανα : πλακούντια πλατέα καὶ λεπτὰ καὶ περιφερῆ . πρεσβύτερος Κόδρου : παροιμία ἐπὶ τῶν πάνυ παλαιῶν | ||
αὐτοῦ ἱστορεῖ οὕτως : πόα θαμνοειδής , ὀλίγα φύλλα ἔχουσα περιφερῆ , μείζονα ἡδυόσμου , μέλανα , λιπαρά , ἐγγίζοντα |
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
ἐν δευτέρῳ τῶν Φυσικῶν καὶ Ἀπολλόδωρος . γίνεσθαι μέντοι τὸ κωνοειδὲς τοῦ ἀέρος πρὸς τῇ ὄψει , τὴν δὲ βάσιν | ||
τοῦ ἡμίσους λάμπεται , ἵνα καὶ τὸ ἀπορρέον αὐτῆς σκίασμα κωνοειδὲς ἀποτελῆται , τὸ δὲ ἐπὶ θάτερα ἀντεκβαλλόμενον ἐπ ' |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
παρούσης ἴχνη ζητεῖς : ἐπὶ τῶν ἀδήλων ⋮ Ἡ γὰρ ἄρκτος χειμῶνος μὲν ἀποτίκτει , καὶ φωλεύει τεκοῦσα , καὶ | ||
ὁ χερσαῖος πόδας μὲν ἔχει πενταδακτύλους , καθάπερ καὶ ἡ ἄρκτος , ῥύγχος ὑός , ὀδόντας οὓς μὲν προβάτου , |
κατὰ τοῦτον γινομένου τὸν κύκλον πρὸς αἴσθησιν , ὁ δὲ χειμερινὸς διὰ τὸ τὸν ἥλιον κατὰ τοῦτον γινόμενον τὸν κύκλον | ||
, καὶ ὁ ἔσχατος τοῦ Ποταμοῦ ἑσπέριος ἀνατέλλει . Εὐδόξῳ χειμερινὸς ἀήρ . κεʹ . ὡρῶν ιγ ∠ ʹ : |
περὶ μὲν τοῦ Δράκοντος οὕτως γράφει : Μεταξὺ δὲ τῶν Ἄρκτων ἐστὶν ἡ τοῦ Ὄφεως οὐρά , τὸν ἄκρον ἀστέρα | ||
τὸ δὲ μέσον αὐτοῦ πρὸς τῇ καμπῇ τοῦ διὰ τῶν Ἄρκτων Ὄφεως . Πάλιν ἐπὶ τῆς Κασσιεπείας ὁ μὲν Εὔδοξος |
τὴν διχομηνίαν : καὶ πάλιν ἀμφίκυρτος μετὰ τὴν διχομηνίαν , διχότομος δὲ περὶ τὴν κγην , μηνοειδὴς δὲ περὶ τὰ | ||
ἐπιδέχεται καὶ ὅτι ἐδυάσθη καὶ ἐδιχοτομήθη : ἡμίτομος γὰρ καὶ διχότομος λέγεται . Ὅτι ἡ τριὰς ἐξαίρετόν τι παρὰ πάντας |
: πάσῃ δ ' ἐπὶ νυκτὶ ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο , τόσσαι δ ' ἀντέλλουσι : τόσον δ ' | ||
οἱ ἀκροτάτοισι φαείνονται περὶ ποσσίν : ἄντυξ δ ' αὖ κύκλοιο μέσην διὰ χεῖρα Βοώτου τέμνει ὑπ ' ἀγκῶνος σκαιοῦ |
ἀριστερῶν . ἔστι δ ' ἡ ἔκφυσις αὐτῶν ἰσχνὴ καὶ πλατεῖα , κατὰ γραμμὴν ἐγκαρσίαν ἐπ ' ὦτα φερομένη : | ||
σεμνότητος καὶ ἔννοιαι . Λέξις δὲ σεμνὴ πᾶσα μὲν ἡ πλατεῖα καὶ διογκοῦσα κατὰ τὴν προφορὰν τὸ στόμα , ὥστε |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
, περιαιρετέον αὐτήν . Ἐκ γενετῆς ἐνίοις ἡ βάλανος οὐ τέτρηται κατὰ φύσιν , ἀλλ ' ὑπὸ τῷ κυνὶ καλουμένῳ | ||
οὐδέν : ὅταν δὲ γένηταί τινι αὐτῶν παιδίον , οὐ τέτρηται τὴν πυγὴν οὐδὲ ἀποπατεῖ , ἀλλὰ τὰ μὲν ἰσχία |
τῆς ἀρετῆς οὐ διαπηδῶσα τὰς διὰ μέσου φύσεις , ἀλλὰ κατιοῦσα ἠρέμα ἀπὸ τῶν ἀρίστων ἐπὶ τοὺς καταδεεστέρους . Καὶ | ||
βίων ὧν ἕνα αἱρεῖται ἡ ψυχὴ πρώτως ἐκ τοῦ νοητοῦ κατιοῦσα . Διὰ ταῦτα καὶ ἄλλα τοιαῦτα πολλὰ οὐκ ἀξιῶν |
φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
ἐκείνῃ κινουμένη ἀπ ' ἀνατολῶν ἐπὶ δυσμάς : ὁ δὲ λοξὸς οὗτος κύκλος ἐγκεκλίσθαι πρὸς τὸν μέγιστον τῶν ἐν τῇ | ||
οὗ ἐστιν τὰ Α , Γ σημεῖα : ὁ δὲ λοξὸς τῆς σελήνης ἐφ ' οὗ ἐστιν τὰ Δ , |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
, καί τι τῆϲ τοῦ πνεύμονοϲ οὐϲίαϲ ἢ βρόγχιον ἢ φλὲψ ἀνενεχθήϲεται : οἶδα δέ τινα τῶν ἐκ τοῦ πνεύμονοϲ | ||
μονοειδῆ , ἄρτον καὶ ὕδωρ , καὶ ἐκ ταύτης τρέφεται φλὲψ ἀρτηρία σὰρξ νεῦρα ὀστᾶ καὶ τὰ λοιπὰ μόρια . |
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
πολλοὶ καὶ ἀπείριτοι οὐρανοῦ εἴσω δινεῦνται , τοὺς αὐτὸς ἀεὶ σφαίρης στροφάλιγγι τεύχει ἑλισσομένων ἄστρων κατ ' ἀπείριτον οἶμον . | ||
τὰς ἑαυτῶν ἀποφαίνεσθαι γνώμας . , εἰ δ ' εὐκύκλου σφαίρης ἐναλίγκιον ὄγκωι τὸ ἓν ὄν φησι [ Β , |
ʹδ . Νῆσοι δὲ παράκεινται τῇ Συρίᾳ ἥ τε Ἄραδος ἐπέχουσα μοίρας . . . . ξη λδ ∠ ʹ | ||
οὖν Διοσκουριὰς ἐν κόλπῳ τοιούτῳ κειμένη καὶ τὸ ἑωθινώτατον σημεῖον ἐπέχουσα τοῦ σύμπαντος πελάγους , μυχός τε τοῦ Εὐξείνου λέγεται |
. , . , , . Φωνή ἐστιν ἀὴρ πεπληγὼς αἰσθητὸς ἀκοῇ τὸ ὅσον ἐφ ' ἑαυτῷ ἐστιν . πᾶσα | ||
ἤρτηται οὖν ὁ νοητὸς κόσμος τοῦ θεοῦ , ὁ δὲ αἰσθητὸς τοῦ νοητοῦ , ὁ δὲ ἥλιος διὰ τοῦ νοητοῦ |
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς | ||
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν , |
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |