, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
ἐδείχθη δὲ καὶ ἡ ΓΑ ἀποτομή . Ἐὰν ἄρα εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ , ἑκάτερον τῶν τμημάτων | ||
, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ . ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ . καὶ γεγονέτω ὡς |
ΕΜΠΕΠΤΑΣ , ὁ αὐτός φησι , πύρινος ἄρτος κοῖλος καὶ σύμμετρος , ὅμοιος ταῖς λεγομέναις κρηπῖσιν , εἰς ἃς ἐντίθεται | ||
ΗΘ , ῥητή ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ |
σκορπίων καὶ δρακόντων καὶ τῶν λοιπῶν πάντων ἰοβόλων . Ἡ πέμπτη ὥρα καλεῖται Σαγλὰτ , ἐν αὐτῇ τῇ ὥρᾳ αἰνεῖ | ||
κατὰ Ἀναξαγόραν ἢ πῦρ κατὰ τοὺς Στωϊκοὺς ἢ κατὰ Ἀριστοτέλην πέμπτη οὐσία μηδενὶ τῶν τεσσάρων στοιχείων ἐπικοινωνοῦσα , ἀγέννητός τε |
σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ μήκει τῇ ΖΗ , ἀποτομὴ τρίτη ἐστὶν ἡ ΚΘ . ῥητὴ δὲ ἡ ΚΛ , | ||
πρὸς ὀρθὰς ἤχθω ἡ ΑΘ : γίνεται δὴ ἡ ΑΒ τρίτη ἀνάλογον τῶν ΓΒ ΒΖ . καὶ γὰρ τοῦτο φανερὸν |
κατὰ μέν τινας τὸ αὐτό : κατὰ δέ τινας ἡ ἄλογος καὶ καθ ' ὑπερβολὴν δαπάνη . ἔστι γὰρ λάπτω | ||
οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον . αὕτη δέ ἐστιν ἄλογος : οὐχ ὑποπίπτει γὰρ ἀριθμῷ . Τοῦτό ἐστι τὸ |
καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει , ἡ δὲ ὅλη τῆς προσαρμοζούσης μεῖζον | ||
ἀπὸ συμμέτρου ἑαυτῇ , καὶ ἡ ΑΕ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΑΒ μήκει . τετμήσθω δὴ ἡ ΕΔ |
τῆς σήψεως ἐπιτεινομένης ἥ τε δύναμις ἀσθενεστέρα γίνεται οὐκ ἔτι δυναμένη φέρειν τὸ μέγεθος τῶν πυρετῶν οὔτε [ ἔτι δύνασθαί | ||
τοῦ Κυπρίων βασιλέως , καὶ ὅμως οὐκ ἠγανάκτησεν ἡ θεὸς δυναμένη λίθον αὐτὴν ὥσπερ τὴν Νιόβην ἀπεργάσασθαι . ἐῶ γὰρ |
γράφειν ὡς ἐκδοτέον τοῖς ἐγκαλοῦσιν . Ἔτι τοίνυν ἔσθ ' ἕκτη τιμωρία πρὸς ἁπάσαις ταύταις , ἣν ὁμοίως παραβὰς γέγραφεν | ||
πλείονος ἀθροισθέντος οὔρου καὶ μὴ χώραν εἰς ἔξοδον ἔχοντος , ἕκτη τε ἤδη ἦν καὶ σπασμὸς ἐξαίσιος ἐντεῦθεν εἶχε τὸν |
ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
. τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
, ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
δὲ ἡ κατὰ πολλαπλασιασμὸν ἀριθμῶν , τρίτη κατὰ μέγεθος , τετάρτη τῶν ἁπλῶν σωμάτων , πέμπτη τῶν σχημάτων , ἕκτη | ||
προτάσεως ὑποφορᾶς ἀντιπροτάσεως λύσεως . ἅπαντες γὰρ οἱ λῃσταὶ ] τετάρτη λύσις ἐκ τῆς τῶν ἐπιχειρημάτων κατασκευῆς . ὁ δὴ |
ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον | ||
ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο |
ὑπολόγου γίνεται ἕξ , ὧν διπλάσιός ἐστιν ὁ ιβ πρῶτος πολυπλασιασμός . ἐπὶ τὴν ΑΒ κάθετον . , . ] | ||
ὅτι ἡνίκα ἐν τοῖς ἀριθμοῖς τὴν ἐπί πρόθεσιν λέγομεν , πολυπλασιασμός ἐστιν , οἷον πέντε ἐπὶ πέντε εἰκοσιπέντε , καὶ |
, ὡς ἐν οὐδεμιᾷ τῶν κατηγοριῶν ἀναχθήσεται : οὐ γὰρ προηγουμένη αὐτῶν ἐστιν ἡ σημασία , ἀλλὰ συσσημαίνουσιν , ὥσπερ | ||
ἑαυτὸν εἰς τὴν τοῦ φονέως ἐναρμόσῃ τάξιν . καὶ γίνεται προηγουμένη μὲν ἡ κατὰ τοῦ φονέως αὐτῷ ψῆφος , κατὰ |
ὅπερ ἔδει δεῖξαι . Ἐὰν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ ἀποτομῆς πέμπτης , ἡ τὸ χωρίον δυναμένη [ ἡ ] | ||
ἐστι καὶ μέσης ἀποτομὴ δευτέρα , καὶ τὸ ἀπὸ μέσης ἀποτομῆς δευτέρας παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομήν : ὅπερ |
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν | ||
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε |
δʹ μόνα ἑξηκοστὰ δ . διοίσει δ ' ἡ ἀκριβὴς συζυγία τῆς μέσης μόνῳ τῷ παρὰ τὴν ἡλιακὴν ἀνωμαλίαν διαφόρῳ | ||
τῆς ἀποφατικῆς τὸ ὅσον ἐπ ' αὐτῇ ἀσυλλόγιστός ἐστιν ἡ συζυγία : ἐπειδὴ δὲ οὐκ ἀδύνατόν ἐστιν μεταλαμβάνειν αὐτὴν εἰς |
: ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα . | ||
πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν |
ΖΚ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου , καί ἐστιν ἡ προσαρμόζουσα ἡ ΖΚ σύμμετρος τῇ ἐκκειμένῃ ῥητῇ μήκει τῇ ΖΗ | ||
μέσης ἀποτομὴ δευτέ - ρα ἡ ΑΒ καὶ τῇ ΑΒ προσαρμόζουσα ἡ ΒΓ : αἱ ἄρα ΑΓ , ΓΒ μέσαι |
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς | ||
οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
: προσλαμβανόμενος , ὑπάτη ὑπάτων , παρυπάτη ὑπάτων , ὑπάτων ἐναρμόνιος , ὑπάτων χρωματική , ὑπάτων διάτονος , ὑπάτη μέσων | ||
πάσχει ὑποκείμενος τῇ εἱμαρμένῃ . ὑπεράνω οὖν ὢν τῆς ἁρμονίας ἐναρμόνιος γέγονε δοῦλος ἀρρενόθηλυς δὲ ὤν , ἐξ ἀρρενοθήλεος ὢν |
τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι . | ||
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
Μο λ . ἐπὶ τὰς ὑποστάσεις . ἔσται ὁ μὲν ἐλάσσων Μο λ , ὁ δὲ μείζων Μο ο , | ||
τὸ φανερὸν ἡμισφαίριον . ἀλλ ' ἔστω ἡ ΕΖ περιφέρεια ἐλάσσων τεταρτημορίου : καὶ ἡ ΕΚ ἄρα ἐλάσσων ἐστὶ τεταρτημορίου |
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
διὰ τῆς θαλάσσης συνεστὼς καὶ γλυκὺ φυλάττων τὸ ῥεῖθρον , ἀμιγὴς ἔτι καὶ καθαρὸς ἐπείγῃ οὐκ οἶδ ' ὅπου βύθιος | ||
ἐπανέπλει τὸ ποτὸν καὶ ἐπανῄει . καὶ ἄκρατος οἶνος , ἀμιγὴς πρὸς ὕδωρ , ἄμικτος . ἄκρατον σπάσαι . κεκραμένος |
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
. Τῇ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσῃ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ , μετὰ δὲ | ||
. ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΘΝ αὐτῇ προσαρμόζει : τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει εὐθεῖα |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
αὑτὴν τὰς αἰτίας . Οὐκοῦν , ὦ Σίμων , ἡ παρασιτικὴ τέχνη ἐστί ; Τέχνη γάρ , κἀγὼ ταύτης δημιουργός | ||
ἔχοι τοιοῦτον εἰπεῖν . Οὐκοῦν εἰ μήτε ἀτεχνία ἐστὶν ἡ παρασιτικὴ μήτε δύναμις , σύστημα δέ τι ἐκ καταλήψεων γεγυμνασμένων |
οὐκ ἐπιδέχεται ὑπερβολάν , οἷον ἀρετά : οὐ γάρ ἐστιν ὑπερβάλλουσά τις ἀρετὰ καὶ ὑπερβαλλόντως τις ἀγαθός : ἁ γὰρ | ||
δέδοικα μή σου γλῶσσα : φοβοῦμαι μὴ ἐν τοῖς κακοῖς ὑπερβάλλουσά σου ἡ γλῶσσα τὸ εὖ ἔξηχον καὶ παράφρονά σε |
, ἔκπληξις , φρίκη , τρόμος , πτοία πτόησις , συστολή , θόρυβος , ταραχή . καὶ τὰ ῥήματα φοβοῦμαι | ||
ἐπιθυμία , ἡδονή . αʹ Λύπη μὲν οὖν ἐστιν ἄλογος συστολή : ἢ δόξα πρόσφατος κακοῦ παρουσίας , ἐφ ' |
Μήδου υἱοῦ Μηδείας . . Ὑώπη : πόλις Ματιηνῶν , προσεχὴς τοῖς Γορδίοις . Ἑκαταῖος Ἀσίαι : ἐν δὲ πόλις | ||
τε Συρακουσῶν μεμνῆσθαι καὶ τῆς Ὀρτυγίας : αὕτη δέ ἐστι προσεχὴς ταῖς Συρακούσαις νῆσος καὶ ἀχώματος . ὁ δὲ Δίδυμος |
μεγάλων εἰς ἐλάχιστα διαδιδόμενα : ἔχει δὲ καὶ ἐκφύσεις ἡ προειρημένη ἀρτηρία προσηνωμένας τῇ καρδίᾳ , ἰνώδεις καὶ χονδρώδεις καὶ | ||
[ ὃ ] τὴν τοιαύτην σχέσιν ἕξει [ ; ] προειρημένη [ ] σύστημα ? ? ⌈ ⌉ ἔχουσα α |
οἷον : θεός , βαρεῖα , οἷον : Πὰν , περισπωμένη , οἷον : πῦρ ῀ , μακρὰ , οἷον | ||
ὀξύβαριν ; περίσπασιν ; δίτονον ; σύμπλεκτον ; κεκλασμένην ; περισπωμένη . . , : περὶ πρώτων δὲ τῶν βαρβάρων |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
βραχύνοντας τοὺς φθόγγους , ἡ γὰρ ἔμμονος αὐτῶν καὶ ἐπιμηκεστέρα ἐκφώνησις ἀκριβεστέραν τῇ ἀκοῇ χαρίζεται τὴν κρίσιν . ⊢ Γ | ||
τάξιν ” φησὶν ὁ Διονύσιος . ἀλλ ' ἡ μὲν ἐκφώνησις οὐκ ἂν λέγοιτο σύμβολον εἶναι τοῦ ὀνόματος , ἀλλὰ |
ἄρα πυρός : διπλῆ καὶ ἐν εἰσθέσει περίοδος τοῦ χοροῦ παιωνικὴ ἑπτάκωλος , ἔχουσα τρίρρυθμα πρῶτον , δεύτερον , τρίτον | ||
καὶ μέτριος , καὶ ὁποῖος συγκεκραμένος . ἡ μὲν δὴ παιωνικὴ ἐν τοῖς μεγαλοπρεπέσι σύνθεσις ὧδ ' ἄν πως λαμβάνοιτο |
χαλεπὸν εἶναι καὶ ἐλέφαντι ἐνεγκεῖν : καὶ ἄνωθεν ἡ κατάβασις ὀξεῖα ἦν : ὁ δὲ καὶ ἐνταῦθα ἔπαιεν . εἰ | ||
ὀφείλει εἶναι , οὐ περισπωμένη γίνεσθαι : ἄτοπον γάρ . ὀξεῖα τοίνυν ὀφείλει τίθεσθαι καὶ ἐνταῦθα ἐπὶ τῷ δείν ' |
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ | ||
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν |
κριτική ἐστιν ὀξέος καὶ βαρέος φθόγγου : ἡ δὲ ὄσφρησις κριτικὴ εὐωδῶν καὶ δυσωδῶν ὀσμῶν καὶ τῶν μεταξύ , ἐκ | ||
καὶ μόνῃ τῇ λογικῇ ψυχῇ πρόσεστι δύναμις ὢν ἐπιστατικὴ καὶ κριτικὴ τῶν ἀλόγων αὐτῆς μερῶν ἢ δυνάμεων : ὥστε οὐδὲ |
̈ . . γένος δέ ἐστι πλειόνων καὶ ἀναφαιρέτων ἐννοημάτων σύλληψις , οἷον „ ζῷον „ : τοῦτο γὰρ περιείληφε | ||
τῆς μήτρας ἐπὶ μόνων τούτων ἐστίν , οἷον κάθαρσις , σύλληψις , ἀπότεξις * * * * * * * |
τῶν πεντακισχιλίων σταδίων οὐ μείζων καὶ τοῖς ἄκροις τοῖς ἀντικειμένοις ἀφοριζομένη . ἀντίκειται γὰρ ἀλλήλοις τά τε ἑῶια ἄκρα τοῖς | ||
ἡ μὲν τῶν πολλῶν δόξα ἡ τὸ πέρας τοῦ περιέχοντος ἀφοριζομένη τόπον , καθ ' ὅσον ἐστὶ διαστατόν , τὸ |
ΒΓ διπλῆ , ἡ δὲ ΑΕ τῆς ΕΒ διπλῆ , λοιπὴ ἄρα ἡ ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ | ||
ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν ἴση . |
τοῦ διὰ πέντε συμπληρώσεως . ἡ γὰρ τῷ ἡγουμένῳ φθόγγῳ συναπτομένη διάζευξις ποιοῦσα λόγον ἐπόγδοον οὐκέτι περὶ μόνας τὰς τρεῖς | ||
ἑβδομάδι ἐν τῇ διὰ πάντων ἐνεργείᾳ , εἴτε καὶ ἄλλως συναπτομένη τῇ ἑβδομάδι δεκάδα ἀποτελεῖ τετάρτην κυβικῆς τετάρτης χώρας παρεκτικήν |
τῇ ΑΓ μήκει , ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΔΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει | ||
καὶ ἡ ὅλη μείζων διὰ ηʹ εʹ ιʹ δύναται τῆς προσαρμοζούσης τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει , καὶ ἡ ἄλλη |
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
, ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς | ||
, ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ |
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον , | ||
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ |
. λέγω , ὅτι ὀρθὴ ἔσται ἡ πρὸς τῷ Α συνισταμένη γωνία . ἐκβεβλήσθω γὰρ ἡ ΓΒ ἐπὶ τὸ Δ | ||
. ” ὁ δὲ Ἀπίων , σύμφορος ἡ ἐκ πολλῶν συνισταμένη . σύνθεο ἐπὶ τοῦ ἀντὶ τοῦ συνθηκοποίησον . καὶ |
” τὰ μύρια ὀλίγα ἐστίν “ ἀκαταλήπτῳ . πᾶσα γὰρ ἀκατάληπτος φαντασία ἀκαταλήπτῳ φαντασίᾳ ἐστὶν ἴση . ἐπεὶ οὖν ἡ | ||
μεμοιραμένων οὐδείς : αἰσθητὸν γὰρ τὸ γενόμενον , αἰσθήσει δὲ ἀκατάληπτος ἡ νοητὴ φύσις . | ἐπειδὴ τοίνυν ἀοράτως τόδε |
[ ] [ ἡ ] ἑκάστης ? ? ? ? ποσότης ? [ ] [ : ] α β γ | ||
ἀλοιφὴν παραλαμβάνειν , ἐφ ' ὧν ἤδη κένωσις ἐγένετο καὶ ποσότης οὐκ ἐνοχλεῖ τῷ παντὶ σώματι , ἀλλὰ ξηρότης καὶ |
ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν | ||
ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν |
: υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - Μʹσμένον , | ||
τυγχάνει κατὰ διαίρεσιν θεωρούμενα πέντε , ὑπάτων μέσων συνημμένων διεζευγμένων ὑπερβολαίων , πεντάχορδα δὲ σύμφωνα τρία , μέσων συνημμένων διεζευγμένων |
ἐπιδίτριτος , καὶ αὕτη πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν | ||
ἐλάσσονος . Ἔστω γὰρ ἰσοσκελὲς τρίγωνον τὸ ΒΔΕ ἔχον τεσσάρων πέμπτων τὴν πρὸς τῷ Ε περιειλημμένην κύκλῳ οὗ κέντρον τὸ |
σημείων τῶν ἐν τῇ συμμίκτῳ τάξει τασσομένων . Γʹ . Τάξις ἡ λεγομένη σύμμικτος . Δʹ . Τάξις πρώτη καβαλλαρίων | ||
ἀναγκαία καὶ χρήσιμος ἐν τοῖς στενοῖς καὶ μονοπατίοις τόποις : Τάξις ὀρθία καὶ διφαλαγγία , ἥτις ἀναγκαία ἐστὶν ἐν δασείαις |
, ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
τακτέον , ὡς ἐν τοῖς Τοπικοῖς εἴρηται . ἡ δὲ δέουσα τάξις ἔσται , ἐὰν τὸ πρῶτον τῶν λαμβανομένων πρῶτον | ||
ἡ ἁπλότης αὕτη συνίσταται πρὸς ἓν ἡμῖν πάντα , πολλοῦ δέουσα τῆς παντελοῦς ἅπτεσθαι ἐκείνης : τὸ γὰρ ἐν ἡμῖν |
τις μικρὰ καλεῖται εὐωδεστέρα οὖσα , ἡ δὲ μείζων , ὑπερέχουσα τῷ θάμνῳ καὶ τοῖς φύλλοις , πλατυτέρα καὶ βαρύοσμος | ||
καὶ τῶν οἱστισινοῦν πρὸς ἀλλήλους καθ ' ἑταιρίαν γενομένων παμπληθὲς ὑπερέχουσα . ἀνθ ' ὧν αὖ καὶ πρώτη πόλεων ἥδε |
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
, ΝΞ δυνάμει . ἐὰν δὲ δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπ ' αὐτῶν | ||
ὅπερ ἔδει δεῖξαι . Ἐὰν δύο μέσαι δυνάμει μόνον σύμμετροι συντεθῶσι ῥητὸν περιέχουσαι , ἡ ὅλη ἄλογός ἐστιν , καλείσθω |
ἄκρου . ὅτι ἐν τοῖς Σαμίοις ἐφάνη λευκὴ χελιδὼν οὐκ ἐλάττων πέρδικος . Φερεκύδης ὁ Σύριος ὑπὸ φθειρῶν καταβρωθεὶς ἐν | ||
ἔσται . εἰ γὰρ μή , ἔσται ἢ ἴσος ἢ ἐλάττων . ἔστω πρῶτον ἴσος . καὶ ἐπεὶ ὑπόκειται ἡ |
περὶ τὰ βιωτικά . ΠΟΝΩΝ δὲ τὸ ΠΟ κοινή ἐστι συλλαβή . Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . | ||
: ἐν μὲν γὰρ τῷ προτέρῳ μακρά ἐστιν ἡ τελευταία συλλαβή , ἐν δὲ τῷ δευτέρῳ βραχεῖα . Πᾶν μέτρον |
ὥσπερ γε καὶ ἡ παχύτης , οὐ τῇ συμφύτῳ μόνον ἑπομένη κράσει , ἀλλὰ κἂν ἐξ ἔθους μα - κροῦ | ||
καταληπτά ἐστιν ἢ ἀκατάληπτα λέγειν αὐθαδειαζομένη , τοῖς δὲ φαινομένοις ἑπομένη ἀπὸ τούτων λαμβάνει τὸ συμφέρειν δοκοῦν κατὰ τὴν τῶν |
, Ἀθηναῖοι δὲ θρυαλλίδα λέγουσιν . Κολόκυνθα : ἡμάρτηται ἡ ἐσχάτη συλλαβὴ διὰ τοῦ θα λεγομένη , δέον διὰ τοῦ | ||
ἔστιν ὅτε : καὶ ὁ τόνος τοῦ σώματος , ἔκτηξις ἐσχάτη καὶ ἀδυναμίη , οὐδ ' ἀνίστασθαι ἄλλου ἐπαίροντος ἔτι |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
. οὐδεμία δὲ τούτων οὔτε συναμφότερος μέση , ἡ δὲ συγκειμένη ἐξ αὐτῶν ἐκ δύο ὀνομάτων καλεῖται . ἀμφοτέρων τοίνυν | ||
καὶ ταῦτα σύμμετρα ἀλλήλοις . ἐπεὶ γοῦν ἡ ΒΓ ὅλη συγκειμένη ὡς ἐκ δύο οἷον τῆς ΖΔ καὶ τῆς ΒΖ |
ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
τὸ ἀγαθὸν τινὶ τῶν ἡδονῶν ὑπάρχει : ἡ γὰρ καθόλου καταφατικὴ πρὸς τὴν μερικὴν ἀντιστρέφει : δεῖ γάρ . ἐπεὶ | ||
λαμβάνονται . ἐάν τε γὰρ ἡ μὲν μείζων ληφθῇ καθόλου καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων ἐπὶ μέρους καὶ αὐτὴ κατα |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
σχισθέντος γὰρ ἑνός τινος γίνεται δύο : οὐ τοίνυν οὔτε σύνοδος οὔτε σχίσις τὰ δύο , ἵν ' ἂν ἦν | ||
ἀποσπασθὲν ἑκάτερον ἑκατέρου . Μιμοῦνται δὲ καὶ ἐκκλησίαι καὶ πᾶσα σύνοδος ὡς εἰς ἓν τὸ φρονεῖν ἰόντων : καὶ χωρὶς |
χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
ὀργανικὰ οὐ προσποιούμενοι τὸ σύνθετον . Ἔστι δ ' οὐκ ἀντιδιαίρεσις τὸ σύνθετον πρὸς τὸ ἁπλοῦν εἶναι , ἀλλὰ κατὰ | ||
τὰ μέν ἐστι λογικά , τὰ δὲ ἄλογα . ” ἀντιδιαίρεσις δέ ἐστι γένους εἰς εἶδος τομὴ κατὰ τοὐναντίον , |
αὐτῷ παραστάσης . Τὸ δ ' ἐστὶν οἴνου συγκομιδῆς γεωργοῖς ἀλληγορία , δι ' ὧν φησίν : Ὅς ποτε μαινομένοιο | ||
: τῇ παριαύων τερπέσθω . Τούτοις παραπλησίως ἔχει καὶ ἡ ἀλληγορία , ἥπερ ἕτερον δι ' ἑτέρου παρίστησιν , οἷόν |
ἦσαν τὰ ἐπίπεδα , ὡς ἐδείχθη . Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται , οὗ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ | ||
τῆς εἴλης τετράγωνον ᾖ , ὁ ἀριθμὸς τῶν ἱππέων γίνεται ἑτερομήκης . Δοκεῖ δὲ τὸ ῥομβοειδὲς σχῆμα ἀναγκαιότατον παρειλῆφθαι : |
ψεῦδος : οὕτω γὰρ ἂν κατάφασις ὑπῆρχεν ἢ ἀπό - φασις , ἀλλ ' ἐὰν προστεθῇ τι , δῆλον ὅτι | ||
δίκαιος οὐκ ἔστιν . ἡ μὲν γὰρ ἁπλῆ ἀπό - φασις , ὡς εἴρηται , ἁρμόζει καὶ ἐπὶ τῶν λίθων |
καὶ τὴν γην διαίρεσιν συντεθεῖσαν ποιεῖν Μο ρ : ἀλλὰ συντεθεῖσα ποιεῖ ʂ κε # Μο ω . ταῦτα ἴσα | ||
ἔσται κατὰ τὸν ἐπίκυκλον τὴν ὑπὸ ΘΒΚ γωνίαν , ἥτις συντεθεῖσα μετὰ τῆς ὑπὸ ΑΖΒ ποιήσει τὴν ἀπὸ τοῦ Α |
καὶ ταῦτα σοφὸς ὤν , ἀλλὰ λέληθέν σε ὅτι ἡ ἰσότης ἡ γεωμετρικὴ καὶ ἐν θεοῖς καὶ ἐν ἀνθρώποις μέγα | ||
ὅταν ἀνάλογον ᾖ τῶν πλευρῶν πρὸς ἀλλήλας καὶ τῶν γωνιῶν ἰσότης τοῦδε τοῦ σχήματος πρὸς τόδε : ἐπὶ δὲ τῶν |
Μὴ μελαμπύγου τύχῃς : μή τινος ἀνδρείου καὶ ἰσχυροῦ . Μία λόχμη οὐ τρέφει δύο : ἐπὶ τῶν ἐκ μικροῦ | ||
δὲ τὰ ἐνεστῶτα , περὶ δὲ τῶν μελλόντων ἀσφαλίζεσθαι . Μία ἐστὶν ἀρχὴ τοῦ καλῶς βουλεύεσθαι τὸ γνῶναι περὶ ὅτου |
ἀξύμφορον . ἡ δ ' ἐφ ' ἕνα ἐπὶ μετώπου ἀβαθὴς τάξις ἐς λεηλασίας ἀνυπόπτους ἐπιτήδειος , ἢ εἴ που | ||
αὖ μηκῦναι τὸ μέτωπον ἐς ὀκτώ , ἔσται οὐ πάντη ἀβαθὴς ἡ φάλαγξ . τὴν δὲ εἰς ὀκτὼ εἰ ἐκτεῖναι |
ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη . ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ , ἀσύμμετρον ἄρα ἐστὶ | ||
εἰσὶ σύμμετροι αἱ ΜΝ , ΝΞ ] . καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει , ἀλλ ' |
τινές εἰσιν ἰδέαι κινήσεως , ἥ τε συνεχὴς καὶ ἡ διαστηματική . κατὰ μὲν οὖν τὴν συνεχῆ τόπον τινὰ διεξιέναι | ||
ἡ μὲν συνεχής τε καὶ λογικὴ καλουμένη , ἡ δὲ διαστηματική τε καὶ μελῳδική . ἡ μὲν οὖν συνεχὴς κίνησις |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
τῆς ἐμπειρίας , ὅτι αὕτη ἤδη καὶ τῆς αἰτίας ἐστὶ γνωστική , χειροτέχνου δὲ ἀρχιτέκτων ἀντὶ τοῦ τοῦ δὲ τεχνίτου | ||
ἡ πῇ ἀληθής ; ἀλλ ' οὐδὲ ἐπιστήμη τῶν ἀρχῶν γνωστική : αἱ μὲν γὰρ ἀρχαὶ τῶν ἀποδείξεων γνωριμώτεραι , |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ἡμετέρα χρεία . Πῶς δ ' οὔ ; Ἀλλὰ μὴν πρώτη γε καὶ μεγίστη τῶν χρειῶν ἡ τῆς τροφῆς παρασκευὴ | ||
κεράεσσι σελήνη ἑσπερόθεν φαίνηται , ἀεξομένοιο διδάσκει μηνός : ὅτε πρώτη ἀποκίδναται αὐτόθεν αὐγή , ὅσσον ἐπισκιάειν , ἐπὶ τέτρατον |
ὡς γὰρ ἡ διπλῆ πρὸς τὴν ὅλην , οὕτως ἡ ἁπλῆ πρὸς τὴν ἡμίσειαν τῆς ὅλης . ἔστω γὰρ λόγου | ||
ψυχῇ ὡς φάρμακα ὀφείλει τὴν φύσιν τῆς ψυχῆς διερευνᾶν πότερον ἁπλῆ ἢ σύνθετος , καὶ εἰ σύνθετος , ἐκ ποίων |
τέμνεται τὸ τεμνόμενον οἷον τὸ τέμνον τέμνει ; Φαίνεται . Συλλήβδην δὴ ὅρα εἰ ὁμολογεῖς , ὃ ἄρτι ἔλεγον , | ||
ἀκοῶν ἀκούει καὶ τῶν μὴ ἀκοῶν ; Οὐδὲ τοῦτο . Συλλήβδην δὴ σκόπει περὶ πασῶν τῶν αἰσθήσεων εἴ τίς σοι |