τὸν δὲ μεσημβρινὸν ὀρθὸν προσαρμόσομεν τῷ κατὰ τὴν βάσιν ὁρίζοντι διχοτομούμενον μὲν ὑπὸ τῆς φαινομένης ἐπιφανείας αὐτοῦ , δυνάμενον δὲ | ||
Σάμῳ ξόανον συμφώνως τῇ τῶν Αἰγυπτίων φιλοτεχνίᾳ κατὰ τὴν κορυφὴν διχοτομούμενον διορίζειν τοῦ ζῴου τὸ μέσον μέχρι τῶν αἰδοίων , |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ | ||
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
, τὸν δὲ ἕτερον περιάγεσθαι συμμέτρως τῇ σφίγξει περὶ τὸ ἀξόνιον ἐν τῷ τοῦ μεσημβρινοῦ ἐπιπέδῳ . προσεθήκαμεν δὲ καὶ | ||
τὴν μείζονα ὀπὴν ἔχοντι πρισματίῳ καὶ ἐναρμόσαντες δι ' ἀμφοτέρων ἀξόνιον , ὥστε συνδεθῆναι μὲν ὑπ ' αὐτοῦ τὰς πρὸς |
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ | ||
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
ἐϲ τὸ πρόϲωπον ϲκληροί , ὀξέεϲ : ἄλλοτε μὲν ἐϲ κορυφὴν λευκοί , ποιωδέϲτεροι δὲ τὴν βάϲιν . ϲφυγμοὶ ϲμικροί | ||
αὐτῶν ἴσαι εἰσὶν διὰ τὸ ιεʹ , αἱ δὲ κατὰ κορυφὴν αὐτῶν εἰσιν ἐναλλάξ : ὀρθαὶ ἄρα : ὅπερ ἔδει |
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ] | ||
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται : |
. * χλοάοντος : γράφεται καὶ κλώθοντος * κλώθοντος : στρεφομένου καὶ ἠρτημένου ἐν ἀρπέζαισιν ἐρίνου : ἐρινεὸν Ἀθηναῖοι ὀνομάζουσιν | ||
πῆχυς πρὸς τὴν σπάθην τῆς χειρὸς κεκαμμένης , ὅτε λοιπὸν στρεφομένου τοῦ ἐν τοῖς σκέλεσιν ἄξονος ὑπὸ τοῦ κάλου καθελκομένη |
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν | ||
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ |
] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων | ||
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη |
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν | ||
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
πρότερον ἄμεινον , ὡς τῶν ἀνθρώπων τὸ σῶμα τῶν μὲν ὁμαλῶς κέκρα - ται σύμπαν , ἐνίων δέ , καὶ | ||
ἴση τῇ ΒΔ , καὶ διαπορευέσθω τὸ μὲν Ν σημεῖον ὁμαλῶς φερόμενον τὴν ΝΘ ἐν ὥραις δέκα , ἡ δὲ |
τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ | ||
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
παρὰ τὰ α ι εὕρομεν τὴν κατ ' αὐτὸ τὸ ἀπόγειον παρὰ τὸ μέσον ἀπόστημα ὑπεροχὴν α ιζ : ὥστε | ||
δὲ ΕΑ ἡ ἀπὸ τοῦ κέντρου τῆς γῆς ἐπὶ τὸ ἀπόγειον τοῦ ἐκκέντρου ξ , ἡ δὲ ΕΓ ἡ ἀπὸ |
χαλκεύς , οὐ ποιεῖ τὸν χαλκόν , οὕτως οὐδὲ τὴν σφαῖραν , τουτέστι τὸ εἶδος αὐτὸ καθ ' αὑτό , | ||
ἑκάστῳ τῶν τριῶν πλανήτων Ἄρεος καὶ Ἀφροδίτης καὶ Ἑρμοῦ προσετίθει σφαῖραν , τίνος ἕνεκεν προσετίθει , συντόμως καὶ σαφῶς ὁ |
Ἰβηρία τε πᾶσα καὶ Κελτίβηρες , ἐπὶ τὸν ἑσπέριον καὶ βόρειον ὠκεανὸν καὶ τὰς Ἡρακλέους στήλας τελευτῶντες . καὶ τούτων | ||
μὴ ἁλμυρὸν τοῖς γευομένοις . Καὶ ὅλως ἔτος βέλτιον νοτίου βόρειον καὶ ὑγιεινότερον . Καὶ ὅταν ὀχεύωνται πρόβατα ἢ αἶγες |
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
τὸ ἕτερον ἄκρον κύλινδρος ἐγκείσθω ξύλινος μεσόστενος , ἵνα ἀρίδι στρέφηται ἢ ἀστερίσκοις ἢ χερσίν . ἐχέτω δὲ καὶ ἄλλον | ||
Ἡρακλείτου χορὸν ὡς ἀσεβῆ : τὰ γὰρ ἱερὰ ἀκίνητα . στρέφηται . ὡς ὁ στρόβιλος . τὸ μέν τι ἀμφοτέρως |
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
' οὖν ἂν ᾖ , λαβόντες αὐτῆς τοὺς πόλους ἀκριβῶς προσαρμόσομεν δι ' αὐτῶν ἡμικύκλιον ὀλίγιστον ἀπέχον τῆς ἐπιφανείας , | ||
ΑΒ δίχα τε καὶ πρὸς ὀρθὰς τῇ ΕΖ εὐθείᾳ , προσαρμόσομεν αὐτῇ κανόνα σύμμετρον καὶ ὀρθὸν , ὥστε τὴν ἐπὶ |
τούτου γινομένου : τοῖς δ ' ὑπ ' αὐτῶι τῶι πόλωι ὁ ἰσημερινὸς τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν | ||
δὲ ὁ τῶι ἀρκτικῶι ἴσος ὑπάρχων πρὸς τῶι νοτίωι τεθεμάτισται πόλωι , οἱ δὲ διὰ τῶν πόλων καὶ λοξοὶ παρὰ |
ἐν μετανοίᾳ γενόμενος εἰς ἑτέραν ἔννοιαν ἥξει , ἐὰν δὲ τροπικὸν ἀσυντέλεστος αὐτοῦ γίνεται ἡ ὁρμή . ἐὰν δὲ τὸν | ||
ἣ καλεῖται διακεκαυμένη . οἰκοῦμεν δὲ ἡμεῖς τὴν παρὰ θερινὸν τροπικὸν τεκμαιρόμενοι , ὅτι ἡμεῖς ταύτην ἔχοντες τὴν οἰκουμένην ἐν |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
' ἐπὶ Πάχυνον πεντήκοντα . ἔνθεν πάλιν κατὰ τὸ τρίτον πλευρὸν εἰς μὲν Συρακούσσας τριάκοντα ἕξ , εἰς δὲ Κατάνην | ||
: ὧν ὁ μὲν Ἀσταβόρας καλεῖται κατὰ τὸ πρὸς ἕω πλευρὸν ῥέων , ἅτερος δ ' Ἀστάπους : οἱ δ |
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ | ||
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
σημαίνουσιν εἰς ἕβδομον μῆνα ἀμφοτέρων ἀριθμουμένων . Ὅσαι μὲν ἅμα μηνοειδεῖ τῇ σελήνῃ πίπτουσιν , αὗται μὲν πνεύματα σημαίνουσιν εἰς | ||
θηλύτητος , καὶ τὸν κερασφόρον αὐλὸν ἀνῆψαν αὐτῇ τῷ τε μηνοειδεῖ τοῦ σχήματος παραπλήσιον ὄντα καὶ βαρύτατον ἐπίσης προσλαμβανομένῳ κατὰ |
ὑπάρχειν , ὑφ ' ᾧ πυρώδης στεφάνη : καὶ τὸ μεσαίτατον πασῶν περὶ ὃ πάλιν πυρώδης : τῶν δὲ συμμιγῶν | ||
τὸν ὁρίζοντα καὶ νυχθήμερον ἀποτελεῖ : τὸ ἥμισυ ἄρα καὶ μεσαίτατον τῆς γῆς ιβʹ ὡρῶν ἔχει διάστημα . Ἐπὶ δὲ |
πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσα πυραμὶς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμίδα . | ||
ἄκρανἄνω γὰρ αὐτὴν ἐπ ' ἀρχὴν παραπέμψασα ἱδρύσατο καθάπερ ἀνδριάντι βάσιν ὑποθεῖσα τὴν ἀπ ' αὐχένος ἄχρι ποδῶν ἅπασαν ἁρμονίαν |
συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ | ||
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ |
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ | ||
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ |
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν | ||
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος , |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
Δομιτίου δ ' αὐτὴν ἱππεῦσι πολλοῖς καὶ ψιλοῖς εὐμαρῶς οἷα πλινθίον πυκνὸν κυκλώσαντος , οὔτε ἐκδραμεῖν ἔτι ἔχουσα οὔτε ἐξελίξαι | ||
συνεστήσατο μάχην . οἱ δ ' Ἰλλυριοὶ συντάξαντες ἑαυτοὺς εἰς πλινθίον ἐρρωμένως ὑπεστήσαντο τὸν κίνδυνον . καὶ τὸ μὲν πρῶτον |
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
ἀπόστημα , ἁπλοτομήσομεν , τάττοντες τὴν διαίρεσιν οὐ κατὰ τὴν εὐθύτητα τῶν τριχῶν , ἀλλ ' ἐπικάρσιον καὶ ὑποβεβλημένην τῇ | ||
ὅταν καμφθεὶς γωνιοποιηθῇ κατὰ τὸν ἀγκῶνα . | εὐθυωρίαν : εὐθύτητα . εἱσάσθω : ἀντὶ τοῦ καθισάτω . εὐθετισάμενος : |
! ! κροτάλων ? ἱέτω ? [ ] ! ˈ τύμπανον ἰάχει ? ? ? [ ˈ [ ⚕ ἐμβαίνει | ||
ἐμπλώῃ καὶ ὑπὸ τῆϲ πρήϲιοϲ ἐν τοῖϲι πατάγοιϲι δονέῃ ὅκωϲ τύμπανον , τυμπανίηϲ κικλήϲκεται . ἢν δὲ ὕδωρ ἅλιϲ ἐϲ |
τοὺς ἀρκτικωτέρους τόπους καὶ τοῦ θερινοῦ τροπικοῦ κύκλου μείζονες οἱ ἀρκτικοὶ κύκλοι γίνονται : πέρας δέ ἐστί τις χώρα πρὸς | ||
ἡμῖν γινομένου ποτὲ δὲ ὑπὸ γῆς ὄντος , καὶ οἱ ἀρκτικοὶ συμμεταβάλλουσι , ποτὲ δὲ συνεκλείπουσι κατὰ τὰς τοιαύτας παραχωρήσεις |
παραφερομένων κατὰ τὴν πρώτην καὶ ἀπ ' ἀνατολῶν ἐπὶ δυσμὰς περιαγωγὴν πρὸς τὴν διῃρημένην τοῦ μεσημβρινοῦ πλευρὰν τῶν ἐπιζητουμένων ἀστέρων | ||
ἀπαλλαγὴν τῶν ἀνθρωπίνων δεσμῶν παρέχειν καὶ λύσιν τῆς γενέσεως καὶ περιαγωγὴν ἐπὶ τὸ ὂν καὶ γνῶσιν τῆς ὄντως ἀληθείας καὶ |
εἰ τηλικοῦτός ἐστιν ὁ ἥλιος , ἡλίκος φαίνεται , ἂν ἐπινοήσωμεν αὐτὸν διπλασίονα γενόμενον , εἰς δύο διαιρουμένου ἑκάτερον αὐτοῦ | ||
, ὡς ἂν ἠχήσειεν σαλπίζων ὅλος οὐρανός . Ἑτέραν οὖν ἐπινοήσωμεν μεταφορὰν μικρότητος αἰτίαν γινομένην μᾶλλον ἢ μεγέθους : δεῖ |
αἰσθήσεσιν . πρόεισι δὲ ὡς ἀπὸ πλατυτέρου τοῦ ἔξωθεν ἐπὶ στενώτερον τὸ ἔνδοθεν . οὐ δεῖ δὲ νομίζειν τοῦτον τὸν | ||
: ἐν δὲ τοῖς νοητοῖς , καθόσον ἕτερον μὲν ἑτέρου στενώτερον δυνάμεθα νοῆσαι μῆκος , ὅταν δὲ τὸ αὐτὸ μῆκος |
διαλείμματι τοῦ τε κατὰ τὸν ἰσημερινὸν καὶ τοῦ κατὰ τὸν θερινὸν τροπικὸν ὅλον διαφαίνεσθαι τὸ ἐγνωσμένον μέρος τῆς γῆς , | ||
τέσσαρα , Ἄρκτοι δύο Κηφεὺς ἀπὸ τῶν στηθῶν Δράκων , θερινὸν τροπικὸν πλεῖον ἔχοντα τὸ ὑπὲρ γῆν , ἧσσον δὲ |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
Βυζαντίου τῷ διὰ Μασσαλίας , ὁ δ ' αὐτὸς καὶ μεσημβρινός ἐστιν ὁ διὰ Βυζαντίου τῷ διὰ Βορυσθένους , ὅπερ | ||
καὶ ἐὰν μεταξὺ μύριοι στάδιοι ὑπάρχωσιν , ὁ αὐτὸς μένει μεσημβρινός , κατὰ δὲ τὴν ἀπ ' ἀνατολῆς πρὸς δύσιν |
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
δοθεὶς κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς | ||
τὴν σελήνην ἑξακοσιάκις μὲν καὶ πεντηκοντάκις ἔγγιστα καταμετρεῖν τὸν ἴδιον κύκλον , δὶς δὲ καὶ ἡμισάκις τὸν τῆς σκιᾶς καταμετρεῖν |
ἄρθρον , εἶτα καθιέναι τὴν ἀριστερὰν χεῖρα καὶ ἀπευθύναι τὸ κεφάλιον καὶ οὕτω κομίσασθαι τὸ ἔμβρυον . Εἰ δὲ ἀμφότεραι | ||
δάκτυλον , τῇ δεξιᾷ δὲ πιέζων τὸ ἐπιγάστριον πειρᾶται τὸ κεφάλιον κατάγειν , οὐχ ὁρῶν ὡς ἐν τῷ ἀπευθυσμένῳ ὁ |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
πᾶσιν ἐπίσης ἰσημερινός ἐστιν , οὐκέτι δὲ οὔτε ὁρίζων οὔτε ἀρκτικός . Καὶ τὰ μὲν κατὰ τὰς διαφορὰς τῶν κατὰ | ||
ἐφ ' ἑκατέρωθεν τὸ ἔξαρμα καὶ τὸ ἀντέξαρμα ὁρίζοντες , ἀρκτικός τε καὶ ἀνταρκτικός , μικρότατοι μὲν τῷ μεγέθει , |
μέλανες τὰς χρόας Αἰθίοπες , καὶ μάλιστα οἱ ὑπὸ τὸν ἰσημερινὸν κύκλον οἰκοῦντες , κατακόρως εἰσὶ μέλανες . Οἱ δ | ||
καὶ αἱ ἀπεναντίον περιφέρειαι . Ἔστω γὰρ τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁρίζων ὁ ΑΒΓΔ : ὁ ΑΒΓΔ ἄρα διὰ |
, ὥστε ὀκτὼ ζεύγεσι βοῶν ἄγειν τῶν μηχανῶν τὸ [ κατώτατον ] οἴκημα : ἦν δὲ τοῦτο τριώρυγον μάλιστα ἀπὸ | ||
πάντων καὶ περιγειοτέρου κειμένου νεάτη : καὶ γὰρ νέατον τὸ κατώτατον ἀπὸ δὲ τῶν παρ ' ἑκάτερον τοῦ μὲν ὑπὸ |
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
ἐκ πάντων συλλοχισμὸς φάλαγξ , ἧς τὸ τῶν λοχαγῶν τάγμα μέτωπον καὶ μῆκος καὶ πρόσωπον καὶ στόμα καὶ παράταξις καὶ | ||
κατάπλασσε τούτοις καὶ τοὺς μυκτῆρας καὶ τὰς παρειὰς καὶ τὸ μέτωπον . ἄλλο . διφρυγὲς καύσας καὶ λειοτριβήσας μετὰ ὄξους |
καὶ τῷ κρεμαστῆρι , οὕτως ἐπὶ τὴν κατανόησιν ἐλευσόμεθα τοῦ περιτοναίου . διὰ τοῦτο δὲ κατατάσσομεν πρὸ τῆς ἀποκοπῆς τοῦ | ||
ἢ ἐν ὅλῳ τῷ σώματι . καὶ εἰ μὲν μεταξὺ περιτοναίου καὶ ἐντέρων συσταίη , ἢ ὑγρὸν μόνον ἐστὶ τὸ |
καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν | ||
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ |
βόρειον γένηται , τὸ δὲ φθινό - πωρον ἔπομβρον καὶ νότιον , κεφαλαλγίαι ἐς τὸν χειμῶνα γίνονται , καὶ βῆχες | ||
ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ Ἐρυθρὰ θάλασσα ἢ τὸ κῦμα τῆς Ἐρυθρᾶς θαλάσσης |
ἔχων ἐν ἑαυτῷ ἀεριζούσας . ἐπιχάρασσε δὲ ἐπ ' αὐτῷ σπείραμα ὄφεως ἔχον προτομὴν ἤγουν κεφαλὴν κυνός : οὗτος φορούμενος | ||
αὕτη καὶ κάτωθεν ἄνω οὕτως : ἀρχὴ ἐπὶ ἰνίον τὸ σπείραμα ὑπὸ λοβὸν ὠτὸς ὑπὸ γένειον : εἶτα παρειὰς , |
οἶδα ποσταίῃ , οὐ πρόσω : ἔσχε δέ τι καὶ ἀπόστημα ἐν κενεῶνι , ὅπερ μελανθὲν ἀπέκτεινεν . Καὶ ἡ | ||
μεταβολῆς γινομένης . υιβʹ . Φύγεθλόν ἐστι κατὰ βουβῶνα γινόμενον ἀπόστημα . υιγʹ . Ὑποσπαδίας ἐστὶ πάθος ἐφ ' οὗ |
τὰ ἑπόμενα τῶν μερῶν αὐτοῦ δεδειγμένην τῆς τῶν ἀπλανῶν σφαίρας μετακίνησιν . δεδόσθω γὰρ ἐπὶ τοῦ δεδειγμένου σχήματος ἡ ΕΖ | ||
φέρεσθαι , συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς |
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
μοῖρα μέρος τὸ δῦνον : οὗτος δ ' ἀνακυκλούμενος ὁ πόλος ἅπας πάλιν προσενυψοῖ τὴν πρώτιστον τὴν τοῦ Κριοῦ μοιρίτζαν | ||
κέντρον ἐστὶ τοῦ ΑΒΓ , τὸ δὲ Ζ ὁ ἕτερος πόλος . Ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ |
, λήγων δὲ ἀνεμώδης . τὸ ἔαρ ἔνυδρον καὶ μᾶλλον χειμερινὸν καὶ παχνῶδες . τὸ δὲ θέρος ἔμπνουν , διὰ | ||
χιτών . . . . . . . τὸ μέντοι χειμερινὸν ἱμάτιον χείμαστρον ἂν λέγοις , καὶ χλαῖναν δὲ παχεῖαν |
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
τὰ ζητούμενα διὰ μεθόδων . Λαβόντες γὰρ τὴν πλευρὰν τοῦ πολυγώνου , ἀεὶ διπλασιάσαντες , ἀφελοῦμεν μονάδα , καὶ τὸν | ||
ἀπὸ τοῦ Η κέντρου ἤχθω ἐπὶ μίαν πλευρὰν τοῦ ΑΒΓΔΕ πολυγώνου ἐπὶ τὴν ΓΔ κάθετος ἡ ΗΘ . ἐπεὶ οὖν |
γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |
λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
: λευρὸν οἱ μὲν τὸ πλατύ : βέλτιον δὲ τὸ πλάγιον ἀκούειν , ἵνα νοήσωμεν οὐχὶ τὸ καθ ' ἑαυτὸ | ||
ἐπὶ τῶν τιμωριῶν προσέταξεν ἐκδεῖραι ζῶντα καὶ τὸ μὲν σῶμα πλάγιον διὰ τριῶν σταυρῶν ἀναπῆξαι , τὸ δὲ δέρμα χωρὶς |
ὀφθαλμῶν . ἐπὶ πᾶσιν δὲ τρεῖς ἀναδιπλώσεις ἐπαλλήλους διαδίδομεν κατὰ βρέγματος εὐθείας μέχρι μεσοφρύου , ἃς ὁμοειδῶς οὕτω ῥυθμίζομεν , | ||
δύο τὰ ὀπίσθια ἄγομεν ἔμπροσθεν καὶ κατὰ τὰ ἀπολήγοντα τοῦ βρέγματος ὑπεράνω τοῦ πρώτου ἅμματος ἁμματίζεται . Ἐπὶ τοῦ μετώπου |
δὲ ἄγει ταῖϲ γυναιξὶ καὶ ἔμβρυα φθείρει , κατὰ τοῦ ὑπογαϲτρίου καὶ τῆϲ ὀϲφύοϲ ἐπιτιθεμένη . ἡ δὲ ϲύνθεϲιϲ αὕτη | ||
οὕτωϲ ἐϲτὶν ἡ δύναμιϲ αὐτοῦ , ὡϲ καὶ κατὰ τοῦ ὑπογαϲτρίου ἐπιχριόμενοϲ κοιλίαν ὑπάγει καὶ ἔμβρυα διαφθείρει καὶ ἐν πεϲϲῷ |
χειρὶ δ ' ἔνθες ὀξύην , λαιόν τ ' ἔπαιρε πῆχυν , εὐθύνων πόδα . ἦ παιδαγωγεῖν γὰρ τὸν ὁπλίτην | ||
παλαιστὴν αʹ , ὅ ἐστι πήχεως Ϛʹʹ . Ἐὰν δὲ πῆχυν ἐπὶ δάκτυλον , ποίει χυδαῖον δάκτυλον αʹ , ὅ |
δ ' ἔχει τάξιν ἡ μετρίως ἐντείνουσα τοὺς κατ ' ἐπιγάστριον μῦς ὑπὲρ τοῦ τὰ κάτω φρενῶν ἀποθεραπεῦσαι σπλάγχνα . | ||
στόμα τῆς ὑστέρας , παρ ' ἡμῶν γὰρ διελόντων τὸ ἐπιγάστριον καὶ κομισαμένων τὰ ἐνδοσθίδια , συμπεσόντος τοῦ σώματος εὐχερὴς |
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας . | ||
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία |
καὶ τὰ ἄλλα ποτήρια , ἄλλα δὲ δύο κατὰ τὸ κύρτωμα μέσον ἐξ ἀμφοῖν τοῖν μεροῖν μικρά , παρόμοια ταῖς | ||
μᾶλλον εἰς τὰ ἀριστερά , ὅμοιος δέ ἐστι κατὰ τὸ κύρτωμα βοείῳ . οὔτε πολυσχιδής ἐστιν οὔτε λεῖος , ἀλλὰ |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς | ||
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν , |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
οὖν τὸν τοῦ ἐξαρθρήματος καταρτισμὸν τὸ σφηνοειδὲς ἐντιθέσθω εἰς τὴν μασχάλην , ἀναγέσθωσάν τε ὑπὲρ κεφαλῆς αἱ τῶν κάλων ἀρχαί | ||
ἡ λεγομένη θερμαστρίς , μῆκος ἔχουσα πηχῶν γ , ἔχουσα μασχάλην συνδεδεμένην λεπίσι ψυχρηλάτοις , εἰς ἣν ἀρθρεμβολεῖται ὁ λεγόμενος |
, ὁ μὲν νότιος ἂν αὐτῷ πόλος ἀφανὴς γίνοιτο , ἐπιπροσθούμενος κατὰ τὴν πορείαν ὑπὸ τοῦ περὶ τὴν γῆν κυρτώματος | ||
ἀφεστὼς τοῖς πρὸς μεσημβρίαν ἐν τοιούτῳ τῆς γῆς σχήματι , ἐπιπροσθούμενος ὑπὸ τῆς ἐξοχῆς τῆς πρὸς ἄρκτοις . Καὶ ὁμοίως |
ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν | ||
κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου |
κἂν εἴκοσι καὶ πλέον : ὅταν δὲ πρὸς τὴν κάλλιστον Παρθένον ἔλθῃ τόπων , ἀμφίκυρτος ἐνναήμερος γνωρίζεται τοῖς πᾶσιν , | ||
. ὁ δὲ Ἄρατος : δὲ ποσσὶν ὕπο σκέπτοιο Βοώτεω Παρθένον . Ἐπὶ δὲ τοῦ Ἐνγόνασιν ὁ μὲν Εὔδοξός φησι |