| ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
| ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
| ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
| ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
| δείκνυται : μᾶλλον μὲν οὖν ἐν τούτῳ ἐστι καὶ ἡ ἔλλειψις . Γνώσῃ δὲ τοῦτο σαφῶς ἐκ τῆς ἀναλογίας : | ||
| ὡς ἐπιτατικὸν μᾶλλον ἀνεδέξατο , ὅπερ οὐκ ἦν , ἀλλὰ ἔλλειψις τοῦ πράγματος , ὃ καὶ δέον ἦν ποιεῖν : |
| , ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
| τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
| , Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
| τὸ τῆς ἀνθρωπίνης φύσεως , ἀτελὲς μὲν πρὸς ἑκατέραν τῶν ἀκροτήτων , εὐκατάφορον δὲ πρὸς τὴν ἐκ τῆς ἐναλλαγῆς τῶν | ||
| ' ἀκμὴ πάντων τῶν ζῴων ἐν τῷ μέσῳ καθέστηκε τῶν ἀκροτήτων , οὔτε εἰς ἐσχάτην ἥκουσα ξηρότητα ὡς τὸ γῆρας |
| ἡ Ζ γωνία τῇ Δ γωνίᾳ . Ἔστω ἡ τομὴ ὑπερβολή , καὶ γεγονέτω , καὶ ἔστω ἐφαπτομένη ἡ ΓΔ | ||
| ἕν . ἔστωσαν ἀντικείμεναι αἱ ΑΒΓ , ΕΖΗ , καὶ ὑπερβολή τις ἡ ΔΑΓ ἐφαπτέσθω μὲν κατὰ τὸ Α , |
| τοῖς πάθεσιν αὐτοῖς ἀλλὰ καὶ ἐν τοῖς περὶ τὰ πάθη μεσότητές εἰσι , καθάπερ ἐπὶ τῆς αἰδοῦς φαίνεται . καὶ | ||
| ἐπανιτέον δὲ ἐπὶ τὸν τῶν ἀναλογιῶν καὶ μεσοτήτων λόγον . μεσότητές εἰσι πλείονες , γεωμετρικὴ ἀριθμητικὴ ἁρμονικὴ ὑπεναντία πέμπτη ἕκτη |
| τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ | ||
| Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν |
| δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
| καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
| ἐπειδὴ λόγος μέν ἐστι δύο μεγεθῶν ἡ πρὸς ἄλληλα ποιὰ σχέσις : γίνεται δ ' αὕτη καὶ ἐν διαφόροις καὶ | ||
| ἔστιν , ἐὰν δὲ προστεθῇ ἕτερος ὅρος , γίνεται μία σχέσις , ἐπειδὴ εἷς ἦν ὅρος ὁ προκείμενος . πάλιν |
| , ι : εἰ δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς | ||
| , ἀφελόμενον ἀπὸ τοῦ κέρδους τοῦ ἠδικηκότος , ὅπερ ὡς ὑπεροχή ἐστιν αὐτοῦ πρὸς τὸν ἠδικημένον , καὶ προστεθὲν τῷ |
| τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι . | ||
| ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ |
| καὶ ταῦτα σοφὸς ὤν , ἀλλὰ λέληθέν σε ὅτι ἡ ἰσότης ἡ γεωμετρικὴ καὶ ἐν θεοῖς καὶ ἐν ἀνθρώποις μέγα | ||
| ὅταν ἀνάλογον ᾖ τῶν πλευρῶν πρὸς ἀλλήλας καὶ τῶν γωνιῶν ἰσότης τοῦδε τοῦ σχήματος πρὸς τόδε : ἐπὶ δὲ τῶν |
| γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς | ||
| τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον |
| [ ] [ ἡ ] ἑκάστης ? ? ? ? ποσότης ? [ ] [ : ] α β γ | ||
| ἀλοιφὴν παραλαμβάνειν , ἐφ ' ὧν ἤδη κένωσις ἐγένετο καὶ ποσότης οὐκ ἐνοχλεῖ τῷ παντὶ σώματι , ἀλλὰ ξηρότης καὶ |
| ἐπὶ τὸ σαρκοῦν . παρέχει δὲ τοῦτο ἡ τῶν τροφῶν συμμετρία τε καὶ εὐχυλία καὶ αἰώρα : εἰ δὲ ἐπιτρέποι | ||
| καὶ τῶν ἄλλων συνθέτων σωμάτων : ἡ δὲ τῶν χυμῶν συμμετρία αἰτία τοῦ ἡμετέρου σώματος , τοῦτο μὲν ὡς ὑλικὸν |
| ] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
| οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
| ' ἴσων ἀφῄρηται . μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ | ||
| , ἥ τε ἐπὶ τὸν τόνον καὶ ἡ ἐπὶ τὸ δίτονον , ἐπὶ δὲ τὸ ὀξὺ μία , ἡ ἐπὶ |
| , τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν | ||
| κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα |
| ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
| ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
| τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
| ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
| τὸ μὲν γὰρ ἡμιτόνιον εἰς ἓξ δωδεκατημόρια , ἡ δὲ δίεσις , ἡ μὲν τεταρτημόριος εἰς τρία , ἡ δὲ | ||
| διάστημα τόνου ἢ διέσεως : ὁ γὰρ τόνος καὶ ἡ δίεσις ἀρχὴ μὲν συμφωνίας , οὔπω δὲ συμφωνία . ὁ |
| ἐλαίῳ . Ἡ δὲ δι ' ἐχιδνῶν θηριακὴ Ἀνδρομάχου συνεχῶς λαμβανομένη ἐν τοῖς διαλείμμασι , δυσαλώτους ἀποδείξει ἐν τοῖς παροξυσμοῖς | ||
| οὖσα ἔδεσμα , καὶ ὡς ἐν φαρμάκου χρήσει τὸ πλέον λαμβανομένη : ἄλλως δὲ ἄθετος , πάνυ τε ὀλιγότροφος οὖσα |
| , ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
| ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
| πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ | ||
| πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ |
| ὁ μὲν βαρύτερος ὀξύτατος ἐδείχθη πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ὥστ ' ἐπειδὴ τοσαῦτα μέν ἐστι μόνα τὰ | ||
| ὁ μὲν βαρύτερος ὀξύτατός ἐστι πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ἀναγκαῖον γὰρ ἐν τῇ συναφῇ τῶν πυκνῶν διὰ |
| ζωοῦντος . διὸ καὶ ἀποροῦσί τινες ὅτι εἰ ἡ δικαιοσύνη ἁρμονία ἐστὶ τῶν ἄλλων καὶ ἕπεται αὐταῖς , πῶς συναριθμεῖται | ||
| τὸ εὐάρμοστον καὶ ἀνάρμοστον ὡσαύτως , εἴπερ ῥυθμός γε καὶ ἁρμονία λόγῳ , ὥσπερ ἄρτι ἐλέγετο , ἀλλὰ μὴ λόγος |
| μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
| . παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
| οὐδέν ἐστι μέρος εἰς ὃ μὴ κάτεισιν , οὕτως ἡ τραχύτης αὕτη καὶ τὸ μικροῦ δεῖν ἅπαντας ἀλλήλων ἀπεστράφθαι διαπεφοίτηκε | ||
| ἐστι σεμνότης δεῖξαι καὶ ὅπως γίνεται , ὁποῖόν τί ἐστι τραχύτης ἢ ἀφέλεια καὶ τὰ λοιπὰ τῶν λόγων εἴδη . |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| τις μικρὰ καλεῖται εὐωδεστέρα οὖσα , ἡ δὲ μείζων , ὑπερέχουσα τῷ θάμνῳ καὶ τοῖς φύλλοις , πλατυτέρα καὶ βαρύοσμος | ||
| καὶ τῶν οἱστισινοῦν πρὸς ἀλλήλους καθ ' ἑταιρίαν γενομένων παμπληθὲς ὑπερέχουσα . ἀνθ ' ὧν αὖ καὶ πρώτη πόλεων ἥδε |
| παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν | ||
| τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων |
| τοῦτ ' ἔστι κοινὴν ἔννοιαν : χαρακτηρίζει γὰρ τὴν αἵρεσιν συμφωνία μετὰ διαφωνίας , καὶ οὐκ ἐν τοῖς τυχοῦσιν ἀνθρώποις | ||
| ὑπ ' αὐτῶν λόγον . καθόλου γὰρ ἡ διὰ πασῶν συμφωνία , τῶν ποιούντων αὐτὴν φθόγγων ἀδιαφορούντων κατὰ τὴν δύναμιν |
| ἑξῆς ἡμερῶν γίνεται περιόδοις , τεταγμένη τις ἂν ὧδε ῥηθείη ἀνωμαλία . Εἰ δὲ τυχὸν ἐφεξῆς μὲν δυοῖν ἡμέραιν τὰ | ||
| ὀσμώδεσιν εἰς τὸ μηδὲν ἐνδείκνυσθαι σαφὲς ὑπὲρ τῆς κράσεως ἡ ἀνωμαλία τῆς φύσεώς ἐστιν , ὑπὲρ ἧς εἴρηται πολλάκις ἤδη |
| τοῦ Ἑρμοῦ ἡ τῶν ἐκ τῆς λοξώσεως κατὰ πλάτος παρόδων παράθεσις , τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν | ||
| πρώτην θέσιν ἐπαγγελλομένη τῶν προσώπων , ἡ δὲ τῶν ἄρθρων παράθεσις ἐν δευτέρᾳ τάξει παραλαμβάνεται ὑποταγέντων ταῖς ἀντωνυμίαις , ἐγὼ |
| ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
| τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
| ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων . | ||
| ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες , |
| προνοίας εἴη ἂν λόγων οἰκειότερον καὶ θεολογικῆς θεωρίας ἐχόμενον : ἠθικὴ δὲ ἡ προκειμένη πραγματεία , καὶ ὅσον κατ ' | ||
| τῇ φρονήσει ἕπεται καὶ ἡ σωφροσύνη , ὅτι καὶ πᾶσα ἠθικὴ ἀρετή , ὁ δὲ σώφρων οὐ δύναται ἐγκρατὴς εἶναι |
| ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
| ' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
| ἀνδρείως ὑπομένει τὸν κίνδυνον ὅτε ἡ τοῦ νικᾶν ἐλπίς ἐστιν ὑποκειμένη : ὁ δὲ προειδὼς ἑαυτὸν ἡττηθησόμενον ἐν τῷ δρασμῷ | ||
| μόνον : λαιμὸν διὰ τὸ ἀπολαυστικὸν εἶναι . Ἡ δὲ ὑποκειμένη τῷ λάρυγγι ἀρτηρία τραχεῖα ὠνόμασται , ἐκ τοῦ πνεύμονος |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| προσταχθέντα ἀποτελεῖν . Τούτων δὴ προρρηθέντων , ἑξῆς ἂν γίγνοιτο ἔμμετρος ἔπαινος θήρας καὶ ψόγος , ἥτις μὲν βελτίους ἀποτελεῖ | ||
| καὶ ὕβρισεν αὐτόν . ἦν δὲ ἡ ὕβρις ἡ λεχθεῖσα ἔμμετρος στίχος : καὶ τῆς ἁρμονίας τοῦ λόγου τῆς γραὸς |
| ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
| τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
| . Ἀλλά , φήσει τις , πῶς τοῦ ἑνὸς ἐγκειμένου ἔμφασις δευτέρου πληθυντικοῦ γίνεται ; πρόσκειται ὅτι τάξεως ὀνόματά ἐστινἄλλως | ||
| οὐκ ἀδίκημα μόνον τούτῳ πεπρᾶχθαι δοκεῖ . Κατὰ δὲ σχῆμα ἔμφασις γίνεται , ὅταν τις δεικτικοῖς χρῆται , οἷον οὗτος |
| ἄρτιοι ἀπὸ ῥίζης προχειρισθῶσιν εἰς μίαν μεσότητα , ἀντιπαρωνυμήσουσιν αἱ ἀκρότητες ἐν αὐτοῖς καὶ αἱ μετ ' ἐκείνας καὶ αἱ | ||
| τουτονὶ καὶ νῦν ἐκκαλυπτέον , ὅτι ἄρα τούτων αἱ μὲν ἀκρότητες κατ ' ἐναντιότητα τοῦ ποιοῦ θεωροῦνται , τὰ δὲ |
| τὰς δύο βραχείας ἴσον τι ἔχει . κατὰ δάκτυλον δὲ ῥυθμός ἐστιν ὁ ἐν ἴσῳ λόγῳ . ὁ δὲ ἐνόπλιος | ||
| πρῶτος , εἶπεν , ἐκληρώθην . ἀντὶ τοῦ ἐξιέναι . ῥυθμός ἐστι Κρητικός . γαλῆ εἶδος ἰχθύος . ἀπὸ τῶν |
| φίλην αὐτῷ συντομίαν συνόψει συντομωτάτῃ περιβάλωμεν : σύνοψις γὰρ καὶ συντομία φίλαι τῷ Ἀριστοτέλει , Πυθαγορείῳ κατ ' ἀλήθειαν γεγονότι | ||
| ἐντελῆ συναγόμενόν τε ἐκ τῶν κατὰ μέρος , ἵνα μὴ συντομία μόνον , ἀλλὰ καὶ σαφήνεια τοῖς ἐντευξομένοις ὑπάρχῃ . |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| ἡ οὐσία σωματική τίς ἐστι σύστασις , ἡ δὲ σωματικὴ σύστασις οὐ δεῖταί τινος , ἐν ᾧ γενομένη τὸ εἶναι | ||
| ἡ γὰρ ἐπὶ τοῖς αἰσθητοῖς τοῦ καθόλου συναίσθησίς τε καὶ σύστασις καὶ ἡ ἐπὶ τοῖς πρώτοις καθόλου λῆψις τῆς ἀρχῆς |
| τὸ ἀγαθὸν τινὶ τῶν ἡδονῶν ὑπάρχει : ἡ γὰρ καθόλου καταφατικὴ πρὸς τὴν μερικὴν ἀντιστρέφει : δεῖ γάρ . ἐπεὶ | ||
| λαμβάνονται . ἐάν τε γὰρ ἡ μὲν μείζων ληφθῇ καθόλου καταφατικὴ ἐνδεχομένη ἡ δὲ ἐλάττων ἐπὶ μέρους καὶ αὐτὴ κατα |
| λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
| . διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
| . εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
| . Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
| ἐπ ' ἐκείνου : αἱ διάμετροι τῶν κύκλων καὶ τῶν ἐλλείψεων τά τε χωρία δίχα διαιροῦσι καὶ τὰς περιεχούσας τὰ | ||
| ΓΑ , τουτέστιν ὡς τὸ ἀπὸ τῆς διαμέτρου τῶν ὁμοίων ἐλλείψεων τῶν ἀπὸ τοῦ αὐτοῦ μέρους ἠγμένων πρὸς τὸ ἀπὸ |
| ὡς γὰρ ἡ διπλῆ πρὸς τὴν ὅλην , οὕτως ἡ ἁπλῆ πρὸς τὴν ἡμίσειαν τῆς ὅλης . ἔστω γὰρ λόγου | ||
| ψυχῇ ὡς φάρμακα ὀφείλει τὴν φύσιν τῆς ψυχῆς διερευνᾶν πότερον ἁπλῆ ἢ σύνθετος , καὶ εἰ σύνθετος , ἐκ ποίων |
| κατὰ μέν τινας τὸ αὐτό : κατὰ δέ τινας ἡ ἄλογος καὶ καθ ' ὑπερβολὴν δαπάνη . ἔστι γὰρ λάπτω | ||
| οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον . αὕτη δέ ἐστιν ἄλογος : οὐχ ὑποπίπτει γὰρ ἀριθμῷ . Τοῦτό ἐστι τὸ |
| ἐπὶ τὴν αὐτὴν τάσιν ἀφίκωνται ἥ τε παρυπάτη καὶ ἡ λιχανός , ἡ μὲν ἐπιτεινομένη ἡ δ ' ἀνιεμένη , | ||
| . τὸ γὰρ δίτονον , ὅταν μὲν ὁρίζωσι μέση καὶ λιχανός , ἀσύνθετόν ἐστιν , ὅταν δὲ μέση καὶ παρυπάτη |
| πρὸς ἄλληλα : καὶ αὖθις αὖ ἐὰν ὑποθῇ εἰ ἔστιν ὁμοιότης ἢ εἰ μὴ ἔστιν , τί ἐφ ' ἑκατέρας | ||
| ὦ θαυμάσιε καὶ αὐτοδίδακτε ποιητά , οὐχ ἡ τῶν τεχνῶν ὁμοιότης τὸν κότον ποιεῖ καὶ τὴν ἔριν , ἀλλ ' |
| ρξβ . δῆλον οὖν , ὅτι ὁ Α τοῦ Β ὑφημιόλιός ἐστι καὶ οὐ μετρεῖ αὐτόν . ὁμοίως καὶ οἱ | ||
| ὁ β τοῦ γ κοινῶς μὲν ὑποεπιμόριος , ἰδικῶς δὲ ὑφημιόλιός ἐστιν , ὡσαύτως δὲ ὁ γ τοῦ δ κοινῶς |
| ἀναλογίαν σώζων γεωμετρικήν , πρόλογος μὲν πρὸς τὸν ἐλάττονα , ὑπόλογος δὲ πρὸς τὸν μείζονα , οὐδέποτε δὲ πλείονες : | ||
| ' ἑκάτερα αὐτοῦ ἀποκρίνηται , πρὸς μὲν τὸν μείζονα ὡς ὑπόλογος , πρὸς δὲ τὸν ἐλάσσονα ὡς πρόλογος , συνημμένη |
| ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
| , ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
| εἰδητικοῦ ἑνός τε καὶ πλήθους ἡ μία σχέσις τε καὶ σύμφυσις ἀφανεστέρα διὰ τὸ μὴ πάνυ συννεύειν πρὸς ἄλληλα , | ||
| . Δύο δ ' οὖν ὄντα συμπέφυκε , καὶ ἡ σύμφυσις πρὸ τῆς διαφυῆς : καθὸ μὲν δὴ συμπέφυκεν , |
| ἰσόρροπόν τι εἶναι χρῆμα ἐν μέσῳ κείμενον , ὁμοίων τῶν περιεχόντων . Ὁ δὲ αἰθὴρ ἐξωτάτω διῃρημένος εἴς τε τὴν | ||
| ' ἐμοῦ : οὐδὲν παθέων ἀποκουφίζους ' : οὐδὲν τῶν περιεχόντων σε κακῶν θεραπεύουσα καὶ ἀποκουφίζουσα , ἀλλὰ τοὐναντίον ἐπιτιθεῖσα |
| , διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
| , οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
| τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
| εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
| γίνεται διὰ τὸν ξανθοχολικὸν χυμόν . κολάζεται μὲν τούτου ἡ σφοδρότης διὰ τὴν τοῦ φλέγματος ἐπιμιξίαν . ἔστι δ ' | ||
| μέν τινα αἱ τρεῖς ἀρεταὶ τοῦ λόγου , ἥ τε σφοδρότης καὶ ἡ ἔμφασις καὶ ἡ τραχύτης , εἰ καὶ |
| ἁπλῆ τίς ἐστι κατηγορία , ἡ δὲ τῶν πρός τι σύνθετος , ῥᾷον δὲ τὰ ἁπλᾶ μανθάνομεν τῶν πολυσχεδῶν ; | ||
| καὶ ὁ τῇδε ἵππος ἐκ τῶν τῇδε φύσεων ἀνομοίων οὐσῶν σύνθετος ᾖ . πάντα γὰρ ταῦτα κωμῳδοῦντός ἐστι μᾶλλον ἢ |
| ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
| οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
| τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὅρου συνίσταται ἀναλογία ἐν ἐπιμερέσι λόγοις δισεπιτρίτοις : οἷον θʹ Ϛʹ δʹ : ἐκ | ||
| γίνονται γεωμετρικαί , ἀλλὰ καὶ ἐν ἐπιμορίοις εἴδεσιν ἅπασι καὶ ἐπιμερέσι καὶ μικτοῖς , καὶ τὸ ἐξαίρετον ἰδίωμα τῆς μεσότητος |
| ἣν ἥψατό τις διαστολήν , σῴζει τὴν αὐτὴν διάστασιν ὁ σφυγμὸς ἢ μεταβέβληκε , καὶ μάλιστα τῶν ἀνωμάλων καὶ ἀτάκτων | ||
| ἐντὸς αὐτῆς μεστότερόν τε καὶ σωματωδέστερον καταλαμβάνεσθαι . Κενός ἐστι σφυγμὸς καθ ' ὃν αὐτῆς τε τῆς ἀρτηρίας ἡ περιοχὴ |
| κλῆρος ὁ μυθευόμενος ἐν Σικυῶνι ταῦτα καὶ διαίρεσις ἀδελφῶν οὕτως ἀνώμαλος , ὡς οὐρανὸν ἀντιθεῖναι θαλάττῃ καὶ ταρτάρῳ . Πᾶς | ||
| δοκεῖ δὲ αὐτοῖς καὶ κατὰ λόγον τοῦτο γεγονέναι , διότι ἀνώμαλος ἡ τῶν ἐπιδέσμων γίνεται πρόσπτωσις διὰ τὴν ποικιλίαν δυναμένη |
| τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται | ||
| αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα . |
| τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
| φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
| λήγει , ἀφ ' οὗ καὶ φέρεται : οὗ ἡ θέσις ἐπέχει μοίρας μϚʹ μηʹ ∠ ʹʹ Πόλεις δὲ εἰσὶν | ||
| συμφωνιῶν διαφορὰς ἐχούσας οὕτως . εἶδος μὲν τοίνυν ἐστὶ ποιὰ θέσις τῶν καθ ' ἕκαστον γένος ἰδιαζόντων ἐν τοῖς οἰκείοις |
| σῴαν ἔχων τὴν φρόνησιν καὶ ταῖς ἀρεταῖς ἁπάσαις κοσμούμενος , εἰδικῶς δ ' ἂν λέγοιτο σώφρων ὁ τοῖς κατὰ γεῦσιν | ||
| ἐπὸς γάρ ἐστιν ἀπὸ τοῦ ἐπεῖναι κατὰ τὴν ἀποτομήν . εἰδικῶς μέντοι Ὅμηρος οἶδεν ὀπόν τινα λεγόμενον , ὡς ὅταν |
| προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον ἐνδέχεσθαι λαμβάνηται πρότασις , ἀεὶ γίνεται συλλογισμός , πλὴν ὁτὲ μὲν ἐξ | ||
| εἶναι ἀπόφασις . φανερὸν ἄρα γέγονεν ὅτι μιᾷ προτάσει μία πρότασις ἀντιφατικῶς μάχεται . ἐν οἷς τὸ πρῶτον κεφάλαιον . |
| μὴ παραδέχεσθαι . ἀκολουθεῖ γὰρ τῷ ἀμέτρῳ πλούτῳ καὶ ἀκολάστῳ συνημμένη καὶ ἴσα , φασί , βαίνουσα πολυτέλεια , καὶ | ||
| ἠθικὴ ἀρετὴ περὶ τὰ ἀνθρώπινά ἐστι πάθη καὶ τούτοις ἐστὶ συνημμένη , ταύτης δὲ ἀχώριστος ἡ φρόνησις εἶναι ἐδείχθη , |
| τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
| τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
| ὅταν δὲ ἡ στερητικὴ πρότασις ἀναγκαία ᾖ ἡ δὲ καταφατικὴ ἐνδεχομένη , δηλονότι ἐναντίως τῇ πρὸ αὐτῆς συζυγίᾳ τὸ συμπέρασμα | ||
| καταφατικαῖς . ὅταν δὲ ἡ μὲν ὑπάρχουσά ἐστιν ἡ δὲ ἐνδεχομένη , ὅταν ἡ καταφατικὴ πρότασις ὑπάρχουσά ἐστιν , οὐδέποτε |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| τὸ ὂν ἀγένητον ἀπολείπει : λέγει δὲ τὴν γῆν τοῦ πυκνοῦ καταρρυέντος [ ἀέρος ] γεγονέναι . . . καὶ | ||
| ἄστρα καὶ τὸν ἥλιον ἐκ πυρός φησι καὶ τοῦ πρώτου πυκνοῦ συγκεῖσθαι , τὴν δὲ σελήνην ἐκ τοῦ δευτέρου πυκνοῦ |
| χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
| ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| σελήνης κύκλος νεύων εἰς τὴν ἡμετέραν ὄψιν , καὶ αὐτῷ ἀδιάφορος ὁ παρὰ τὸν διορίζοντα μέγιστος κύκλος , ὅταν ἄρα | ||
| δευτέρων καὶ τρίτων συζυγιῶν κατὰ τὸ δεύτερον πρόσωπον διαφορουμένων , ἀδιάφορος ἡ πρώτη ἐστίν , ἐπειδὴ τὰ βραχέα φωνήεντα μετὰ |
| ἀρχὴ τῶν ὅλων τὸ πῦρ , δύο δὲ αὐτοῦ πάθη ἀραιότης καὶ πυκνότης , ἡ μὲν ποιοῦσα ἡ δὲ πάσχουσα | ||
| , ἵνα εἴη προγνωστικὸς ὁ λόγος : ἐὰν εἴη δέρματος ἀραιότης , προμήνυσον ὡς κοιλίης ἐστὶ σκληρότης τουτέστιν ἐποχὴ γαστρός |
| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| , ἔνυδρα . Ὅτι ἡ σοφία οὐκ ἔστι πρακτικὴ ἀλλὰ θεωρητική , δῆλον ἐντεῦθεν : μετὰ γὰρ τὸ εὐπορῆσαι τοὺς | ||
| τῆς διαιρέσεως . καὶ διὰ μὲν τῆς διαιρέσεως ἐμάθομεν ὅτι θεωρητική ἐστι καὶ πρακτική : εἰς γὰρ ταῦτα τὰ δύο |
| πρότερον τῶν τρόπων τόπου τέ τινος κοινωνεῖ τὰ τῶν ἑξῆς τετραχόρδων συστήματα καὶ ὅμοιά ἐστιν ἐξ ἀνάγκης , κατὰ δὲ | ||
| οὐδὲ τούτοις ὁμολογουμένως ταῖς αἰσθήσεσι διῄρηται τὰ πρῶτα γένη τῶν τετραχόρδων , πειραθῶμεν αὐτοὶ κἀνταῦθα διασῶσαι τὸ ταῖς τῶν ἐμμελειῶν |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| τὰ ἄκρα τῆς Ἰνδικῆς . , πάντα δὲ ταῦτα λέγει γεωμετρικῶς , ἐλέγχων οὐ πιθανῶς . ταῦτα δὲ καὶ αὐτὸς | ||
| , οὕτω καὶ τούτων ἀκροᾶται : εἰ μὲν γὰρ ἤχθη γεωμετρικῶς , δῆλον ὅτι τραφεὶς κατὰ γεωμετρικὴν λεπτουργίαν ἀπαιτήσει τὸν |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| οὐκ ἐπιδέχεται ὑπερβολάν , οἷον ἀρετά : οὐ γάρ ἐστιν ὑπερβάλλουσά τις ἀρετὰ καὶ ὑπερβαλλόντως τις ἀγαθός : ἁ γὰρ | ||
| δέδοικα μή σου γλῶσσα : φοβοῦμαι μὴ ἐν τοῖς κακοῖς ὑπερβάλλουσά σου ἡ γλῶσσα τὸ εὖ ἔξηχον καὶ παράφρονά σε |
| οὗ τοῖς πολλοῖς τὸ εἶναι ὑπάρχει , ὥσπερ καὶ ἑνὰς νοητή , ἐξ ἧς ἡ συνέχεια πᾶσι τοῖς ἐνταῦθα . | ||
| εἴδη τῶν οὐσιῶν διατρίψει : τῶν δὲ οὐσιῶν ἡ μὲν νοητή τε καὶ ἀίδιος , ἡ δὲ αἰσθητή τε καὶ |
| ἐν ᾧ λόγῳ ἐστὶν ἡ διὰ πασῶν καὶ διὰ πέντε μικτὴ συμφωνία , ὅπερ οὐχ ὑπῆρχε τῇ προτέρᾳ μεσότητι γʹ | ||
| κεφαλαίων ἑκάτερον ἂν εἴη τῶν προοιμίων μικτόν , ἐπεὶ καὶ μικτὴ τῶν κεφαλαίων ἡ φύσις . τὰ δὲ ἐντεῦθεν λοιπὸν |
| , καὶ ξύμπας ἀριθμὸς ταὐτὸν πέπονθε τούτῳ . ἀλλὰ μὴν λογιστική τε καὶ ἀριθμητικὴ περὶ ἀριθμὸν πᾶσα : ταῦτα δὲ | ||
| τοῦ μὲν πρακτικοῦ νοῦ δύναμις ἥ τε δοξαστικὴ καὶ ἡ λογιστική , τοῦ δὲ θεωρητικοῦ ἥ τε νοητικὴ καὶ ἡ |
| ἔπειτα δὲ οὐδὲ πάντα ἀπὸ τῶν αἰσθητῶν δύναται λαμβάνειν ἡ γεωμετρία : πολλὰ γὰρ σχήματα καὶ πάθη θεωρεῖ σχημάτων , | ||
| σχεδὸν δὲ αἱ αὐταὶ καὶ ἀκριβεῖς καὶ αὐτάρκεις , οἷον γεωμετρία καὶ ἀριθμητική : τῶν γὰρ τοιούτων καὶ ὥρισται τὰ |
| εἶναι , οἷον καὶ τὰ κοινά . δηλοῖ γὰρ ὅτι κοινή τίς ἐστιν αἰτία , ἡ τοῦ ἀέρος ἀλλοίωσις , | ||
| διαβολὴ πονηρίας καὶ τοῦ κακόν τινα εἶναι , ὁ δὲ κοινή τις πρὸς μὲν τὰ βέλτιστα προτροπὴ , τῶν δὲ |