τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι
7152129 γνωμονος
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς
7127898 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
7080786 κυβου
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠
7065112 εἰκοσαεδρου
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ
6917940 ΓΖΑ
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ
6885290 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
6867729 ἡμικυκλιου
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω ,
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ
6805288 κυλινδρου
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα
6766087 δωδεκαεδρου
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων
6609498 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6527243 ὀκταεδρου
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον
6509749 ἀξονος
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν .
6483925 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
6472660 ἐγγραφομενου
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ
6437717 ἐκκοπεως
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ
6376575 κυλινδρος
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς
6372555 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
6336555 τετραπλευρου
. Ταύρου θ νο α Ϛʹ τοῦ ἐν τῷ αὐχένι τετραπλεύρου τῆς προηγουμένης πλευρᾶς ὁ νοτιώτερος . . . .
τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ Ἰχθὺς
6327018 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6325599 ΔΕΓ
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ
6295716 πολου
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα :
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων :
6293574 τετραγωνισμον
τοσοῦτον ἕξεως γεωμετρικῆς ἦλθεν , ὡς ἐπιχειρῆσαι εὑρεῖν τὸν κύκλου τετραγωνισμόν . . . . . τὰ γὰρ ψευδογραφήματα οὐκ
ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι .
6287905 τεμνοντος
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ
6275707 ΜΤ
τὸ Τ . διὰ τὰ αὐτὰ δὴ δειχθήσεται καὶ ἡ ΜΤ ἴση τῇ ΤΔ καὶ ἡ ΤΔ τῇ . .
παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΝΤ πρὸς τὸν ἀπὸ τοῦ ΜΤ παραλληλογράμμου κύλινδρον περὶ τὸν αὐτὸν ἄξονα . ὁμοίως δὲ
6262032 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
6254539 βορειου
πνεῖ . ιʹ . ὡρῶν ιε : ὁ λαμπρὸς τοῦ βορείου Στεφάνου ἑῷος ἀνατέλλει . Ἱππάρχῳ νότος . ιαʹ .
τινες ποιοῦντες , εἰ μὲν ἄῤῥεν τις βουληθείη τεχθῆναι , βορείου ὄντος τοῦ ἀέρος τὴν ὀχείαν κατασκευάζουσιν : εἰ δὲ
6235517 τετραγωνικης
δὲ τούτου γνωρίζονται ἀπὸ τῆς τοῦ Ἡλίου ἀφέσεως ἕως τῆς τετραγωνικῆς αὐτοῦ στάσεως διὰ τὸ εἶναι αὐτὸν ἐπίκεντρον καὶ τὴν
, καὶ διοικεῖ ὁ Ἄρης τοὺς τρεῖς κλήρους διὰ τῆς τετραγωνικῆς αὐτοῦ ἀκτῖνος καὶ τοῦ ἐπιμερισμοῦ τοῦ Κρόνου ἔτη β
6203111 τροπικου
ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν
' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν
6202359 βρογχου
ἐστιν . Κεφ . ιβʹ . [ Πρὸς τὰ τοῦ βρόγχου καὶ φάρυγγος πάθη . ] [ αʹ . Πρὸς
, ὥσπερ τῷ ἐμπύῳ , ὁ ῥόος γένηται διὰ τοῦ βρόγχου καὶ τῶν ἀορτρέων , αἳ ξυνέχουσι τὸν πλεύμονα καὶ
6199714 περατος
τὸ ἔγγιστα τοῦ ἀπείρου ὅτι εἵλκετο καὶ ἐπεραίνετο ὑπὸ τοῦ πέρατος . ἀλλ ' ἐπειδὴ κοσμοποιοῦσι καὶ φυσικῶς βούλονται λέγειν
τε ἀπείρου καὶ τοῦ πέρατος , κρατούσης ἀεὶ τῆς τοῦ πέρατος ἰδέας τοῦ ἀπείρου καὶ περιοριζούσης αὐτὴν ἐν ἑαυτῇ :
6197912 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6193490 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6185443 ζωιδιακου
ὅτι Οἰνοπίδης [ . , ] εὗρε πρῶτος τὴν τοῦ ζωιδιακοῦ λόξωσιν καὶ τὴν τοῦ μεγάλου ἐνιαυτοῦ περίστασιν , Θ
: Λαγωός , Προκύων . ἐν δὲ τῶι βορείωι τοῦ ζωιδιακοῦ κύκλου . βόρεια : Καρκίνος , Λέων , Παρθένος
6185188 γραφομενου
ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , καὶ ἀπὸ τοῦ Σ τῇ
, καίπερ ἐκ τοῦ εἴδω τοῦ διὰ τῆς ει διφθόγγου γραφομένου γεγονός : ἰθμός : ἱστίον : ἴσπω : ἴσχω
6181006 διοριζοντος
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν .
6179764 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
6178332 Ἐνγονασι
τούτῳ τῷ σχήματι τῆς ἐκφορᾶς ὁ Ἄρατος καὶ ἐπὶ τοῦ Ἐνγόνασι , λέγων οὕτως : μὲν ἄρ ' οἴη κνήμη
τοῦ Δράκοντος κεφαλήν , ἀλλ ' ἵνα τῇ θέσει τοῦ Ἐνγόνασι παρακολουθῶμεν , ὅπερ καὶ ἐπὶ ἄλλων πλειόνων ποιεῖ .
6174592 ὑπερκειμενα
καὶ μεγίστας ἐν τοῖς τοιούτοις τόποις ὑπάρχειν , ἐν οἷς ὑπερκείμενά ἐστιν ὄρη μεγάλα καὶ ὑψηλὰ καὶ δασέα , ἔχοντα
τῆς λαγόνος , ἐπειδὴ κενότερον δοκεῖ εἶναι ὡς πρὸς τὰ ὑπερκείμενά τε καὶ ὑποκείμενα . ὡς δὲ τῷ Γαληνῷ δοκεῖ
6171808 κυλινδρον
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ
6152813 ἀπολαμβανεται
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς
6098829 ἐπιπεδος
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε
6098089 ἱμαντος
δέοιτ ' ἂν σκευῶν ἀντλητῆρος , ἀντλίας , ἱμονιᾶς , ἱμάντος , κάλου , σχοινίου , κάδου , τροχαλίας ,
: κυρίως ἐπὶ τοῦ ζῴου ἀκουστέον : ἢ ἐπὶ τοῦ ἱμάντος τοῦ περιδεδεμένου τοῖς τραχήλοις τῶν κυνῶν . ὃς λύκως
6090497 ἀνταρκτικου
ἀρκτικοῦ καὶ ζῳδιακοῦ , τὸ δὲ νότιον μεταξὺ ζῳδιακοῦ καὶ ἀνταρκτικοῦ . ἀπαγγέλλει δὲ ἕκαστον κατὰ μῆκος καὶ πλάτος ,
ζῳδιακοῦ , τὸν δὲ νότιον ἑξῆς ἀπὸ ζῳδιακοῦ μέχρι τοῦ ἀνταρκτικοῦ , συντάσσων τὰ μὲν ἑξῆς καθ ' ἕν ,
6088599 τομευς
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ
6072990 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
6071284 Ὀφεως
τοῦ Κηφέως γράφεσθαι αὐτόν , καὶ διὰ τῆς καμπῆς τοῦ Ὄφεως , καὶ παρὰ τὴν οὐρὰν τῆς Μικρᾶς Ἄρκτου .
μέσον αὐτοῦ πρὸς τῇ καμπῇ „ τοῦ διὰ τῶν Ἄρκτων Ὄφεως . ” ὁ δὲ Ἄρατός φησιν : οἱ στάθμη
6067861 τρηματος
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν
6067821 γραψωμεν
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας .
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία
6055253 κολουρων
. Πάλιν δὲ ὁ Εὔδοξος διασαφεῖ καὶ τοὺς ἐπὶ τῶν κολούρων λεγομένων κύκλων κειμένους ἀστέρας καί φησιν ἐπὶ μὲν τοῦ
δὲ τέμνοντες τὴν σφαῖραν διὰ τῶν πόλων ὥσπερ διὰ τῶν κολούρων τὰ μεταξὺ τῶν παραλλήλων διαστήματα κατὰ πλάτος οὐκ εἰς
6054845 Βεβαιοτερον
ὑπὸ γῆν ὁποία τις ἡ ὑπομονὴ καὶ εὐχαριστία ἔσται . Βεβαιότερον δ ' ἄν τις οὕτω σκέψαιτο : τὸν μὲν
γῆν ὁποία τις ἡ παραμονὴ καὶ εὐχαριστία ἔσται μηνύσει . Βεβαιότερον δὲ ἂν σκέψαιτό τις οὕτω : τὸν μὲν ὡροσκόπον
6050474 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
6035047 κυκλου
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ
6033973 Ϡοβ
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν
6033872 διπλασιασθεισης
ἐθελοντὶ στρατιῶται πρὸς τὴν ἐλπίδα τοῦ κέρδους . τέλος δὲ διπλασιασθείσης τῆς μετ ' Εὐαγόρου καὶ Φωκίωνος δυνάμεως οἱ βασιλεῖς
τὴν ἄνευ ἑξάδος . . . § . . . διπλασιασθείσης ἑξάδος , τῆς γονιμωτάτης . . . . ,
6021777 ἐγγεγραφθωσαν
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν ,
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ
6014591 πτερορρυησασα
ἀπὸ τοῦ ἐναντίου τὸ ἐναντίον , ἀπὸ τοῦ ἐπτερωμένου τὸ πτερορρυήσασα , μεταξὺ δὲ τοῦ ἤδη ἐπτερωμένου καὶ τοῦ ἤδη
ἥτις ἂν τελεία ᾖ , οὕτω διοικεῖ . Ἡ δὲ πτερορρυήσασα εἰπὼν ἄλλην ταύτην παρ ' ἐκείνην ποιεῖ . Τὸ
6012873 ΑΘΓ
πρὸς τὸ ἀπὸ ΓΒ , τὸ ΑΕΗ τρίγωνον πρὸς τὸ ΑΘΓ . ὡς δὲ τὸ ΑΗΕ πρὸς τὸ ΑΘΓ ,
' εἰ δυνατόν , ἔστω [ αὐτῶν ] διάμετρος ἡ ΑΘΓ , καὶ ἐκβληθεῖσα ἡ ΗΖ διήχθω ἐπὶ τὸ Θ
6012581 μεσημβρινῃ
τῶν πηγῶν τοῦ Ὤξου ποταμοῦ διὰ τῶν Καυκασίων ὀρῶν ἐκβαλλομένῃ μεσημβρινῇ γραμμῇ μέχρι πέρατος , οὗ ἡ θέσις ἐπέχει μοίρας
μὴ [ πρὸς ] ὀρθὰς δὲ τῇ διὰ Κασπίων πυλῶν μεσημβρινῇ , οὐδὲν ἂν ἐγίνετο πλέον πρὸς τὸν συλλογισμόν .
6009770 χειμερινου
. Τέμνει δὲ τοῦτον Ἥλιος ἀφ ' ἑπτακαιδεκάτης Τυβὶ μηνὸς χειμερινοῦ , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν
ἐν τῇ ἡμετέρᾳ εὐκράτῳ . Ὁπόταν δ ' ἐφαψάμενος τοῦ χειμερινοῦ πρὸς ἡμᾶς πάλιν ὑποστρέφῃ , ἐπὶ τὰ ὑψηλότερα τοῦ
6009464 Ἀρκτοφυλακος
Κατὰ δὲ τὰ Σφαιρικὰ βορρόθεν συνανατέλλει ὁ ἀριστερὸς βραχίων τοῦ Ἀρκτοφύλακος , νοτόθεν πρύμνα Ἀργοῦς καὶ τοῦ Κυνὸς τὸ λοιπὸν
Ἑρμοῦ , Διός , Πανός , Ἀφροδίτης . βορρόθεν δύνει Ἀρκτοφύλακος κεφαλὴ καὶ ὁ Ἐνγόνασι καὶ Ἀετὸς καὶ Στεφάνου τὸ
6001420 στερεου
. διὰ τοῦτο γραμμὴ μὲν ἄνευ ἐπιπέδου καὶ τοῦτο χωρὶς στερεοῦ θεωρεῖται , ἐν δὲ τῷ τελείῳ μεγέθει πάντα χρὴ
οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλ ' ὡς ἡ ΒΜ βάσις πρὸς
5985917 ῥομβοειδους
πρόσωπον καὶ οἷον ζυγὸν τὰς εἰς τοὔμπροσθεν δύο πλευρὰς τοῦ ῥομβοειδοῦς , οἷον αθξτψαϚχσνη ↑ ↑ , λαβδοειδὲς σχῆμα ,
πλευράς τε καὶ γωνίας ἴσας . αὐτὸς δὲ ἐπὶ τοῦ ῥομβοειδοῦς μόνον τοῦτο προσέθηκεν , ἵνα μὴ διὰ ψιλῶν αὐτὸ
5984184 θερινου
τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ
[ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι
5971448 ζῳδιακος
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν
5970412 ῥομβου
ἔσχατος δὲ ὁ βορειότερος τῶν ἐν τῇ ἑπομένῃ πλευρᾷ τοῦ ῥόμβου . Μεσουρανοῦσι δὲ τῶν λοιπῶν ἀστέρων πρῶτοι μὲν ὅ
καὶ τούτῳ , καθόσον ἐστὶ παραλληλόγραμμον . ἐπὶ δὲ τοῦ ῥόμβου ἄνισοι μὲν αἱ διάμετροι , διχοτομοῦνται δὲ ὑπὸ τούτων
5966267 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
5963457 κοιλογαστορος
: τοῦ περιφεροῦς : καὶ κοίλην λέγει τὴν ἀσπίδα . κοιλογάστορος ] νειόθεν . κοιλογάστορος ] ἤγουν τῆς ἀσπίδος τὸ
δὲ ἔσω κοιλαίνεται . κοιλογάστορος ] ἤγουν τῆς ἀσπίδος . κοιλογάστορος ] τῆς ἀσπίδος τῆς ἐχούσης γαστέρα κοίλην . κοιλογάστορος
5962948 τομου
καὶ περιληπτικώτερος , τὸ δὲ τμῆμα μερικώτερον καὶ ὑπὸ τοῦ τόμου περιεχόμενον : περιέχονται μὲν γὰρ ἀμφότερα , ὅ τε
ζʹ . Ὁμοῦ ἔτη σθʹ . Ἐπὶ τοῦ αὐτοῦ δευτέρου τόμου Μανεθῶ βασιλεῖς ϘϚʹ . : Ἐννεακαιδεκάτη δυναστεία βασιλέων εʹ
5961867 μεσημβρινου
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων
5951415 ΗΛΜ
, καὶ τέτμηται δίχα ἡ γωνία ἡ ὑπὸ ΚΗΑ τῇ ΗΛΜ εὐθείᾳ , βάσις ἄρα ἡ ΚΛ τῇ ΛΑ ἴση
αἱ ΝΞΗΟΠΡ , ΚΣΤ , παρὰ δὲ τὴν ΑΓ αἱ ΗΛΜ , ΚΟΦΙΧΨΩ . λέγω , ὅτι ἐστίν , ὡς
5946389 αην
ἡμέραις διαπορεύεται ὁ ἥλιος Καρκίνον Λέοντα Παρθένον καὶ ἐπὶ τὴν αην μοῖραν τῶν Χηλῶν παραγενόμενος τὴν φθινοπωρινὴν ἰσημερίαν ποιεῖται .
! ! ! ! ! ] αὐτὴν ? καὶ τὴν αην [ ! ! ! ! ] εἰς [ ]
5945421 ΝΤ
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ ,
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας ,
5945253 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
5943359 τεμνονται
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει :
5938545 πλατους
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ .
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν
5935776 λυομενου
τε καὶ γῆν καὶ πάντα τὰ φαινόμενα περιέχουσα , οὗ λυομένου πάντα τὰ ἐν αὐτῷ σύγχυσιν λήψεται , ἀποτομὴν ἔχουσα
τοῦ θερμοῦ ἐς τὸν θώρηκα : καὶ πάλιν ἀνάλογον , λυομένου τοῦ πυρετοῦ καὶ κατακερματιζομένου , ἐς τοὺς πόδας καταβαίνει
5931469 Αἰγοκερω
: „ εἶτα διὰ τοῦ Τοξότου πρὸς τὰ μέσα τοῦ Αἰγόκερω ” συνάπτει . „ ὁ δὲ Ἄρατός φησιν οὕτως
πάθους ἢ πυρετῶν ἐπιφορᾶς . οἷον ἐπεὶ οἱ Δίδυμοι ὑπὸ Αἰγόκερω ἀναιροῦνται καὶ Ὑδροχόος ὑπὸ τῆς Παρθένου , ὅπερ ἐστὶν
5929330 κωνος
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν
5926806 δυτικον
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη
5922046 ΖΘΚ
τῆς ὑπὸ τῶν ΚΓΘ ἀπὸ δοθέντος τοῦ Ζ διήχθω ἡ ΖΘΚ ποιοῦσα ἴσην τὴν ΘΚ τῇ ΑΛ ἢ τῇ ΓΖ
ἐστιν ἡ ὑπὸ ΔΖΚ , ὀξεῖα ἄρα ἐστὶν ἡ ὑπὸ ΖΘΚ : ὥστε καὶ ἡ ΘΚ τῆς ΚΖ ἐστι μείζων
5920606 πολυγωνου
τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν
ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν
5909262 ΞΚΟ
ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ
, ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος
5903814 κρικος
παραληγόμενα σπάνιά ἐστι μονογενῆ ὄντα : οἷον , λύκος : κρίκος : Μύκος , ὄνομα ἔθνους . Εἰς κος λῆγον
, τὸ δὲ ῥάμμα κεχαλασμένον ἁμματιζέσθω , ἵνα φανῇ ὡς κρίκος . ταῖς δ ' ἑξῆς ἡμέραις παράγεται τὸ ῥάμμα
5901266 ΧΩ
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα
5898276 προστιθεμενου
ἀπὸ νάρθηκος ἀληθινοῦ , ἐπὶ τῆς ἐσχάτης ἐπιδεσμίδος , ἐρίου προστιθεμένου , ἐκ διαστημάτων τασσομένων τῶν ναρθήκων : ὅταν ἀκριβῶς
γὰρ τοῦ τος εἰς μι καὶ ἐκβαλλομένου τοῦ ν , προστιθεμένου δὲ τοῦ ι τῷ ο , τὸ τύπτοντος τύπτοιμι
5896984 διχοτομουμενον
τὸν δὲ μεσημβρινὸν ὀρθὸν προσαρμόσομεν τῷ κατὰ τὴν βάσιν ὁρίζοντι διχοτομούμενον μὲν ὑπὸ τῆς φαινομένης ἐπιφανείας αὐτοῦ , δυνάμενον δὲ
Σάμῳ ξόανον συμφώνως τῇ τῶν Αἰγυπτίων φιλοτεχνίᾳ κατὰ τὴν κορυφὴν διχοτομούμενον διορίζειν τοῦ ζῴου τὸ μέσον μέχρι τῶν αἰδοίων ,
5888949 Πηλουσιου
. ) Ὅτι ὁ Ἀντίοχος διὰ στρατηγήματος ἀμφιδοξουμένου ἐκυρίευσε τοῦ Πηλουσίου . πᾶς γὰρ πόλεμος ἐκβεβηκὼς τὰ νόμιμα καὶ δίκαια
δὲ θαυμάζειν , πῶς ἐθάρρησεν εἰπεῖν ἑξακισχιλίων σταδίων τὸ ἀπὸ Πηλουσίου εἰς Θάψακον , πλειόνων ὄντων ἢ ὀκτακισχιλίων , οὐκ
5884440 λοξου
πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ
τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ
5876475 Ναρβωνα
καὶ τῆς Κελτικῆς . ἔστι δ ' ἔνθεν μὲν εἰς Νάρβωνα μίλια ἑξήκοντα τρία , ἐκεῖθεν δὲ εἰς Νέμαυσον ὀγδοήκοντα
ἐκ δὲ θατέρου τῇ τε Ἰβηρικῇ καὶ τῇ Κελτικῇ κατὰ Νάρβωνα καὶ Μασσαλίαν , καὶ μετὰ ταῦτα τῇ Λιγυστικῇ ,
5875666 Πελωριαδα
εἰς Μεσσήνην τριάκοντα . πεζῇ δὲ ἐκ μὲν Παχύνου εἰς Πελωριάδα ἑκατὸν ἑξήκοντα ὀκτώ , ἐκ δὲ Μεσσήνης εἰς Λιλύβαιον
ἐστι Σικελία νῆσος ἀπὸ τῆς Εὐρώπης ἀπέχουσα στάδια ιβʹ εἰς Πελωριάδα ἀπὸ Ῥηγίου . Ἐν δὲ Σικελίᾳ ἔθνη βάρβαρα τάδε
5874087 γυροθεν
Μεθ ' ὧν κεράστης ἕτερος τοὺς πλοκάμους ἐκφέρων ἔνθεν κἀκεῖθεν γύροθεν δίκην οὗτος κεράτων . Ἄλλος δὲ σάλπιγξ λέγεται παρὰ
Σαμίων βασιλεύς . χθαμαλὰ Αἴγυπτος : διὰ τὸ τρίγωνον : γύροθεν γὰρ βουνοῖς περιέχεται . ἔργα δαέντων : ἐπιστημόνων εἰς
5870877 κατοπτρου
τῆς ὁρατικῆς ἐνεργείας τῷ μεταξὺ ἀέρι τοῦ τε προσώπου καὶ κατόπτρου καὶ μενούσης δι ' ὅλου τοῦ μεταξύ , καὶ
τὸν τύραννον , παῖε „ ἐβόα , οὐχ ὥσπερ ἐκ κατόπτρου τινὸς εἴδωλον ἀληθείας ἕλκων , ἀλλ ' αὐτὰ ὁρῶν
5865493 ΠΟ
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς
5861860 διαιρεθῃ
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν
5861411 κοσκινου
ὀθόνης ἐγχρισθὲν ὑγρότερον φαίνηται . καταπάττω δ ' αὐτὰ διὰ κοσκίνου μετεώρου κρατουμένου κατὰ τοῦ μέλιτος . ἀρκεῖ δ '
ἂν διελκύσαις ] διαβιβάσαις εἰ ] ναί ὢν τηλία ] κοσκίνου γύρῳ κῶμον ] μέθην ἀσπάζομαι ] ὡς διὰ χρόνου
5859725 ωξδ
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ
5854146 διαπηγματος
ὄργανον καὶ ἄλλον ἄξονα κάτωθεν κεκρυμμένον τοῖς σκέλεσιν ὑπεράνω τοῦ διαπήγματος ὡς διὰ πενταδακτυλιαίου μέτρου . οὗτος δ ' ὁ
σφηνοειδές , καὶ τότε διπλῆς καιρίας μεσότης τάσσεται μεταξὺ τοῦ διαπήγματος καὶ τῆς σπάθης , ἧς αἱ ἀρχαὶ ἔξω ἐῶνται
5853672 ἀξονα
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ
5846922 μυχου
μέχρι τῶν Ἰνδικῶν ὀρῶν καταστρέψασθαι τὴν Ἀσίαν ἢ μέχρι τοῦ μυχοῦ τοῦ Εὐξείνου καὶ τοῦ Καυκάσου : ἀλλ ' ἡ
φασὶν αὐτόν , καθότι καὶ τὰ ἔργα τῶν σφαλάκων ἐκ μυχοῦ τῆς γῆς ἀναπέμπεται : μόνη τε ἡ τοιαύτη κίνησις
5846581 ΘΙ
τὸ μὲν ΑΒ τῷ ΕΗ , τὸ δὲ ΓΔ τῷ ΘΙ , ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΕΗ τῷ ΘΙ
πλάτος ποιοῦν τὴν ΕΘ , τῷ δὲ ΓΔ ἴσον τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ . καὶ ἐπεὶ μέσον ἐστὶν

Back