ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
γίνονται . Ὁ δὲ χειμερινὸς τροπικὸς κύκλος ὑπὸ τοῦ ὁρίζοντος τέμνεται οὕτως , ὥστε τὸ μὲν ἔλασσον τμῆμα ὑπὲρ γῆν | ||
τε πραγματικὴν καὶ δικαιολογίαν : ἥτις δικαιολογία ὑπάλληλον γένος οὖσα τέμνεται εἰς ἀντίληψιν καὶ ἀντίθεσιν : ὑπάλληλον δὲ καὶ αὕτη |
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
βαδίζειν , ὁ Σωκράτης ἄρα βαδίζει : τὸ γὰρ βαδίζει διῄρηται μὲν τοῦ δύναται , μόνον δὲ συντέθειται τῷ Σωκράτει | ||
λόγος ὁ αὐτός . καὶ πῶς τοῦτο , δείκνυσι λέγων διῄρηται γὰρ ὁμοίως οἷς τε καὶ ἅ . εἰ δὲ |
τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν | ||
, τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς |
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
λϚ ρκ α θ με α ι α◄ Ὅρων δοθέντων ὁποσαοῦν εὑρεῖν δυαδικὰς συζυγίας . εὑρίσκομεν δὲ αὐτὰς οὕτως : | ||
εἰσὶν οἱ αὐτοί : ὅπερ ἔδει δεῖξαι . Ἐὰν ᾖ ὁποσαοῦν μεγέθη ἀνάλογον , ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς |
τῷ αὐτῷ ἴσα καὶ ἀλλήλοις ἴσα , καὶ ἐὰν ἴσοις ἴσα προστεθῇ , τὰ ὅλα ἐστὶν ἴσα . εἰ γάρ | ||
εἰσὶν αἱ ΛΚ , ΚΑ , ΑΕ εὐθεῖαι ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ μὲν ΛΟ , ΚΦ , ΑΖ |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
δ ' αὔξησις ἐπὶ ὡρισμένον : τοῦ δὲ πλήθους κατὰ ἀντιπεπόνθησιν ἐπ ' ἄπειρον μὲν ἡ αὔξησις , ἔμπαλιν δὲ | ||
τοῦτο δὲ γίνεται διὰ τὴν τῶν μορίων πρὸς τὴν μονάδα ἀντιπεπόνθησιν . ἀεὶ γὰρ τὰ μόρια πολλαπλασιαζόμενα ἐναντίως ταῖς μοίραις |
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν | ||
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει : |
ἥμισυ τρήματος τὸ διὰ πασῶν σύμφωνον ἀποτελεῖται . τριχῆ δὲ διαιρεθέντος καὶ τῶν μὲν δυεῖν μερῶν ὄντων πρὸς τῇ γλωσσίδι | ||
τῆς τοῦ κανονίου προσαγωγῆς εἰς ἓξ τοὺς ἐφεξῆς ἐπογδόους λόγους διαιρεθέντος παραφέρωμεν καθ ' ἕκαστον φθόγγον τὸ παραπλήσιον ὑπαγώγιον ἐπὶ |
κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
κατὰ τὴν φύσιν βουληθῶμεν ἕκαστον τέμνειν τοῦ τέμνειν τε καὶ τέμνεσθαι καὶ ᾧ πέφυκε , τεμοῦμέν τε καὶ πλέον τι | ||
ἴσου τοὺς ὄζους ἔχειν . ὥρα δὲ καὶ πρὸς τὸ τέμνεσθαι τὰ ξύλα τότε διὰ τὸ λοπᾶν : ἐν γὰρ |
πρόσωπον καὶ οἷον ζυγὸν τὰς εἰς τοὔμπροσθεν δύο πλευρὰς τοῦ ῥομβοειδοῦς , οἷον αθξτψαϚχσνη ↑ ↑ , λαβδοειδὲς σχῆμα , | ||
πλευράς τε καὶ γωνίας ἴσας . αὐτὸς δὲ ἐπὶ τοῦ ῥομβοειδοῦς μόνον τοῦτο προσέθηκεν , ἵνα μὴ διὰ ψιλῶν αὐτὸ |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις | ||
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα . |
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι | ||
τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο |
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
οὐ περατόν . παροιμία ἐστί : τὰ πέρα γαδείρων οὐ περατά . λέγει οὖν ὅτι : οὐκ ἔστι δυνατὸν πάντας | ||
καὶ Ἑκάτη ἓν εἶναι δοκοῦσι . Τὰ γὰρ Γαδείρων οὐ περατά : ἐπὶ τῶν ποῤῥωτάτω καὶ ἀδυνάτων : τὰ δὲ |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
καὶ ἐλάχιστον καταληγόντων . ἐάν τε δὲ πάντα εἰς ἄπειρον τέμνηται , ἐάν τε πάντα εἰς ἀμερὲς καταλήγῃ , ἄπορος | ||
ΗΘ . Ἐὰν ἄρα δύο ἐπίπεδα παράλληλα ὑπὸ ἐπιπέδου τινὸς τέμνηται , αἱ κοιναὶ αὐτῶν τομαὶ παράλληλοί εἰσιν : ὅπερ |
φωνήν : οἱ μὲν γὰρ λέγοντες ὡς γένος εἰς εἴδη διαιρεῖσθαι ἔλεγον διὰ τριῶν ἐπιχειρημάτων . ἑνὸς μὲν τοῦ λέγοντος | ||
εἰρημένων τὸ καθόλου λεγόμενον μέλος διελεῖν εἰς ὅσα φαίνεται γένη διαιρεῖσθαι . φαίνεται δ ' εἰς τρία : πᾶν γὰρ |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
φαίνεται , ἂν ἐπινοήσωμεν αὐτὸν διπλασίονα γενόμενον , εἰς δύο διαιρουμένου ἑκάτερον αὐτοῦ τῶν μερῶν ποδιαῖον φανήσεται . Ὥστε εἰ | ||
τοῦ βιβλίου διαίρεσιν . εἰς τέσσαρα τοίνυν ἐναργῶς αὐτοῦ τμήματα διαιρουμένου τὸ μὲν πρῶτόν ἐστι περὶ τῶν ἀρχῶν τοῦ ἀποφαντικοῦ |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
. ἔχει δὲ καὶ διαιρέσεις ζυγάδην τρόπον τινὰ συνεστώσας : διαιρεῖται γὰρ πρῶτον εἰς μονάδα καὶ ἑξάδα , ἔπειτα εἰς | ||
τὴν οὐσίαν ὄν . ἀλλὰ μὴν οὔτε ὡς ὁμώνυμος φωνὴ διαιρεῖται , ἐπειδὴ ἡ ὁμώνυμος φωνὴ μόνον ὀνομασίας μεταδίδωσιν , |
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν | ||
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον |
καὶ ἐπεὶ δεῖ τὸν μέσον αὐτῶν τῷ ἴσῳ ὑπερέχειν καὶ ὑπερέχεσθαι , γίνεται ἡ Ζ εὐθεῖα μονάδων τριῶν [ μέσον | ||
, τὸ δὲ εὖ δρᾶν καὶ εὐεργετεῖν ὑπερέχειν ἐστίν , ὑπερέχεσθαι δὲ τὸ εὖ πάσχειν , φυσικῶς ἄρα φιλοῦμεν τὸ |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
ἕκαστον ἅπτεσθαι τὴν διάνοιαν ἀριθμεῖν ἐστίν , ἐνδέχεται ἀριθμεῖν τὰ ἄπειρα ἐν πεπερασμένῳ χρόνῳ . εἰ δὲ τοῦτο ἀδύνατον , | ||
δὲ πάντα τὸν χρόνον ὑπάρξει τὸ νῦν . ἀλλ ' ἄπειρα ἐν τῷ μεταξὺ χρόνῳ τὰ νῦν , εἴγε διότι |
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
τῷ διαιρουμένῳ γένει διαφοραὶ εἰς ἃς πᾶν τὸ ὑπὸ τὸ διαιρούμενον γένος ἐμπίπτει : εἰ γὰρ μὴ αἱ προσεχεῖς αὐτῷ | ||
ἡ ἀπάτη τῷ μηθὲν οἴεσθαι διαφέρειν συντιθέμενον τὸν λόγον ἢ διαιρούμενον καὶ καταφρονεῖν ὡς οὐδὲν πρᾶγμα : τὸ δὲ διαφέρει |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ | ||
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν |
τὸ δὲ δὶς ὑπὸ τῶν ΑΗ , ΗΒ μέσον , ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΑΗ , ΗΒ τῷ | ||
λόγον οὐκ ἔχει , ὃν ἀριθμὸς πρὸς ἀριθμόν . Ἔστω ἀσύμμετρα μεγέθη τὰ Α , Β : λέγω , ὅτι |
, ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα | ||
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν |
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ | ||
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
κίνησιν διαιρετήν τις εἶναι βιάζοιτο , καὶ τὸ Α ποιήσει διαιρετόν : συνδιαιρεῖται γὰρ ἀεὶ τῇ κινήσει τὸ διάστημα . | ||
ἀρτιάκις ἀρτίοις , ὅτι τούτων μὲν τὸ μέγιστον ἄκρον μόνον διαιρετόν , ἐκείνων δὲ τὸ ἐλάχιστον μόνον ἦν ἀδιαίρετον : |
διαιρεῖται . Ἔστω [ δύο μέσα δυναμένη ] ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , ὥστε τὰς ΑΓ , ΓΒ | ||
αὐτὸ ἐξ ἀνάγκης εἶδος . Πάλιν δὴ ἔστω ἡ ΑΔ διῃρημένη εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ , |
τῶν ζῳδίων καὶ μοιρῶν ἰδιότητα , ἀλλὰ καὶ παρὰ τὰ μεγέθη τῶν γενέσεων . εἰ μὲν γὰρ ἀθεώρητον ὑπὸ Διὸς | ||
γραμμή , ἐπιφάνεια , στερεόν . Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
τὸ Α σημεῖον , βάσις δὲ ὁ ΒΓ κύκλος , τέτμηται ἐπιπέδῳ διὰ τοῦ ἄξονος , καὶ πεποίηκε τομὴν τὸ | ||
ἡ ΖΗ : ἡ ΗΓ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται τῷ Ε , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
ἴσα δέ ἐστι τὰ μὲν ἀπὸ ΚΛΖ εἴδη τοῖς ὑπὸ ΒΞΔ , ΒΛΔ , τὰ δὲ ἀπὸ ΝΗΖ τετράγωνα τοῖς | ||
ἐπεζεύχθω ἡ ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ |
τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |
τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος | ||
δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ |
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
μέρος τῆς χορδῆς ἐγκόψεις τῇ κρού - σει , περαιτέρω προχωρεῖν οὐκ ἐῶν τὸν κραδασμὸν , ἐπίτριτον ἂν πρὸς τὸ | ||
πάντως γε κατὰ δύναμιν . τοῦτο οὖν δείκνυσι μὴ δυνάμενον προχωρεῖν ἐπὶ τῶν μετὰ τρόπου προτάσεων , κατασκευάζειν πρότερον διὰ |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
αἰτήματα αἰτήσασα καὶ συγχωρηθῆναι αὐτῇ ἀξιώσασα οὐδὲ συστῆναι δυνάμενασημεῖά τινα ἀμερῆ καὶ γραμμὰς ἀπλατεῖς καὶ τὰ τοιαῦτα , ἐπὶ σαθροῖς | ||
στοιχεῖα : ἀεὶ γὰρ ἀπὸ ψεύδους ἀρχόμενον τοῦ οὐκ ἔστιν ἀμερῆ τῶν ὄντων στοιχεῖα εἰς ἀληθὲς καταλήξει κατ ' αὐτὸν |
θέσιν τὴν βε καὶ ὅλον τὸ βαδγ ἔσται ὡς τὸ βεζη ἐπεστραμμένον ἐπὶ δόρυ καὶ κατειληφὸς τόπον μὲν τὸν ἔμπροσθεν | ||
, τῆς τε ἐπὶ τὸ βθκλ καὶ τῆς ἐπὶ τὸ βεζη καὶ ἔτι τῆς ἐπὶ τὸ βαδγ , ἀλλὰ κατ |
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ | ||
κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν |
. Τὸ μὲν ὕψος λαμβάνει πήχεις Ϙ , τὸ δὲ πλάτος πήχεις μη . Γίνεται δὲ τῷ σχήματι πυργοειδής : | ||
. Ἀλλ ' ὁ λόγος νῦν οὐ περὶ τῆς κατὰ πλάτος ἐπινοουμένης ὑγείας διέξεισιν , ἀλλὰ τῆς οἷον ἀμέμπτου πάντῃ |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
σκη τριακοσιοστοεξηκοστοπρώτων . Ὁμοίως καὶ ↑ τῶν ἑκατὸν Ϙβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων καὶ αὐτῶν εἰς ἑξακισμύρια ἐννακισχίλια τριακόσια ιβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , | ||
διαπορῆσαι , τίνα τρόπον ἔσται παλιγγενεσία , πάντων εἰς πῦρ ἀναλυθέντων : ἐξαναλωθείσης γὰρ τῆς οὐσίας ὑπὸ πυρός , ἀνάγκη |
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , | ||
τὰ λεγόμενα , διηγεῖσθαι δὲ χρὴ ἐγκατασκεύως καὶ ὅταν πάλιν πλατῆ τις θέλῃ ὑπόθεσιν καὶ ὅταν δοκῇ ἀπιθάνως λέγειν , |
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
διχῇ τέμνεσθαι . Πῇ ; Τὴν μὲν τῶν αὐτουργῶν αὐτοπωλικὴν διαιρουμένην , τὴν δὲ τὰ ἀλλότρια ἔργα μεταβαλλομένην μεταβλητικήν . | ||
ὅτι τῶν μὲν ἐφεξῆς ἡ γένεσις περὶ μίαν εὐθεῖαν ἐγίνετο διαιρουμένην ὑφ ' ἑτέρας μόνον , τῶν δὲ κατὰ κορυφὴν |
πλῆρες αἰσθητοῦ σώματος κατὰ τὴν ἁφήν . τὴν μὲν οὖν στιγμὴν οὗτοί γε ἀποφεύξονται , θέα δὲ ἕτερον ἀπορώτερον , | ||
καὶ τὸ ὅλον ἀμερές ἐστιν . ὥστε ἢ κατὰ μίαν στιγμὴν τοῦ σώματος ἔμψυχον ἔσται τὸ ζῶον , εἰ πᾶσαι |
ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ | ||
μάκεος δὲ ποῦς , ῥοπᾶς δὲ καὶ σταθμοῦ ζυγόν , ὀρθότατος δὲ καὶ εὐθύτατος κανὼν καὶ στάθμα , ὀρθὰ γωνία |
στοιχεῖν , ἀλλ ' ἐν τῷ μεταξὺ αὐτῶν κεῖσθαι εἰς τοὔμπροσθεν , ὡς αὔτως δὲ καὶ τῶν βγ τὸ ι | ||
εἰς τοὐπίσω μόνον ἀφαλλόμενον , ἔστιν ὅτε δὲ καὶ εἰς τοὔμπροσθεν , ἀναφέροντα τῶν σκελῶν ἑκάτερον ἐν μέρει . καὶ |
' ἐποίησε μυττωτόν πολύν . ἔνιοι δὲ πλακοῦντα διὰ λαχάνου συντεθέντα . οἱ δὲ τὸν λεγόμενον ζῦθον . ἡμεῖς μέντοι | ||
δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ τῆς ΑΒ τετράγωνον Μβ ͵θυιγ νθ |
ἐκείνου δὲ καὶ τῶν πρὸ αὐτοῦ βασιλέων εἰς δέκα στρατηγίας διῃρημένης τῆς χώρας , πέντε μὲν ἐξητάζοντο αἱ πρὸς τῷ | ||
καὶ τοὺς τροπικοὺς προσεντάξαι : τῆς γὰρ τοῦ μεσημβρινοῦ πλευρᾶς διῃρημένης τὸ μὲν μεταξὺ τῶν πόλων τοῦ ἰσημερινοῦ σημεῖον καὶ |
ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
αὐτῇ ὁμοῖα ὑποσημαίνοντας μᾶλλον ἂν εἴκοιεν , καὶ γῆν ἔτι ἄτμητον ἔχοντες καὶ περὶ παρόντων ἀγαθῶν καὶ οὔπω ἐφθαρμένων βουλευόμενοι | ||
, ἔτι δὲ ὡρισμένον καὶ ἕν , τὴν ἀδιάφορον καὶ ἄτμητον ἀρχὴν ἐπισφραγιζομένην ἀποτυποῦν . κακὸν δὲ ἢ αἰσχρὸν τὸ |
μέσας νύκτας , ἀλλ ' ὅταν μὲν ἀπὸ τροπῶν θερινῶν πορεύηται , ἐν τῷ μεταξὺ τόπῳ τοῦ τε πρὸς ἀνατολὰς | ||
, ὅταν ἀφ ' ἡμῶν εἰς αὐτὸν ἡ ξυνωρὶς αὕτη πορεύηται . ἔστι δέ τις ἄρα ἐν μύσταις καὶ Νειλῷος |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν | ||
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι . |