ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου
7198613 ἡμιτονιον
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος ,
7197884 διεσις
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ
7133751 ἐναρμονιου
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ .
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων ,
6979889 λιχανου
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων
6974816 διεσιν
δὲ ἡμιτονίου , ὡς ἐλάχιστον μελῳδητὸν διάστημα , τῶν Πυθαγορείων δίεσιν καλούντων τὸ νῦν λεγόμενον ἡμιτόνιον . καλεῖσθαι δέ φησιν
τὸ δὲ ἡμιόλιον κατὰ δίεσιν ἡμιόλιον τῆς ἐναρμονίου διέσεως καὶ δίεσιν τὴν ἴσην καὶ ἑπτὰ τεταρτημορίων διέσεων ἀσύνθετον διάστημα .
6932546 διτονον
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ
6923942 τριημιτονιον
ὑπερέχοντες , παράλληλοι δὲ δύο τόνον , οἱ δὲ τρίτοι τριημιτόνιον : ἀναλόγως δὲ ἕξει καὶ ἐπὶ τῆς τῶν λοιπῶν
παρενθέσεως τῆς ἐν ὀκταχόρδῳ . ἀπεῖχε γὰρ αὕτη τῆς παρανεάτης τριημιτόνιον ἀσύνθετον , ἀφ ' οὗ διαστήματος ἡ μὲν παρεντεθεῖσα
6873642 τεταρτημοριον
. Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ
ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ
6807952 διατονον
συντονωτάτῳ διατόνῳ , δύο ἔσται μεγέθη μόνα ἐξ ὧν τὸ διάτονον συνεστηκὸς ἔσται . ἐὰν δὲ τὰ μὲν δύο ἴσα
καὶ δίεσιν καὶ δίτονον κινοῖτο , ἐναρμόνιον ποιεῖ γένος . διάτονον μὲν οὖν λέγεται , ἐπειδὴ κατὰ τὸ πλεῖον διὰ
6749676 ἀναλογως
λεῖψιν τῶν ἐναντίων , τὴν συμπλοκὴν εἰ μὴ τὰς χρίσεις ἀναλόγως γίνεσθαι . Δεῖ πάντα τοίνυν φυλαττόμενον τὸν μὲν τῆς
δέκα , δευτέραν ἐπὶ δέκα , τρίτην ἐπὶ δέκα καὶ ἀναλόγως μέχρι τῆς δεκάτης , ἣν ἐνίοτε μὲν ὁμοίως τοῖς
6714652 τριχη
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ
6703541 παρυπατης
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ
6675492 διεζευγμενων
μέσην , ὅταν μὴ ὡς ἔθος εἶχεν ἐπὶ τὸ τῶν διεζευγμένων τετράχορδον ἔλθῃ κατὰ τὴν διὰ πέντε συμφωνίαν τῷ τῶν
ὑπερβολαίων λϚ ἀπλανῶν , νήτη ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως ,
6660759 σωρειαν
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν
6653598 ὑπερβολαιων
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον ,
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων
6603588 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6596854 τετραχορδα
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις :
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ
6576712 τονος
κατὰ μέγεθος , ἤτοι ὡς τά τε σύμφωνα καὶ ὁ τόνος ἢ ὡς τὰ τούτοις σύμμετρα , τὸ δὲ κατὰ
. δεύτερον τὸ ὑπὸ μεσοπύκνων περιεχόμενον , οὗ δεύτερος ὁ τόνος ἐπὶ τὸ ὀξύ : ἔστι δὲ ἀπὸ παρυπάτης ὑπάτων
6568823 συνημμενων
χρωματική , μέσων διάτονος , μέση , τρίτη συνημμένων , συνημμένων ἐναρμόνιος , συνημμένων χρωματική , παρανήτη συνημμένων , νήτη
ὑπερβολαίων λβ κρόνου , νήτη διεζευγμένων κδ διός , νήτη συνημμένων κα γʹ ἄρεως , παράμεσος ιη ἡλίου , μέση
6561921 ἀναλογιων
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν ,
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ
6541886 ὑπατης
ἡ δὲ σελήνη ἑβδόμη οὖσα τάξιν ἐπέχει φθόγγου τοῦ λεγομένου ὑπάτης μέσης . τὸ δὲ ἀπὸ γῆς διάστημα μέχρι τῆς
ἔχει λόγον , τὸν δὲ βαρὺν τὸν Κρόνον , εἴπερ ὑπάτης . Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς
6537078 δεκαπεντε
τὰ ἀπὸ ΓΕ καὶ τρία τὰ ἀπὸ ΖΕ ἴσα ἐστὶν δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου τοῦ
χαραγμάτων : πέντε καὶ πέντε δέκα γὰρ , καὶ πέντε δεκαπέντε , ὅπως ἀναβιβάζονται ταῦτα τὰ γραμματίτζια μέχρι τῶν ἐνενήκοντα
6526602 ἡμιτονιῳ
τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ '
ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν
6523846 τριαδα
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα :
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων
6518338 συναλοιφῃ
οὐ γὰρ , ὡς τινὲς , ὦ ἐμοὶ , καὶ συναλοιφῇ ὤμοι . πῶς γὰρ τῇ δοτικῇ ἐπεφέρετο εὐθεῖα ,
φρῶ ἡ φρήν . παρὰ τὸ ἴω καὶ προΐω , συναλοιφῇ φρῶ . καὶ φρὴν , ἐφ ' ἧς προΐεται
6516054 ηʹʹ
τὰ εʹ , οὕτως τὰ εʹ πρὸς τὰ γʹ καὶ ηʹʹ : ὡς δὲ τὰ εʹ πρὸς τὰ γʹ καὶ
ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται ιβʹ : ὡς εἶναι τὸ ξύλον ποδῶν στερεῶν
6502907 πυκνου
τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ
ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ
6486141 νητην
μὲν καλῶμεν ὑπάτην καὶ μέσην , τόδε δὲ παραμέσην καὶ νήτην , μένοντος γὰρ τοῦ μεγέθους συμβαίνει κινεῖσθαι τὰς τῶν
φθόγγῳ τῇ ἀρχαίᾳ ὑπάτῃ . ὥστε ἀπὸ ὑπάτης ὑπατῶν ἐπὶ νήτην ὑπερβολαίων τέσσαρα εἶναι τετράχορδα συνημμένα . εὑρίσκετο δὲ τρισκαιδεκάχορδον
6482353 χαλασμα
ἔτι ὄντος τοῦ κατὰ γαστρὸς καὶ ἀσφαλῶς προσεχομένου καὶ μήπω χάλασμα πολὺ τοῦ χορίου μηδὲ διάτασιν [ τοῦ ] εἰληφότος
τὸ ἐκ τῶν σανίδων , θύραι τὸ ἄνοιγμα αὐτὸ καὶ χάλασμα τῆς θύρας . κομιδῆ μὲν περισπωμένως ἐπίῤῥημα σημαῖνον τὸ
6450357 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6435082 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6416883 λιχανος
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη ,
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη
6409152 ἐπιτεταρτον
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις
6375766 πλατυτερον
στενότερον εἴη τὸ διέχον , κατὰ λόχους , εἰ δὲ πλατύτερον , κατὰ πεντηκοστῦς , εἰ δὲ πάνυ πλατύ ,
ἐπ ' ἄκρου σκιάδειον πλατύ , ἐν δὲ τούτῳ καρπὸν πλατύτερον καὶ σαρκωδέστερον , εὐώδη . δυνάμεις δὲ τὰς αὐτὰς
6362188 χρωματικης
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι
6360779 διεσεων
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος
6338012 ἀνισα
ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν
συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων
6332554 διαστηματα
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι
6331920 τριχῃ
' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων
Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς
6324907 διατονου
μὲν ἡμιτόνιον καὶ τόνον καὶ τόνον , λέγεται δὲ συντόνου διατόνου . ἵνα δὲ δῆλον ᾖ τὸ λεγόμενον , ἐπ
ἀπὸ παρυπάτης μέσων ἐπὶ μέσων διάτονον τόνος , ἀπὸ μέσων διατόνου ἐπὶ μέσην τόνος , ἀπὸ μέ - σης ἐπὶ
6320003 παρενθεσις
δὲ καὶ τοῦτο παρένταξις , δι ' ὅτι ἀνομοίων ἐστὶ παρένθεσις , οἷον ψιλῶν παρ ' ὁπλίτας : τὴν γοῦν
εἰσὶν ὀκτώ , ὄνομα ἀντωνυμία ῥῆμα μετοχὴ ἐπίρρημα πρόθεσις σύνδεσμος παρένθεσις : τισὶν δὲ δοκεῖ καὶ προσηγορία . , .
6297994 τεμνομενη
καὶ Μακεδονίᾳ . ὀπίζεται δ ' ἡ ῥίζα ἐπί τι τεμνομένη ἄρτι βλαστανόντων καυλῶν : ἀνίησι δὲ λευκὸν ὀπόν ,
ὀξέϊ παλμῶι , ἧιχι φαεινομένων σελάων πολυαύχενος ὁρμὴ εἰς δέκα τεμνομένη θωρήσσεται : ἀλλ ' ἐνὶ μέσσωι ἀνδρομέη μόρφωσε φύσις
6289470 ἐπογδοον
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν
6272153 κηʹ
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ
6269378 τεμνονται
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει :
6266017 περιεχοντες
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ
6260005 ἡμιολιον
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον
6259403 τεταρτημοριων
νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν
ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ
6256011 διχοτομον
Σελήνη ἀπὸ πανσελήνου διελθοῦσα τὸ αʹ τετράγωνον καὶ τὴν βʹ διχότομον ὡς συμβαίνειν ἐπὶ τὴν σύνοδον ἢ τὸ συνοδικὸν ζῴδιον
τὴν δευτέραν ἀμφίκυρτον , εἶτα ἕως σοʹ μοιρῶν τὴν δευτέραν διχότομον , εἶτα ἕως τξʹ τὴν δύσιν . ἔστι δὲ
6253202 προσθεσιν
ποτὲ μὲν κατὰ μείωσιν ἢ ἀφαίρεσιν , ποτὲ δὲ κατὰ πρόσθεσιν ἢ αὔξησιν . οἱ οὖν τοιοῦτοι οἰκείως καλοῦνται μυουρίζοντες
, ταῖς τε προτάσεσι λέγω καὶ συμπεράσματι , τήν τε πρόσθεσιν καὶ τὴν ὑφαίρεσιν γίνεσθαι . οὐδὲν δὲ διαφέρει ,
6252459 ἡμιτονια
ἀκοῆς , ἀλλὰ τοὺς διαλύειν αὐτὰ δυναμένους εἰς τόνους καὶ ἡμιτόνια . πῶς ἂν οὖν τι περὶ ἀρχῶν μετὰ ἀποδείξεως
τόνον καὶ τόνον μελῳδῶ πάλιν τοῦ ἑνὸς τόνου τὰ δύο ἡμιτόνια ἐν τρισὶ φθόγγοις , δυσὶ δὲ διαστήμασιν ἀναβαίνων τῇ
6239892 δοχμη
κατάπλεων ὑπέρπλεων , καὶ πούς , πῆχυς , παλαιστή , δοχμή , πυγών , ὀργυιά , καὶ ὅσα ἐπὶ τῶν
δὲ παλαιστὴ καὶ δῶρον καλεῖται , ἡ δὲ σπιθαμὴ καὶ δοχμή . ἄψιν : Αἰολικῶς ψιλοῦται ὡς καὶ τὸ ὔμμες
6225306 τονιαια
ΖΔ , τὴν δὲ τῶν ΒΗ τῇ τῶν ΑΖ , τονιαία μὲν ἔσται καὶ ἑκατέρα τῶν ΔΒ καὶ ΖΔ ,
λοιπῶν , ἕως ἂν περιτραπῶσιν ἐπὶ τὸ λέγειν οἵων ἡ τονιαία δύο . ἔπειτα οὐδ ' οὕτως τὰς ὑπεροχὰς ὁρίζουσι
6223941 τετρασυλλαβων
ὡς καὶ τοῦ ἰάμβου καὶ τοῦ τροχαίου καὶ τῶν λοιπῶν τετρασυλλάβων ποδῶν . ἐπὶ τῷ τέλει διπλῆ ἔξω νενευκυῖα .
ποδῶν καὶ πεντασυλλάβους καὶ ἑξασυλλάβους . διαλύονται γὰρ καὶ τῶν τετρασυλλάβων ποδῶν αἱ μακραὶ συλλαβαὶ εἰς δύο βραχείας . ἔοικε
6222182 μετακαρπιου
ἔχει , λεληθυῖαν δὲ καὶ τελέως ἀμυδρὰν ἡ τῶν τοῦ μετακαρπίου πρὸς τὸν καρπόν : ἐνίοτε μέντοι κατὰ τὸν μέγαν
καὶ αὐτὸ τὸ κυβοειδὲϲ κατάγνυται παραπληϲίωϲ τοῖϲ ἐπὶ καρποῦ καὶ μετακαρπίου καὶ χειρὸϲ δακτύλοιϲ : ὥϲτε καὶ τὸν περὶ τούτων
6217936 μελῳδειται
ἀσύνθετον οὔτε πλείω ἑνὸς ἡμιτόνια κατὰ τὸ ἑξῆς ἐν τούτῳ μελῳδεῖται τῷ γένει : οὔτε μὴν κατὰ χρῶμα : πάλιν
δὲ παρυπάτης καὶ λιχανοῦ τῷ λιχανοῦ καὶ μέσης καὶ ἴσον μελῳδεῖται καὶ ἄνισον ἀμφοτέρως : ἴσον μὲν ἐν τῷ συντονωτέρῳ
6215564 ρπʹ
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια
6204688 Μʹ
φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ
Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # #
6199643 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
6199102 τριτημοριον
ὡς τρία τεταρτημόρια ἔχοντας . ὅτι δὲ τοὺς ἓξ χαλκοῦς τριτημόριον ὠνόμαζον , ἔστιν εὑρεῖν ἐν τῷ Φιλήμονος Σαρδίῳ :
τριτημόριον , πρὸς δὲ τῷ λιβυκῷ ὁρίζοντι κατὰ τὸ τελευταῖον τριτημόριον . Αἱ δὲ κατὰ μέρος ἀνέσεις καὶ ἐπιτάσεις ληφθήσονται
6191807 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
6187412 τετραχορδου
πρὸς παράμεσον : ὑπάτη δὲ ὑπάτων , ὅτι τοῦ πρώτου τετραχόρδου πρώτη τίθεται : τὸ γὰρ πρῶτον ὕπατον ἐκάλουν οἱ
νήτη ὑπερβολαίων . Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τετραχόρδου κατὰ τρία γένη , τὰ δὲ μέσων , τὰ
6176751 διῃρημενη
διαιρεῖται . Ἔστω [ δύο μέσα δυναμένη ] ἡ ΑΒ διῃρημένη κατὰ τὸ Γ , ὥστε τὰς ΑΓ , ΓΒ
αὐτὸ ἐξ ἀνάγκης εἶδος . Πάλιν δὴ ἔστω ἡ ΑΔ διῃρημένη εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ ,
6168317 διαιρουνται
εἰσι μὲν εὔρωστοι σφόδρα , ὀλιγάκις δὲ καὶ οὐκ ἀκινδύνως διαιροῦνται διὰ τὴν γειτνίασιν τῶν μυῶν καὶ διὰ τὴν ἐπιπλοκὴν
ἀδιαίρετοι , ἀλήθεια γοργότης δεινότης κάλλος , αἱ δὲ τρεῖς διαιροῦνται εἰς ἑτέρας δώδεκα , ὡς εἶναι τὰς πάσας ἑκκαίδεκα
6165122 εὐθυμετρικον
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς
6164102 βουβωνοϲ
ἁρμόϲαντεϲ ἐπὶ τὸν ὦμον ἀναγάγωμεν , ἔμπροϲθεν μὲν διὰ τοῦ βουβῶνοϲ καὶ τῆϲ κλειδόϲ , ὄπιϲθεν δὲ διὰ τοῦ νώτου
ὅϲον δακτύλων τὸ μῆκοϲ τριῶν ἐγκαρϲίαν κατὰ τὸ ἐξογκούμενον τοῦ βουβῶνοϲ τοὺϲ ὑμέναϲ τε καὶ τὴν πιμελὴν ἐκλαβεῖν κατὰ τὸ
6158624 ἐπιτεταρτος
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως .
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ '
6149244 διτονου
οὔτε δίτονον πρὸς διτόνῳ τεθήσεται οὔτε τόνος ἐπὶ τὸ βαρὺ διτόνου , ὥστε λείπεται τὸ πυκνόν . φανερὸν δὴ ὅτι
πρὸς αὐτῷ κατ ' οὐδέτερον τῶν τόπων οὔτε τόνος . διτόνου γὰρ οὕτω τιθεμένου ἤτοι βαρύτατος πυκνοῦ ἢ ὀξύτατος πεσεῖται
6148819 ἀσυνθετον
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις
6141947 παρυπατη
ὑπερβολαίων . Ἐν δὲ ἁρμονίᾳ οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων ἐναρμόνιος ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
ὑπερβολαίων . Ἐν δὲ χρώματι οἵδε : προσλαμβανόμενος ὑπάτη ὑπάτων παρυπάτη ὑπάτων λιχανὸς ὑπάτων χρωματική ὑπάτη μέσων παρυπάτη μέσων λιχανὸς
6137484 τρειϲ
ἡ ἐϲ κίνδυνον ἢ ὄλεθρον διαφορή . οἱ δὲ τρόποι τρεῖϲ ἔαϲι : ἢ γὰρ ἀπὸ ῥήξιοϲ ἀγγείου , ἢ
δὲ μετὰ τὴν τούτων χρῆϲιν , ὡϲ μεθ ' ἡμέραϲ τρεῖϲ , ϲιναπίζειν τὸ μέτωπον καὶ τὴν ῥῖνα καὶ λούειν
6133783 πηχεις
χώρας . Ὁ δὲ μέγιστος αὐτῷ πύργος τὸ μῆκος εἶχε πήχεις ρκ , τὸ δὲ πλάτος εἶχε πήχεις κγ ⊂
ἐν κύκλῳ ξύλα ἱστᾶσιν ἔτι χλωρὰ καὶ ἐς ἑκκαίδεκα ἕκαστον πήχεις : ἐντὸς δὲ ἐπὶ τοῦ βωμοῦ τὰ αὐότατά σφισι
6125632 ἡμιφωνων
λοιπὰ ἡμίφωνα μικτὸν λαμβάνει τὸν ψόφον ἐξ ἑνὸς μὲν τῶν ἡμιφώνων τοῦ σ , τριῶν δὲ ἀφώνων τοῦ τε δ
ἐν τοῖς τοσούτοις ὀνόμασι καὶ ῥήμασι καὶ τοῖς ἄλλοις μορίοις ἡμιφώνων τε καὶ ἀφώνων γραμμάτων συμπλοκὰς τῶν μὴ πεφυκότων ἀλλήλοις
6116211 τετραδα
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει
6110305 τονου
ἐν τόνῳ δέ , καθὸ οὐδεμία λέξις εἰς ο λήγουσα τόνου ἔχεται τοῦ ὀξέος , καὶ ἕνεκά γε τούτου τὸ
λοιπὸν ἐκ τοῦ τεθὲν ἐπὶ γῆς εὐθέως αὐτὸ κλαυθμυρίσαι μετὰ τόνου τοῦ προσήκοντος : τὸ γὰρ ἕως πλείονος ἀκλαυστὶ διάγον
6109670 τονῳ
Ἀλκαῖος Γανυμήδῃ ἔοικεν αἰγίθαλλος διακωλύειν τὸ πρᾶγμα . τῷ δὲ τόνῳ ὡς ἀρύβαλλος . , . . , . ᾄδεις
, πάθος κινοῦσα , σχεδὸν τῇ πικρίᾳ μόνον καὶ τῷ τόνῳ τοῦ Δημοσθενικοῦ χαρακτῆρος λειπομένη , τοῦ δὲ πιθανοῦ καὶ
6101375 στερεων
ΓΖΝ ἐστιν ἴση διὰ τὴν ὁμοιότητα τῶν ΑΒ , ΓΔ στερεῶν , ἴσον ἄρα ἐστὶ [ καὶ ὅμοιον ] τὸ
πόδα δακτύλους ιϚʹ : γίνονται ιθʹ : τοσούτων ἔσται ποδῶν στερεῶν τὸ μάρμαρον . Μάρμαρον μῆκος ποδῶν Ϛʹ , πλάτος
6090655 ἐπιμερες
ἦν πρῶτον τὸ διπλάσιον , εἶτα τὸ ἐπιμόριον καὶ τὸ ἐπιμερὲς καὶ τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ
ε : τὸ γὰρ μεῖζον ἢ πολλαπλάσιον ἢ ἐπιμόριον ἢ ἐπιμερὲς ἢ πολλαπλασιεπιμόριον ἢ πολλαπλασιεπιμερές : ὡσαύτως καὶ τὸ ἔλαττον
6089173 ἁρμονικην
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ
6067244 διπλων
βραχεῖαι : ἡμίβραχυ γὰρ λαμβάνεται ἕκαστον τῶν συμφώνων πλὴν τῶν διπλῶν : ἤγουν τοῦ Ζ . Ξ . Ψ .
, καὶ τότε τοῖς τῆς σκυτάλης ἄκροις ἢ τοῦ καυτηρίου διπλῶν καιριῶν μεσότητες ἢ βρόχων ἀνισοτόνων ἀγκύλαι περιτιθέσθωσαν ἀγόμεναι κάτω
6060266 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6059154 ἀναλογια
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον .
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν
6057965 διῃρηται
βαδίζειν , ὁ Σωκράτης ἄρα βαδίζει : τὸ γὰρ βαδίζει διῄρηται μὲν τοῦ δύναται , μόνον δὲ συντέθειται τῷ Σωκράτει
λόγος ὁ αὐτός . καὶ πῶς τοῦτο , δείκνυσι λέγων διῄρηται γὰρ ὁμοίως οἷς τε καὶ ἅ . εἰ δὲ
6057227 γεωμετρικην
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται :
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ
6047497 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
6045888 ὀβολουϲ
β πεπέρεωϲ ⋖ α : ὕδατι πλάϲϲε τροχίϲκουϲ ἄγονταϲ ἀνὰ ὀβολοὺϲ β καὶ δίδου μεθ ' ὕδατοϲ θερμοῦ τροχίϲκον α
ἔχει # ιβʹ , ⋖ ϘϚʹ , γράμματα ϲπηʹ , ὀβολοὺϲ φοϚʹ , θέρμουϲ ωξδʹ , κεράτια ͵αψκηʹ , χαλκοῦϲ
6041586 ωξδ
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ
6037059 τπδ
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ
6027716 συνημμενα
σχηματιζέσθω ἡ γυνὴ ἐπὶ δίφρου ὑπτία πρὸς αὐγὴν λαμπρὰν , συνημμένα ἔχουσα τὰ σκέλη πρὸς ἐπιγάστριον , καὶ μηροὺς ἀπ
καὶ χιτῶσι περιεχόμενα πλείοσι , τὰ δὲ καὶ ἀλλήλοις πως συνημμένα καὶ κοινὴν περιοχὴν ἔχοντα καθάπερ καὶ τὰ τῶν ἀπίων
6023822 νητοειδης
διθυραμβικὸς νομικὸς τραγικός . ὁ μὲν οὖν νομικὸς τρόπος ἐστὶ νητοειδής , ὁ δὲ διθυραμβικὸς μεσοειδής , ὁ δὲ τραγικὸς
ὑπερβολαίων . Τόποι φωνῆς τέσσαρες : ὑπατοειδής , μεσοειδής , νητοειδής , ὑπερβολοειδής . ἐν μὲν οὖν τῷ πρώτῳ τίθεται
6023342 ἐκτεταμενη
αἰδοῖον , καὶ κατακείσθω ὑπτίη , ἄνω τοὺς πόδας ἔχουσα ἐκτεταμένη . Κᾄπειτα σπόγγους προσθεῖσα ἀναδῆσαι ἐκ τῶν ἰξύων .
χωρεῖ τὸ τῶν ὄμβρων ὕδωρ . Χαίτη . κυρίως ἡ ἐκτεταμένη θρίξ . παρὰ τὸ κεχύσθαι . Χάρμη . ἡ
6021660 διεστως
ὀργάνων . . . . ἀπήορος : ὁ ἀπηρτημένος καὶ διεστώς : παρὰ τὸ ἀείρω ἀερῶ . . . .
. ἀπήορος , , : ἀπήορος : ὁ ἀπηρτισμένος καὶ διεστώς . παρὰ τὸ ἀείρω ἀπάορος καὶ ἀπήορος . Φιλόξενος
6017361 ἀτμητος
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν
6017328 Ὁμοιως
αἱρετὸν οὐχ αἱρούμεθα , μᾶλλον δὲ ἔχειν αὐτὸ αἱρούμεθα . Ὁμοίως δὲ καὶ τὰ μὲν ἀγαθὰ πάντα ἐστὶν ὑπομενετὰ καὶ
μὲν ὀλίγον δὲ καὶ καλλικαρπεῖ καὶ γλυκυκαρπεῖ ἐκεῖ μόνον . Ὁμοίως δὲ καὶ ὁ φοῖνιξ καὶ ἔτι μᾶλλον ἐν τοῖς
6002021 γραμμικοι
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι
5994820 ρκεʹ
υπʹ , νομίσματα ζʹ ʂ . Τὸ τάλαντον ἄγει λίτρας ρκεʹ , νομίσματα ͵θ . Ἔστι δὲ ὁ κύαθος #
[ ἐκ στίχων ] ἀναπαιστικῶν τετραμέτρων καταληκτικῶν ⌈ καὶ ἀκαταλήκτων ρκεʹ , ὧν τελευταῖος διὰ τοὺς ἵππους τοὺς κοππατίας καὶ
5993422 διαστημασι
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων ,
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι
5993272 ρκʹ
Νίνου Πῖκος ὁ καὶ Ζεὺς ἐβασίλευσε τῆς Ἰταλίας , ἔτη ρκʹ κρατῶν τῆς δύσεως . ἔσχε δὲ υἱοὺς καὶ θυγατέρας
ἕν , ἅ ἐστιν ὁμοῦ τρία , δὶς ποιῶ τὸν ρκʹ , καὶ τὸν σμʹ μερίζω παρὰ τὸν τρίτον .
5993172 ἀντιστροφῳ
ὡς οὗτος [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ :
ὁ Ὅμηρος τὰ ἀνατολικά , ἀριστερὰ δὲ τὰ δυτικά : ἀντιστρόφῳ δὲ , ὅτι ἐκινοῦντο ἀπὸ τῶν ἀριστερῶν ἐπὶ τὰ
5992343 ἑξαγωνον
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ

Back