| προσδοκῶσα σαρκικῶς αὐτῷ συμμιγῆναι , αὐτὸς δὲ ὡς ἰδίαν μητέρα περιλαμβάνων , καὶ τοῖς ὀφθαλμοῖς περιλάμπων οὓς ἐθήλασε μασθούς , | ||
| μὲν τοῦ φάναι ὃν ἀριθμὸς πρὸς ἀριθμὸν ἐπλεόναζεν ὁ ὅρος περιλαμβάνων καὶ τὰ μὴ συμμέτρους ἔχοντα τὰς πλευράς , διὰ |
| ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
| ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
| , οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
| . ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
| Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
| ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
| καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
| καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
| ἐστὶν ἡ ηθʹ τοῦ αβγδʹ κύκλου καὶ ὁ ηζθʹ κύκλος ὀρθός ἐστι πρὸς τὸν αβγδʹ κύκλον : κύκλου δή τινος | ||
| , τουτέστιν ἀνίεσθαι , ἀλλὰ τὰ μέσα καὶ ὡς ὁ ὀρθός , ἀλλ ' ἀναγκαῖον διορίσασθαι τόν τε ὀρθὸν λόγον |
| αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
| ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
| τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι | ||
| κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι |
| κύκλῳ . ἀλλὰ καὶ παράλληλος : ὁ ΑΒΓ ἄρα κύκλος ἐφάπτεται καὶ ἑτέρου κύκλου τοῦ ΒΗ ἴσου τε καὶ παραλλήλου | ||
| πολλῶν τῶν κατ ' ἀλήθειαν σύν τισι Μούσαις καὶ Χάρισιν ἐφάπτεται ἑκάστοτε . Περὶ δὲ τῆς ἐρωτικῆς καὶ μουσικῆς τί |
| ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ | ||
| ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ |
| ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν | ||
| κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου |
| δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
| σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
| ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ δύο : ὅπερ ἐστὶν ἀδύνατον | ||
| ὡς ἀληθῶς τὰ πράγματα , ποτὲ δὲ ἀμφότερα , καὶ τέμνει καὶ δοκεῖ τέμνειν . κείσεται δὲ αὐτοῦ καὶ παραδείγματα |
| χαλκεύς , οὐ ποιεῖ τὸν χαλκόν , οὕτως οὐδὲ τὴν σφαῖραν , τουτέστι τὸ εἶδος αὐτὸ καθ ' αὑτό , | ||
| ἑκάστῳ τῶν τριῶν πλανήτων Ἄρεος καὶ Ἀφροδίτης καὶ Ἑρμοῦ προσετίθει σφαῖραν , τίνος ἕνεκεν προσετίθει , συντόμως καὶ σαφῶς ὁ |
| πάντως δὲ ὁ τῶν λόγων νόμος καὶ τὸ τῶν ἐπιστολῶν περιλαμβάνει μέρος . τότε οὖν συνέστελλέ μοι τὴν ἐπιστολὴν ὁ | ||
| τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν γινόμενος , ὅτι περιλαμβάνει τὰ ἀειφανῆ τῶν ἄστρων μηδενὸς ἁπλῶς παρὰ ταύτοις ἢ |
| ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
| μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
| τελειοτάτη ἡ δὶς διὰ πασῶν . ἐκδηλότερόν γε μὴν ἡ σφαιρικὴ δι ' ἀριθμητικῆς τυγχάνει πάντων τῶν προσηκόντων αὐτῇ σκεμμάτων | ||
| ἀστρονομία περὶ μόνα τὰ οὐράνια σώματα καταγίνεται , ἡ δὲ σφαιρικὴ περὶ πᾶσαν σφαῖραν καταγίνεται : λέγει γὰρ τὰ συμβαίνοντα |
| , ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
| κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
| ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
| ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
| ἥτις καὶ τὸ ἄστρον φέρει , περὶ λοξοῦ τινος κύκλου στρέφεται πόλους ἰδίους καθ ' ἕκαστον , ἐν ἴσῳ μέντοι | ||
| τε μάλιστα , δι ' ὀκτὼ μετρηθέντος πέντε μὲν ἔνδια στρέφεται καὶ ὑπέρτερα γαίης , τὰ τρία δ ' ἐν |
| πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
| γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
| καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
| ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
| , τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
| ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
| δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
| ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
| ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
| τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
| ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
| τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
| συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως . Ὑποδείγματος δὲ ἕνεκεν ὑποκείσθω τὸ ἀκριβὲς κέντρον τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου | ||
| πρὸς ἑκατέραν τῶν ΑΛ , ΛΚ λόγος ἔσται δοθείς . ὑποκείσθω καὶ πρὸς τὸ ΚΔ ἀπόστημα τῆς ΑΚ λόγος δοθείς |
| πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
| ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
| πρότερον ἄμεινον , ὡς τῶν ἀνθρώπων τὸ σῶμα τῶν μὲν ὁμαλῶς κέκρα - ται σύμπαν , ἐνίων δέ , καὶ | ||
| ἴση τῇ ΒΔ , καὶ διαπορευέσθω τὸ μὲν Ν σημεῖον ὁμαλῶς φερόμενον τὴν ΝΘ ἐν ὥραις δέκα , ἡ δὲ |
| ΑΒ , ΓΔ , καὶ ἐμπίπτουσα εἰς αὐτὰς ἡ ΕΖΗΘ ποιείτω τὰς ὑπὸ ΑΖΗ καὶ ὑπὸ ΓΗΖ δύο ὀρθῶν ἐλάσσονας | ||
| , καὶ ὁ μὲν α τὸν ε πολλαπλασιάσας τὸν η ποιείτω , ὁ δὲ β τὸν ζ πολλαπλασιάσας τὸν θ |
| καὶ ἐπὶ μὲν τῶν πρακτικῶν καὶ ἐνιαυσιαίων ἀφέσεων κατά τινας ἁρμονικοὺς ἀριθμοὺς εἰς τοὺς αὐτοὺς τόπους ἢ καὶ τοὺς ἀστέρας | ||
| ᾗ προηγεῖται ἡ μονάς . τὴν δὲ τετάρτην ὡς τοὺς ἁρμονικοὺς περιέχουσαν λόγους καὶ τὸν διὰ τεσσάρων τὸν καὶ ἐπίτριτοντρία |
| μίαν διάθεσιν ὑποκεῖσθαι καὶ ποικίλα ἐκκρίνεσθαι διαχωρήματα . οὕτως γὰρ ὑπόκειται εἷς πυρετὸς καὶ τῷ χρόνῳ κατὰ μέρος διάφορον ἐγέννησε | ||
| τὸ μέσον : οὐδὲν γὰρ μᾶλλον τὸ μέσον τῷ μείζονι ὑπόκειται ἢ οὐχ ὑπόκειται , καὶ οὐδὲν μᾶλλον τοῦ ἐλάττονος |
| ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
| πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
| δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
| διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
| . , . , , . Φωνή ἐστιν ἀὴρ πεπληγὼς αἰσθητὸς ἀκοῇ τὸ ὅσον ἐφ ' ἑαυτῷ ἐστιν . πᾶσα | ||
| ἤρτηται οὖν ὁ νοητὸς κόσμος τοῦ θεοῦ , ὁ δὲ αἰσθητὸς τοῦ νοητοῦ , ὁ δὲ ἥλιος διὰ τοῦ νοητοῦ |
| , ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον | ||
| , ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι |
| ἔσται ὀρθὸς πρὸς αὐτόν : καὶ ἐπεὶ ἑκατέρα τῶν ζδηʹ αδεʹ τὸν αζηʹ κύκλον διὰ τῶν πόλων τέμνει , ἴση | ||
| καὶ διὰ τῶν ηʹ θʹ μέγιστοι κύκλοι γεγράφθωσαν ἐφαπτόμενοι τοῦ αδεʹ κύκλου οἱ ληκεʹ μθκδʹ , ὥστε τὸ μὲν εηλʹ |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
| ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
| κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ | ||
| τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ : |
| ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
| ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
| τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
| . ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
| , ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον | ||
| ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ |
| περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
| λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
| ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ κῶνον καὶ ὁ ΕΒ κύλινδρος πρὸς τὸν ΖΔ κύλινδρον | ||
| καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον , οὕτως ὁ ΓΔΘ κῶνος ἢ |
| μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν | ||
| . καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ |
| μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
| ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
| κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
| γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
| . * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
| πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
| τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
| ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
| ἐκείνῃ κινουμένη ἀπ ' ἀνατολῶν ἐπὶ δυσμάς : ὁ δὲ λοξὸς οὗτος κύκλος ἐγκεκλίσθαι πρὸς τὸν μέγιστον τῶν ἐν τῇ | ||
| οὗ ἐστιν τὰ Α , Γ σημεῖα : ὁ δὲ λοξὸς τῆς σελήνης ἐφ ' οὗ ἐστιν τὰ Δ , |
| πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
| ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
| ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
| δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
| φυσᾶν . Κύκλοι δέ εἰσι τὸν ἀριθμὸν ιαʹ , ἀρκτικὸς ἀνταρκτικὸς τροπικοὶ δύο ἰσημερινὸς ὁρίζων μεσημβρινὸς ζωιδιακὸς γαλαξίας κόλουροι δύο | ||
| τέσσαρες δὲ ἐλάττονες , οὐδαμῶς ἀλλήλων ἐφαπτόμενοι , ἀρκτικὸς καὶ ἀνταρκτικὸς καὶ θερινὸς καὶ χειμερινός . καὶ ἄλλα τοιαῦτα ἐν |
| αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
| ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
| εἰ δὲ Ζεύς τοι τόν γε βιωσέμεν ἀρνήσηται , ἀλλὰ νόει σὺ τεῇσιν ἐνὶ φρεσίν , οὕνεκεν αὐτῷ ῥῆξε λίνον | ||
| ἐκπεριελθεῖν σε πάλιν κακοδαιμονίζοντας . σὺ δὲ τὸν τρίβωνα λεοντῆν νόει , τὸ δὲ βάκτρον ῥόπαλον , τὴν δὲ πήραν |
| ἄξων . ἀποδέδωκεν γὰρ ἂν αὐτὸ σὺν τῷ ἄξονι ὁ γεωμέτρης : ἀλλ ' εἴ τις ἄξων , οὗτος καὶ | ||
| ' ἀδυνάτου . οἷον ὡς ἐπὶ τοῦ παραδείγματος βουλόμενος ὁ γεωμέτρης δεῖξαι , ὅτι ἡ διάμετρος τῇ πλευρᾷ ἀσύμμετρός ἐστι |
| , πρὸ τῆς νοήσεώς ἐστι τέλειος καὶ οὐ τῇ νοήσει τελειούμενος . Εἰ δ ' ὅτι ἐνέργειά ἐστιν , ἀλλ | ||
| τοιοῦτον ὄν . Τοῦτο δὴ καὶ αὐτὸ ὁ δυνάμει νοῦς τελειούμενος καὶ αὐξόμενος νοεῖ . Ὥσπερ γὰρ ἡ περιπατητικὴ δύναμις |
| περιφερεῖς ὁρῶνται , ἀναγκαίως καὶ τούτου συμβαίνοντος . Αὐτὴ γὰρ σφαιροειδὴς ὑπάρχουσα περιπίπτει σκιᾶς σχήματι κωνοειδεῖ , καὶ οὕτως αἱ | ||
| ὑποθέσεις εἰσάγειν καὶ φυσικὰς εὖ λέγεται , καὶ ὅτι εἰ σφαιροειδὴς ἡ γῆ καθάπερ καὶ ὁ κόσμος , περιοικεῖται , |
| ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
| κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
| τὴν ἀνατολὴν φερόμενα . Τὰ μὲν οὖν πρῶτα αὐτῶν καλεῖται ἀπλανῆ , ταῦτα δὲ πλανώμενα , ἐπειδὴ ἄλλοτε ἐν ἄλλοις | ||
| ἐν ἄλλοις μέρεσι τοῦ κόσμου φαντάζεται . Τὰ μὲν οὖν ἀπλανῆ ἀπεικάσειεν ἄν τις ἐπιβάταις ἐπὶ νεὼς φερομένοις , ἐν |
| Ἐνδέχεται . . καὶ δικαίως κἀδίκως : Τὸ δικαίως ἄλλως προσείρηται ἀντὶ τοῦ πάσῃ τέχνῃ καὶ μηχανῇ καὶ παντὶ τρόπῳ | ||
| καὶ ἀγρίῳ . τὰ μὲν γὰρ ἔχοντα τιθασεύεσθαι φύσιν ἥμερα προσείρηται , τὰ δὲ μὴ ' θέλοντα ἄγρια . Καλῶς |
| τε τό τε σθένος Ὠρίωνος καὶ τὴν Ἄρκτον τὴν ἀεὶ στρεφομένην περὶ τὸν ἀειφανῆ πόλον τὸν βόρειον καὶ διὰ τὸ | ||
| καὶ ἔταξε ] τὰ Χερουβὶμ καὶ τὴν φλογίνην ῥομφαίαν τὴν στρεφομένην , φυλάσσειν τὴν ὁδὸν τοῦ ξύλου τῆς ζωῆς „ |
| ἄλλου κατηγοροῖ : ὁ δὲ αὐτὸ νοῶν ὅτι ἀγαθὸν πάντως νοήσει τὸ ἐγώ εἰμι τὸ ἀγαθόν : εἰ δὲ μή | ||
| , οὐδὲ τὸ μὴ πεφυκὸς νοεῖσθαι τῇ οὐσιώδει καὶ πολλῇ νοήσει , ὡς ἐπὶ τοῦ ἑνός , ἀλλὰ τὸ μηδεμίαν |
| πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
| τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| μοίρᾳ , τόδ ' αὐτὸ καὶ ἐπὶ τῶν ἄλλων ζωδίων νοείσθω , ὡς θέμις , συγκρίνοντός μου ἢ ὡροσκοποῦντος ♌ | ||
| δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ νοείσθω πρῶτον ἐπ ' αὐτοῦ τοῦ ἀπογείου τὸ κέντρον τοῦ |
| ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
| τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
| τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
| , οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
| ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
| ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
| ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
| , τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
| Μο ρ : καὶ φανερὰ ἡ ἀπόδειξις . Ἄλλως . Ἔστω κύβος ὁ αος , ὁ δὲ τετράγωνος ὁ βος | ||
| γὰρ δι ' ἀδυνάτου εἰσάγει τὸ ἀντικείμενον τῷ ἀναιρουμένῳ . Ἔστω γὰρ τὸ μὲν Α . οὐ καλῶς εἰλημμένοι εἰσὶν |
| ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν : | ||
| τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα |
| δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
| τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
| . Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
| τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
| ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
| ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
| περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
| ! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
| ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
| οὗ τοῖς πολλοῖς τὸ εἶναι ὑπάρχει , ὥσπερ καὶ ἑνὰς νοητή , ἐξ ἧς ἡ συνέχεια πᾶσι τοῖς ἐνταῦθα . | ||
| εἴδη τῶν οὐσιῶν διατρίψει : τῶν δὲ οὐσιῶν ἡ μὲν νοητή τε καὶ ἀίδιος , ἡ δὲ αἰσθητή τε καὶ |
| οὕτω φωτίζει , ὥστε καὶ τὰ τῶν ἄλλων χρώματα ποιεῖν ὁρατά , τὸν πόρρω δὲ οὕτως , ὥστε ἑαυτὸ μόνον | ||
| ὅπῃ τύχοι φέρεται , καὶ ὀφθαλμοὶ πρὸς πάντα ἀναπεπταμένοι τὰ ὁρατά , καὶ ἃ μὴ θέμις ὁρᾶν , ἐξώκειλαν , |
| ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν | ||
| ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος |
| τὸ εἶδος , ἐπὶ γραμμῆς δὲ οὐκέτι . ἄλλη δὲ ἀκίνητος , καὶ ταύτην φασί τινες εἶναι χωριστήν , οἱ | ||
| ἐστὶ πρώτη φιλοσοφία : εἰ δὲ καὶ ἔστι τις οὐσία ἀκίνητος , ὥσπερ καὶ ἔστιν , αὕτη ἐστὶ προτέρα φιλοσοφία |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς | ||
| τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν |
| διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
| ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
| ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
| σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
| τὸ ἐν τριπλεύροις ὀρθογώνιον τρίγωνον . ἐπεὶ οὖν ὀρθογώνια ἐν τετραπλεύροις τὰ καὶ τὰς δ ὀρθὰς ἕκαστον ἔχοντά φαμεν , | ||
| δὲ ἰσογώνια τὰ ὀρθογώνια ; διότι ὁρίζεται οὗτος τὸ ἐν τετραπλεύροις ὀρθογώνιον λέγων τὸ τὰς γωνίας ἔχον ὀρθὰς δηλονότι καὶ |
| ἀδύνατον . οὐκ ἄρα τὸ Γ σημεῖον κέντρον ἐστὶ τῆς σφαίρας . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλο πλὴν | ||
| ΑΒΓΔ κύκλον καὶ διὰ τοῦ κέντρου αὐτοῦ τε καὶ τῆς σφαίρας . Ἐν σφαίρᾳ οἱ μέγιστοι κύκλοι δίχα τέμνουσιν ἀλλήλους |
| τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
| εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
| ἔξωθεν οὐ πάνυ ἰσχυρή : ἔκλυσις σώματος δεινή : φωνὴ κεκλασμένη , ἔργον ἀκοῦσαι , σαφὴς δέ : κρόταφοι ξυμπεπτωκότες | ||
| χολώδεα : χρῶμα κοπρῶδες , ὅσον ἀπέσταξεν : ἡ φωνὴ κεκλασμένη : ἐν τῇσιν ἐπιστροφῇσι βαρύς : ὀφθαλμοὶ κοῖλοι : |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| μουσικὴν καὶ ἀριθμητικήν . καὶ ἡ μὲν ἀριθμητικὴ τοὺς ἀριθμοὺς ἐπισκέπτεται , ἡ δὲ γεωμετρία τὰ μεγέθη καὶ τὰ σχήματα | ||
| διάνοια παρεῖται ἐξετάζεσθαι ἐν συλλογισμῷ , κατὰ δὲ τὸ λεληθὸς ἐπισκέπτεται καὶ αὐτή . Ζητοῦσι δέ τινες , τίνος χάριν |
| . Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος | ||
| ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ |
| συγκαθεύδοντι καὶ διηγεῖτο ἕωθεν , ὡς ἀφεῖλον αὐτοῦ τὸν ὕπνον στρεφόμενος καὶ λακτίζων καί τι φθεγγόμενος μεταξὺ ὁπότε καθεύδοιμι : | ||
| πρώτῳ . Λύγη . σκιά , ἀπόκρυψις . Λυγιζόμενος , στρεφόμενος , καμπτόμενος , ἀπὸ τῶν λύγων : λύγος δὲ |
| Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
| καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
| κατὰ τοῦτον γινομένου τὸν κύκλον πρὸς αἴσθησιν , ὁ δὲ χειμερινὸς διὰ τὸ τὸν ἥλιον κατὰ τοῦτον γινόμενον τὸν κύκλον | ||
| , καὶ ὁ ἔσχατος τοῦ Ποταμοῦ ἑσπέριος ἀνατέλλει . Εὐδόξῳ χειμερινὸς ἀήρ . κεʹ . ὡρῶν ιγ ∠ ʹ : |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| δ ' αὐτῶν ὁ μὲν ἀρκτι - κός τε καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δ ' | ||
| ἀνατολῶν . κύκλοι πέντε , ἀρκτικὸς ὁ καὶ βόρειος καὶ ἀειφανής , θερινὸς τροπικὸς ὅτε ὁ ἥλιος Καρκίνῳ , ἰσημερινὸς |