τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ
9577050 δωδεκαεδρου
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων
8423673 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
8274903 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
8245612 κυβου
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠
8185568 ὀκταεδρου
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον
7942106 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
7933558 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
7769459 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
7719862 εἰκοσαεδρον
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι
7698712 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
7642407 κυλινδρου
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα
7452927 τριγωνου
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ
7356385 γνωμονος
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς
7309587 στερεου
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς
7194893 τετραπλευρου
. Ταύρου θ νο α Ϛʹ τοῦ ἐν τῷ αὐχένι τετραπλεύρου τῆς προηγουμένης πλευρᾶς ὁ νοτιώτερος . . . .
τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ Ἰχθὺς
7156382 ἀξονος
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν .
7150960 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
7094898 πολυγωνου
τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν
ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν
7067314 πενταγωνων
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν
7065112 μηνισκου
τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι
7054767 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
7052694 κυλινδρος
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς
6943405 ἰσοπλευρων
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον ,
6920656 ὀρθογωνιου
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου
6896815 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
6892398 διοριζοντος
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν .
6879676 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
6872767 κωνος
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν
6868203 δεδειγμενου
τῶν ΑΒ , ΑΓ τοῦ ἀπὸ τῆς ΔΕ . Τούτου δεδειγμένου δεικτέον , ὅτι ὁ αὐτὸς κύκλος περιλαμβάνει τό τε
ἀνάγεται τῆς φιλοσοφίας διὰ τὸ εἰδέναι ποῦ μάλιστα συντελεῖ . δεδειγμένου δὲ τίνος ἕνεκα ταῦτα προλέγουσιν οἱ φιλόσοφοι , καιρὸς
6858263 ἐγγραφομενου
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ
6819999 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
6799889 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
6792851 ἐγγραφομενων
παρὰ δὲ τὸ αὐτὸ χαίρω χάρτης , χωρητικὸς ὢν τῶν ἐγγραφομένων . Φιλόξενος ἐν τῷ Περὶ μονοσυλλάβων ῥημάτων . .
ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων . Ἔστω κύκλος ὁ ΑΒΓΔΕ , καὶ εἰς τὸν
6734225 πλευρα
; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ
νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ
6729194 ἐπιπεδος
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε
6718791 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
6693630 τεμνουσων
μείους ἐμπεριφερομένων , γραμμῶν δὲ τούτους ὀρθῶν τε καὶ λοξῶν τεμνουσῶν ἀπὸ τοῦ κέντρου μὲν ἠργμένων , ἔτι τὰ πέρατα
. τοῦτο τὸ θεώρημα δείκνυσιν , ὅτι δύο εὐθειῶν ἀλλήλας τεμνουσῶν αἱ κατὰ κορυφὴν γωνίαι ἴσαι εἰσίν , ηὑρημένον μέν
6680943 Δεικνυται
τοῦ παρανομήσαντος ἦλθε δίκην , ὅπερ ἐστὶ τοῦ δικανικοῦ . Δείκνυται δὲ καὶ ἐκ τῆς φύσεως , καθὸ προηγεῖσθαι πάσης
ἵδρυμα , καὶ ναὸς ἐν τῷ τεμένει τῆς θεοῦ . Δείκνυται δὲ καὶ βάσις ἀρχαία κατὰ τὴν εἴσοδον , ἐν
6641806 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6633030 ἐκκοπεως
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ
6628550 συναμφω
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ
6602211 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
6589152 τετραγωνου
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν
6587952 ΕΚΗ
κοινὴ τομὴ ἡ ΖΘ , τοῦ δὲ ΕΖΗΘ καὶ τοῦ ΕΚΗ κοινὴ τομὴ ἡ ΕΗ . καὶ ἐπεὶ ἐν σφαίρᾳ
' οὗ ΕΚΒΗ περιλήψεται κύκλος . : τὸ μὲν γὰρ ΕΚΗ τρίγωνον περιλήψεται κύκλος : ἔχομεν γὰρ ἐν τῷ πέμπτῳ
6568702 αδεʹ
ἔσται ὀρθὸς πρὸς αὐτόν : καὶ ἐπεὶ ἑκατέρα τῶν ζδηʹ αδεʹ τὸν αζηʹ κύκλον διὰ τῶν πόλων τέμνει , ἴση
καὶ διὰ τῶν ηʹ θʹ μέγιστοι κύκλοι γεγράφθωσαν ἐφαπτόμενοι τοῦ αδεʹ κύκλου οἱ ληκεʹ μθκδʹ , ὥστε τὸ μὲν εηλʹ
6563021 αβγδʹ
οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ κύκλον . Οἱ τῶν αὐτῶν ἐφαπτόμενοι μέγιστοι κύκλοι ὧν
εἰσι τῶν ἀληθινῶν . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς
6556383 ἀειφανης
δ ' αὐτῶν ὁ μὲν ἀρκτι - κός τε καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δ '
ἀνατολῶν . κύκλοι πέντε , ἀρκτικὸς ὁ καὶ βόρειος καὶ ἀειφανής , θερινὸς τροπικὸς ὅτε ὁ ἥλιος Καρκίνῳ , ἰσημερινὸς
6553330 διαιρεθεντος
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ
6551422 ἑτερομηκους
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως
6543649 δεκαγωνου
πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ
λόγον ἔχει ὃν ἡ τοῦ ἑξαγώνου πλευρὰ πρὸς τὴν τοῦ δεκαγώνου . καὶ δύναται ἀμφο - τέρας ἡ ΖΚ διὰ
6512563 τρηματος
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν
6510551 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
6507502 περιλαμβανοντος
τὰ δ : τὰ γὰρ δ ἐστὶ τὸ ὕψος τοῦ περιλαμβάνοντος κυλίνδρου τὴν σφαῖραν , δύο ὄντων διαμέτρων τῆς σφαίρας
ὥστε ἡ ΑΛ ἐκ τοῦ κέντρου ἐστὶν τοῦ κύκλου τοῦ περιλαμβάνοντος τὸ τρίγωνον τοῦ εἰκοσαέδρου , ἡ δὲ ΚΛ ἡ
6498552 ΔΕΓ
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ
6484099 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6478086 ὀνομαζομενου
, κώμη Λυκίας . ἐκλήθη δὲ ἀπό τινος τράγου οὕτως ὀνομαζομένου , ὃς ἀπαλλασσόμενος ἀπὸ τοῦ αἰπολίου ἤρχετο τὸν πώγωνα
τούτων τὴν ἀκριβολογίαν ποιησόμεθα . † παντὸς μέτρου καὶ τοῦ ὀνομαζομένου κανὼν ποδ . ἐπιπέδου λιθικοῦ πήχ . , ἐφ
6471663 ΑΕΓΔ
ΑΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἔστω ὑπὸ γῆν τὸ ΑΔΓ ἡμικύκλιον ,
ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν τοιούτων κϚ ιϚ οἵων ἐδείχθη τὸ
6470082 τμηματος
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας .
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν
6469482 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6463033 ὀκταεδρον
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ
6455972 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
6440921 τεμνοντος
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ
6438510 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6433208 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
6413322 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
6401161 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
6398604 πυραμις
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν
6393471 αβγʹ
. Διὰ γὰρ τῶν πόλων τῆς σφαίρας κύκλος μένων ὁ αβγʹ ὁριζέτω τό τε φανερὸν τῆς σφαίρας καὶ τὸ ἀφανές
δὲ αἰεὶ φανερῶν ἔστω ὁ αδʹ , ὧν ἐφάπτεται ὁ αβγʹ ὁρίζων , καὶ γεγράφθω τις μέγιστος κύκλος ἐφαπτόμενος τῶν
6391820 διαιρεθῃ
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν
6391420 ἑξαγωνου
, ἡ ΟΕ ἄρα δεκαγώνου ἐστὶ πλευρά . καὶ ἐπεὶ ἑξαγώνου . , ] ἴση γὰρ ὑπόκειται τῇ ἐκ τοῦ
ἐπὶ τὰ ἕτερα μέρη ὡς ἡ ΦΨ , καὶ ἀφῃρήσθω ἑξαγώνου μὲν ἡ ΦΧ , δεκαγώνου δὲ ἑκατέρα τῶν ΦΨ
6390551 ἰσοσκελη
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν
6382907 ἐγγεγραφθωσαν
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν ,
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ
6375328 ΒΗΜΛ
, οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ στερεοῦ
ἐπιπέδων ἴσων τὸ πλῆθος περιέχεται . ὅμοιον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεὸν τῷ ΕΘΠΟ στερεῷ . τὰ δὲ ὅμοια στερεὰ
6366878 ἰσοπλευρα
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν
6356251 ΜΤ
τὸ Τ . διὰ τὰ αὐτὰ δὴ δειχθήσεται καὶ ἡ ΜΤ ἴση τῇ ΤΔ καὶ ἡ ΤΔ τῇ . .
παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΝΤ πρὸς τὸν ἀπὸ τοῦ ΜΤ παραλληλογράμμου κύλινδρον περὶ τὸν αὐτὸν ἄξονα . ὁμοίως δὲ
6344620 πορισμα
πόρισμά τι ἐκ τῶν εἰρημένων συνάγει . ἔστι δὲ τοιοῦτον πόρισμα ὅτι φανερὸν γέγονεν ἐκ τῶν εἰρημένων ὡς μία κατάφασις
τῇ εἰς ἀδύνατον ἀπαγωγῇ συνανεφάνη . τὸ δὲ νῦν προκείμενον πόρισμα διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς
6340708 χιτωνοϲ
ὄπιϲθεν προϲπεφυκὼϲ αὐτῷ , ἐκ τοῦ περιτοναίου τὴν γένεϲιν ἔχων χιτῶνοϲ . τὸ δὲ μέροϲ τοῦτο , καθ ' ὃ
χρηϲόμεθα βοηθήμαϲιν . Τὸ μὲν ϲταφύλωμα κύρτωϲίϲ ἐϲτι τοῦ κερατοειδοῦϲ χιτῶνοϲ ἀτονήϲαντοϲ ϲὺν τῷ ῥαγοειδεῖ , ποτὲ μὲν διὰ ῥευματιϲμόν
6333564 πολου
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα :
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων :
6327072 τετραπλευρων
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα ,
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ
6326552 ΘΚΛ
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ ,
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ
6325493 τραπεζιον
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ
6323269 ἑκτου
πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [
οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος
6321050 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
6319190 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6301932 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
6292492 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6286258 ΛΑ
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου
6286101 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
6283958 τραπεζια
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος
6283526 ΕΖΗΘ
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
6272088 ὑποστελλομενου
γαιῶν . ἄμπωτις δέ ἐστιν οἱονεὶ ἀνάποσις καὶ ἀναρρόφησις , ὑποστελλομένου τοῦ ὕδατος εἰς μυχούς τινας τῆς ὑποκειμένης γῆς ,
καὶ τὰ ὅμοια . . εἴπερ οὖν τὸ ἔνθα καταλιμπάνεται ὑποστελλομένου τοῦ δε , ἴδιον δ ' ἐστὶ τοῦτο τῶν
6271094 ΑΕΓ
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν
6269469 θεωρηματος
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος ,
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [
6266279 σκυταλων
καρποφορήσει . Φυτεύεται δὲ ἀπὸ ἰσημερίας , οὐ μόνον ἀπὸ σκυταλῶν καὶ κλάδων , ἀλλὰ καὶ ἀπὸ παρασπάδων αὐτοῤῥίζων ,
χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , περιαγωγίδων , σκυταλῶν , ἐπιτονίων , ἀντηρίδων , σφηνοειδῶν , μηνοειδῶν ,
6265464 ΗΖΘ
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα
6261455 ΑΔΕ
τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ
τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον
6259443 ΓΗΔ
ἤτοι ἐντὸς αὐτοῦ πεσεῖται ἢ ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ
καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
6258581 ΜαΜβ
μὲν τοῦ ΕΖ ἄξονος βάρος ἐξάψωμεν , ἐκ δὲ τοῦ ΜαΜβ τυμπάνου τὴν ἕλκουσαν δύναμιν τὰ δʹ τάλαντα , οὐδοπότερον
ΜαΜβ πρὸς τὸ ἀπὸ ϘΩ , τουτέστιν τὸ πεντεκαιδεκάκις ἀπὸ ΜαΜβ πρὸς τὸ πεντεκαιδεκάκις ἀπὸ ϘΩ . καὶ ἐπεὶ ἔχομεν
6255550 φλιαι
, θλιαὶ , καὶ μεταθέσει τοῦ θ εἰς φ , φλιαί . Φρούριον . οὐκ ἀπὸ τοῦ φρουρός : ἦν
: οὕτω φησὶ καλεῖσθαι Ἐπικλῆς τὸ στίμι καὶ Νίγρος . φλιαί : τὰ ἑκατέρωθεν τοῦ βάθρου ὄρθια ξύλα , ἐν
6253238 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ

Back