τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
' εἰ μὲν ὁ ἐλάττων διχῇ διαιροῖτο , ὁ μείζων τριχῇ , εἰ δὲ ὁ ἐλάττων τριχῇ , ὁ μείζων | ||
Τί μήν ; Ὦ Πρώταρχε , πειρῶ δὲ αὐτὸ τοῦτο τριχῇ τέμνειν . Πῇ φῄς ; οὐ γὰρ μὴ δυνατὸς |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
τὰ κάτω δ ' ἄνω . Βοῶν ποιείτω τὴν πόλιν διάστατον . Πρὸς τὴν ἀδελφὴν ἀνάδοχον τῶν χρημάτων . Ἑκοῦσα | ||
ὑπηρετοῦντος τοῦ σώματος . λʹ . Σῶμά ἐστι μέγεθος τριχῇ διάστατον ἔχον ἐν ἑαυτῷ μῆκος , βάθος , πλάτος . |
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
, ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
: διὰ τοῦτο αὐτὸν πολλαπλασιάζω τῇ τοῦ ὑστέρου εἰς τὴν σωρείαν ληφθέντος ποσότητι , τουτέστι τοῦ β , καὶ γεννᾶταί | ||
μὲν τρίγωνος τοὺς μονάδι διαφέροντας , μηδὲν παραλείποντας εἰς τὴν σωρείαν δεχόμενος ἀπετελεῖτο , ὁ δὲ τετράγωνος τοὺς δυάδι μὲν |
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται | ||
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ |
δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ | ||
οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί |
? [ παρεθήσεσθαι - ] [ δύναμιν - ] : διαιρετὴ [ γὰρ ] εἰς ἴσα τρίποδα [ δύο ] | ||
ἀρχὴ τῆς κινήσεως : εἰ δὲ μὴ κίνησις , οὐδὲ διαιρετὴ οὐδὲ ἐν χρόνῳ , ἀλλ ' ἐν τῷ νῦν |
διαιρετὸς καὶ ἀδιαίρετος : ἐπὶ μὲν τῶν ἀύλων εἰδῶν παντάπασιν ἀδιαίρετος ὅ τε χρόνος καὶ αὐτὸς ὁ νοῦς , ὅταν | ||
ἀλλὰ μία ἐν ἑκάστῃ φύσει , πότερον ἀμέριστος αὕτη καὶ ἀδιαίρετος ἢ μεριστή τις καὶ πολυδύναμος . καὶ εἰ μὲν |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
κατὰ τὸν πόρον τοῦ ποταμοῦ τεταλαιπωρήκεσαν . Τῇ δὲ ὑστεραίᾳ διχῇ διελὼν τὸν στρατὸν τοῦ μὲν ἑτέρου αὐτὸς ἡγούμενος προσέβαλλε | ||
χρυσοῦ δὲ ἢ ἀργύρου τὸ βάμμα τοῦ ἐληλασμένου καὶ ζέοντος διχῇ ] διχῶς ἤλασε ] ἐχώρισεν λιγνὺς δέ ἐστι κυρίως |
ἀρτηρίαν . ἀρτηρία ἐστὶ σώματος ἐπίμηκες κυκλικὸν , δίκην σωλῆνος διχῆ διαιρούντων ἀπὸ καρδίας ἐρχόμενον καὶ ἐπὶ τὸ πᾶν σῶμα | ||
τῶν ἐν αὐτῷ παραδιδομένων . Κατὰ δὲ τῶν ἀνωτάτω μερίζεται διχῆ , καθάπερ ἐν ἀρχῇ προαναπεφώνηται : καὶ ὁ μὲν |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι | ||
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν |
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας | ||
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα |
ιʹ τῷ προκειμένῳ ἀριθμῷ . ἐὰν κατὰ τὰ μέσα ἡσδηποτοῦν ἑξάδος ὡς ἐπὶ τῆς δευτέρας δεδήλωται ἀπαρτηθῇ ὁ τριακοστὸς ἀριθμός | ||
Διὸς ἀνατέλλοντος ἐν ταῖς μοίραις πλησίον : ἀπὸ δ ' ἑξάδος εἰκοστῆς καὶ μέχρι τριαντάδος ὁ Κρόνος ἐπαρέλαβεν , εἰ |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
πέτρας καὶ ἔλαιον ἐκ στερεᾶς πέτρας ” , πέτραν τὴν στερεὰν καὶ ἀδιάκοπον ἐμφαίνων σοφίαν θεοῦ , τὴν τροφὸν καὶ | ||
μὴν ὁμοίως γε τοῖς ἀκαύστοις συνάγειν τε καὶ πιλεῖν τὴν στερεὰν οὐσίαν ἔτι δύνανται . Ἀρμενιακὸν δύναμιν ἔχει ῥυπτικὴν ἅμα |
μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ ' | ||
: οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως |
ἐν τῷ θεάτρῳ : καὶ γὰρ ἡ φωνὴ ἐνέργειά ἐστιν ἀμέριστος πανταχοῦ ὅλη ἡ αὐτὴ χωριστῶς αὐτῷ παροῦσα , ἅτε | ||
πρὸς τὰς ἄλλας ἀμέριστον ἕνωσιν . καὶ γὰρ αὕτη ἡ ἀμέριστος ἕνωσις τοῖς χωρὶς τῶν σωμάτων προσήκει εἴδεσιν . εἰ |
τὰς ἰδέας πρεσβεύοντες οἱ μὲν τὸ παράδειγμα τῆς γραμμῆς τὴν δυάδα λέγουσιν , οἱ δὲ τὴν ἰδέαν τῆς γραμμῆς . | ||
; ἢ τὰ δύο : καὶ μετὰ τὴν μονάδα τὴν δυάδα καὶ οὕτω γε τὸν λοιπὸν ἀριθμὸν προελθεῖν . Οὕτω |
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , | ||
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ |
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
ἔχει . ὑπόκειται δὲ καὶ ἡ παρὰ τοῖς ἀρχαίοις κατὰ διέσεις ἁρμονία , ἕως κδ διέσεων τὸ πρότερον διάγουσα διὰ | ||
τόνῳ , τὸν δὲ λύδιον ἀπὸ τοῦ φρυγίου πάλιν τρεῖς διέσεις ἀφιστᾶσιν , ὡσαύτως δὲ καὶ τὸν μιξολύδιον τοῦ λυδίου |
λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
, Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
βαδίζειν , ὁ Σωκράτης ἄρα βαδίζει : τὸ γὰρ βαδίζει διῄρηται μὲν τοῦ δύναται , μόνον δὲ συντέθειται τῷ Σωκράτει | ||
λόγος ὁ αὐτός . καὶ πῶς τοῦτο , δείκνυσι λέγων διῄρηται γὰρ ὁμοίως οἷς τε καὶ ἅ . εἰ δὲ |
, ἀριθμητικῶν τε καὶ μουσικῶν καὶ γεωμετρικῶν τῶν τε κατὰ στερεομετρίαν καὶ ἀστρονομίαν , ὧν χωρὶς οὐχ οἷόν τε εἶναί | ||
τὴν ἑτέραν , οἷον ὀπτικὴν πρὸς γεωμετρίαν , μηχανικὴν πρὸς στερεομετρίαν καὶ ἁρμονικὴν πρὸς ἀριθμητικὴν καὶ τὴν ναυτικὴν ἀστρολογίαν πρὸς |
οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
δὲ τετράγωνοι , οἱ δὲ πεντάγωνοι καὶ κατὰ τὸ ἑξῆς πολύγωνοι . γεννῶνται δὲ οἱ τρίγωνοι τὸν τρόπον τοῦτον . | ||
, ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι . πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
τρία ἐστὶ καὶ αὐτά : ἓν μὲν τὸ πρῶτον καὶ ἀσύνθετον , ἕτερον δὲ τὸ δεύτερον καὶ σύνθετον , καὶ | ||
μὲν ἑαυτὸ σύνθετον καὶ δεύτερον πρὸς δὲ ἄλλο πρῶτον καὶ ἀσύνθετον . εἰ δοκεῖ τοίνυν ἐξηγησόμεθα αὐτά . ὁ ἀρτιάκις |
κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν | ||
δέκα λέγομεν , ὅταν δὲ ἐκ πολλῶν γίνηται ἕν , δεκάδα , ὡς κἀκεῖ οὕτως . Ἀλλ ' εἰ οὕτως |
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
ἐπιδείκνυται , ζῆλον ἅμα καὶ πόθον ἐνεργαζομένη τῆς ἀτρέπτου καὶ ἐναρμονίου τάξεως , ἣν οὐδέποτε λείπουσι πειθόμεναι τῷ ταξιάρχῳ . | ||
βαρυτάτῳ καὶ ἑπόμενον διάστημα καὶ τὸ μέσον ἑκάτερον ποιεῖ διέσεως ἐναρμονίου , τὸ δὲ λοιπὸν καὶ ἡγούμενον δύο τόνων , |
καθ ' αὑτὸ ἕκαστον εἴδη ποιεῖ ; Οἷον τὸ ὂν διαιροῖτο ἂν ἤδη ἐφ ' ἑαυτοῦ ἄνευ τῶν ἄλλων ; | ||
χοριαμβικοῦ συγκείμενον ] . τὸ τοίνυν ἀναπαιστικὸν εἴ τις οὕτω διαιροῖτο , εὑρήσει τῷ προσοδιακῷ ἐφαρμόζον . ἐὰν μὲν γὰρ |
θεωρῶμεν : ἢ κατὰ διαίρεσιν , ὅταν τὸ ἓν καὶ ἀμέριστον μαθηματικὸν εἶδος μεριζόμενον περὶ τὰ καθ ' ἕκαστον καὶ | ||
ἕνωσις . καὶ διὰ ταῦτα αὐτός τε πρὸς τὴν καθαρῶς ἀμέριστον γνῶσιν τοῦ ἐνεργείᾳ τελεοῦντος δεῖται νοῦ , καὶ τὰ |
γίνονται . Ὁ δὲ χειμερινὸς τροπικὸς κύκλος ὑπὸ τοῦ ὁρίζοντος τέμνεται οὕτως , ὥστε τὸ μὲν ἔλασσον τμῆμα ὑπὲρ γῆν | ||
τε πραγματικὴν καὶ δικαιολογίαν : ἥτις δικαιολογία ὑπάλληλον γένος οὖσα τέμνεται εἰς ἀντίληψιν καὶ ἀντίθεσιν : ὑπάλληλον δὲ καὶ αὕτη |
πενταγώνοις οἱ τρίγωνοι προστιθοῖντο τῇ αὐτῇ τάξει , τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προσπλεκόμενοι τοὺς ἐν | ||
, δεικνύτωσαν , πῶς ἀλλήλας καταλήψονται ἢ πῶς συμπλακήσονται καὶ γεννήσουσιν ἕτερον . ὅτι μὲν οὖν ἀναιρεῖ κίνησιν μᾶλλον τὸ |
Ἀθηναίων πολιτείᾳ Ἄνυτόν φησι καταδεῖξαι τὸ δεκάζειν τὰ δικαστήρια . Δέκα καὶ δεκαδοῦχος : Ἰσοκράτης ἐν τῇ πρὸς Καλλίμαχον παραγραφῇ | ||
μόνους . Ἡ δ ' αὖ Σελήνη μείζονας νέμει χρόνους Δέκα δεκάκις , ἀλλὰ καὶ τὴν ὀκτάδα , Μέσους δὲ |
τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |
Τὸ δυτικὸν στόμα τοῦ Τίγριδος ἐν τῇ περιγραφῇ τῆς Βαβυλωνίας ἔκκειται . . . οθ ∠ ʹ λ δʹ : | ||
καὶ κρείττους τοῦ ἀνέμου . καὶ μὴν καὶ ἀγκὼν δεξιὸς ἔκκειται λευκὸν διακλίνων πῆχυν καὶ ἀναπαύων τοὺς δακτύλους πρὸς ἁπαλῷ |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
, ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
ἀρτία τε οὖσα καὶ περιττὴ καὶ ἀρτιοπέριττος καὶ γραμμὴ καὶ ἐπίπεδος καὶ στερεὰ κυβική τε καὶ σφαιρική . καὶ ἀπὸ | ||
' ἡμᾶς χρόνων ἐνοικοῦντες . ὁ γὰρ τῆς ἀκροπόλεως περίβολος ἐπίπεδος ὢν καὶ μέγας κρημνοῖς δυσπροσίτοις περιέχεται πανταχόθεν , ὥστε |
τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
συναρχία ἡ περὶ τὰ στρατιωτικά , καὶ αὕτη ταῖς πεντάσιν ἑξαχῇ διωρισμένη : ὧν τὴν μὲν μετὰ τοῦ ναυάρχου τάττουσι | ||
συναρχία ἡ περὶ τὰ στρατιωτικὰ , καὶ αὕτη ταῖς πεντάσιν ἑξαχῇ διωρισμένη : ὧν τὴν μὲν μετὰ τοῦ ναυάρχου τάττουσι |
διθυραμβικὸς νομικὸς τραγικός . ὁ μὲν οὖν νομικὸς τρόπος ἐστὶ νητοειδής , ὁ δὲ διθυραμβικὸς μεσοειδής , ὁ δὲ τραγικὸς | ||
ὑπερβολαίων . Τόποι φωνῆς τέσσαρες : ὑπατοειδής , μεσοειδής , νητοειδής , ὑπερβολοειδής . ἐν μὲν οὖν τῷ πρώτῳ τίθεται |
ἐμπόριον καὶ πόλις Κελτική . Στράβων τετάρτῃ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης ὡς Ἀσκαλωνίτης . | ||
ἐμπόριον καὶ πόλις Κελτική : Στράβων δ . Μαρκιανὸς δὲ Ναρβωνησίαν αὐτήν φησι . τὸ ἐθνικὸν Ναρβωνίτης . . . |
ὑβρίσαντες | καὶ ὡς ἑταίραις ταῖς ἀσταῖς προσενεχθέντες , ἐὰν διάζευξιν τεχνάζωσι μηδεμίαν ἀπαλλαγῆς πρόφασιν ἀνευρίσκοντες , εἶτ ' ἐπὶ | ||
συναφὴν συστήματι ὑπαρχούσῃ τετραχόρδου τε καὶ πενταχόρδου , ἢ κατὰ διάζευξιν δυεῖν τετραχόρδων τόνῳ χωριζομένων ἀπ ' ἀλλήλων , ἀπὸ |
δὲ πάτρα μὲν εἰς τὴν δευτέραν μετάβασιν ἐλθόντων ἡ κατὰ μόνας ἑκάστῳ πρότερον οὖσα συγγένεια , ἀπὸ τοῦ πρεσβυτάτου τε | ||
φρέατος ἔνδον ψυχρότερον Ἀραρότος . ἢ μετὰ Πλάτωνος ἀδολεσχεῖν κατὰ μόνας μᾶλλον μᾶλλον ὁ συκοφάντης οὐ δικαίως τοὔνομα ἐν τοῖσι |
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν | ||
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει : |
τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
ἂν ἐπὶ τούτων ἀντιπερίστασις ἢ δι ' ὅλων διέξοδος ἢ μεριστὴ περιγραφὴ ἢ κατὰ τόπον περιοχὴ ἤ τι τῶν τοιούτων | ||
πλῆθος , ἣν ἀόριστον δυάδα ἐκάλουν : δυάδα μὲν ὅτι μεριστὴ καὶ πλήθους ἤδη ποιητική , ἀόριστον δὲ ὅτι μὴ |
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ | ||
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ |
ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
τινές εἰσιν ἰδέαι κινήσεως , ἥ τε συνεχὴς καὶ ἡ διαστηματική . κατὰ μὲν οὖν τὴν συνεχῆ τόπον τινὰ διεξιέναι | ||
ἡ μὲν συνεχής τε καὶ λογικὴ καλουμένη , ἡ δὲ διαστηματική τε καὶ μελῳδική . ἡ μὲν οὖν συνεχὴς κίνησις |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
κυριωτέραν θεωροῦμεν καὶ περὶ ἑαυτὴν καὶ ἐν ἑαυτῇ ἔχουσαν τὴν ἑτερότητα καὶ τὸ πλῆθος . Ἐπὶ δέ γε τῶν θεῶν | ||
τῆς ἑνώσεως τῶν θεῶν ἀναγκαίως ἡ ψυχὴ εἰς γένεσιν καὶ ἑτερότητα ἐμφέρεται . νʹ Ἀρετὴ δὲ τίς τοῦ ἀγαθοῦ Διὰ |
διχῇ τέμνεσθαι . Πῇ ; Τὴν μὲν τῶν αὐτουργῶν αὐτοπωλικὴν διαιρουμένην , τὴν δὲ τὰ ἀλλότρια ἔργα μεταβαλλομένην μεταβλητικήν . | ||
ὅτι τῶν μὲν ἐφεξῆς ἡ γένεσις περὶ μίαν εὐθεῖαν ἐγίνετο διαιρουμένην ὑφ ' ἑτέρας μόνον , τῶν δὲ κατὰ κορυφὴν |
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
τὸν αὐτὸν ἔλθῃ δεύτερον φθόγγον , εἶτα πάλιν ἀπὸ τοῦδε ἡμιτόνιον διαστήσασα τρίτον ὁρίσῃ φθόγγον ἄλλον , ἀπὸ τούτου κατὰ | ||
νήτην διεζευγμένων τόνος , ἀπὸ νήτης διεζευγμένων ἐπὶ τρίτην ὑπερβολαίων ἡμιτόνιον , ἀπὸ τρίτης ὑπερβολαίων ἐπὶ ὑπερβολαίων διάτονον τόνος , |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
Τὰ εἰς ης λήγοντα , ὧν ἡ γενικὴ εἰς ου περατοῦται , εἰς εω διαλύουσι : Πέρσης Πέρσεω , Ξέρξης | ||
ἐξ ἐναντίων εἰς ἐναντία , ὁρίζεται ὑπὸ τῶν ἐναντίων καὶ περατοῦται , καὶ οὐκ ἔστι συνεχὴς οὐδ ' , εἰ |
ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
, ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
πᾶς ὁ ἀπὸ τοῦ ὑπερμιξολυδίου . ἄρχεται δὲ ὁ μὲν ὑπατοειδὴς τόπος ἀπὸ ὑπάτης μέσων ὑποδωρίου καὶ λήγει ἐπὶ μέσην | ||
γένει , ὡς ἐναρμόνιος χρωματικὴ διάτονος : συστήματι , ὡς ὑπατοειδὴς μεσοειδὴς νητοειδής : τόνῳ , ὡς δώριος φρύγιος : |
αἱ ἐφεξῆς δεκάδες . καλεῖται δὲ ἡ δεκὰς κράτος καὶ παντέλεια , ἐπεὶ πάντα περαίνει τὸν ἀριθμὸν περιέχουσα πᾶσαν φύσιν | ||
κατὰ μουσικὴν θεωρημάτων τελειότατον , ἀφ ' οὗ καὶ ὠνόμασται παντέλεια . . § : ὧν εὐθέως ἄξιον θαυμάσαι τὸν |
μὲν γὰρ ὁ λόγος μόνον καὶ ἡ σχέσις θεωρεῖται τῶν πεπερασμένων μεγεθῶν κατὰ τὸ μεῖζον καὶ ἔλαττον , ὅπου δὲ | ||
δὲ καὶ ἄπειρα , ἡ δὲ ἐπιστήμη ἀιδίων τε καὶ πεπερασμένων ἐστὶ γνῶσις , ἀνήγαγον ἑαυτοὺς ἀπὸ τῶν κατὰ μέρος |
κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν | ||
κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
ἐνέδησεν . ἐνεφλεβοτόμησε : Βακχεῖος ἐν τρίτῃ φησίν , ὅτι διεῖλεν εἰς πλείους τόπους τὰς φλέβας καὶ οἷον ἐμέρισεν . | ||
δεκάτην ἐξελόμενος εἰς κατασκευὴν ἱεροῦ τὰ λοιπὰ χρήματα τοῖς στρατιώταις διεῖλεν . οὕτω δ ' ἄρα πολὺς ὁ καταληφθεὶς ἄργυρός |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
τῆς πληθοποιοῦ δυάδος . Οὐκοῦν ὅλην φέροντες τὴν οἱανδήποτε λεγομένην ἀντιδιαίρεσιν εἰς μίαν ἀνοίσομεν ἐκείνην ἀρχήν , τὴν πληθοποιόν , | ||
ἀδιάκριτον , ἐν δὲ τῷ διακεκριμένῳ κατὰ διορισμόν τινα καὶ ἀντιδιαίρεσιν ἤδη προβεβλημένην , ἐν δὲ τῷ μέσῳ δῆλον ὅτι |
καὶ Μακεδονίᾳ . ὀπίζεται δ ' ἡ ῥίζα ἐπί τι τεμνομένη ἄρτι βλαστανόντων καυλῶν : ἀνίησι δὲ λευκὸν ὀπόν , | ||
ὀξέϊ παλμῶι , ἧιχι φαεινομένων σελάων πολυαύχενος ὁρμὴ εἰς δέκα τεμνομένη θωρήσσεται : ἀλλ ' ἐνὶ μέσσωι ἀνδρομέη μόρφωσε φύσις |
καὶ αὖθις ζῴου καὶ φυτοῦ στάντων ἡ οὐσία , ὅπερ ἀμερές ἐστι καὶ κοινὸν καὶ ταὐτὸν ἐν πᾶσιν τοῖς ὑπ | ||
, στάσιμον , ἀμετάστατον ἑστηκός , ἀμετακίνητον , ἀγέννητον , ἀμερές , ἀναφές , ἀθάνατον , ἄληπτον , ἄλυτον , |