τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι .
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ
7328846 ἐλλειψις
δείκνυται : μᾶλλον μὲν οὖν ἐν τούτῳ ἐστι καὶ ἡ ἔλλειψις . Γνώσῃ δὲ τοῦτο σαφῶς ἐκ τῆς ἀναλογίας :
ὡς ἐπιτατικὸν μᾶλλον ἀνεδέξατο , ὅπερ οὐκ ἦν , ἀλλὰ ἔλλειψις τοῦ πράγματος , ὃ καὶ δέον ἦν ποιεῖν :
7190442 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
7142411 γραμμη
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ
7074299 τομη
τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ
ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ
6969739 ἀνισοτης
, τὸ δὲ μεῖζον ὑπὸ γῆν . Ἡ δ ' ἀνισότης τῶν τμημάτων τὴν αὐτὴν παραλλαγὴν ἔχει ἐπὶ πάντων τῶν
κεφαλὴν προωθούμενος . ἐν δὲ τοῖς ἀνάντεσιν ἡ τῶν ποδῶν ἀνισότης κατὰ τὴν ἀνωμαλότητα τὴν τῶν τόπων ἀπισοῖ τὸ σῶμα
6880813 μεσοτης
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι '
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ
6859562 ὀρθια
ἂν εἴη τῆς Σκυθικῆς τὰ ἐπικάρσια τετρακισχιλίων σταδίων καὶ τὰ ὄρθια τὰ ἐς τὴν μεσόγαιαν φέροντα ἑτέρων τοσούτων σταδίων .
ὀρθίῳ μὴ ἡττηθῆναι λαγώ , ὅτι καὶ ὁ λαγὼς τὰ ὄρθια θεῖ ἄμεινον , ἐκεῖναι δοκοῦσιν γενναιότεραι αἱ κύνες ,
6832054 περιττη
ἀδυνάτῳ ἐκβληθήσεται , τῷ μὲν περιττῷ , ὅτι ἢ αὕτη περιττὴ ἢ αἱ ἄλλαι τέχναι : ἀλλὰ μὴν αἱ ἄλλαι
ἀδυνάτῳ ἐκβληθήσεται , τῷ μὲν περιττῷ , ὅτι ἢ αὕτη περιττὴ ἢ αἱ ἄλλαι τέχναι : ἀλλὰ μὴν αἱ ἄλλαι
6763055 τεταγμενως
δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν ,
ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ
6715304 ποσοτης
[ ] [ ἡ ] ἑκάστης ? ? ? ? ποσότης ? [ ] [ : ] α β γ
ἀλοιφὴν παραλαμβάνειν , ἐφ ' ὧν ἤδη κένωσις ἐγένετο καὶ ποσότης οὐκ ἐνοχλεῖ τῷ παντὶ σώματι , ἀλλὰ ξηρότης καὶ
6687077 ἀσυμπτωτος
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ
6645219 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6620790 ἐλλειψεως
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο -
6609256 ἰσοτης
καὶ ταῦτα σοφὸς ὤν , ἀλλὰ λέληθέν σε ὅτι ἡ ἰσότης ἡ γεωμετρικὴ καὶ ἐν θεοῖς καὶ ἐν ἀνθρώποις μέγα
ὅταν ἀνάλογον ᾖ τῶν πλευρῶν πρὸς ἀλλήλας καὶ τῶν γωνιῶν ἰσότης τοῦδε τοῦ σχήματος πρὸς τόδε : ἐπὶ δὲ τῶν
6574406 παραβολη
δὲ τούτου τὸ κτήσασθαι . παραβολὴ καὶ παράδειγμα διαφέρει . παραβολὴ μὲν γάρ ἐστιν ἡ οἵα τε γενέσθαι ἐπὶ πράγματος
. ὁρμῆς : κινήσεως . Ὡς δ ' ὅτε : παραβολὴ , παράδειγμα . νούσῳ : ἰωνικόν . πολυκηδέϊ :
6548555 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
6546332 ἐπιφανεια
περὶ τὸ τμῆμα τῆς σφαίρας : ἔσται ἄρα αὕτη ἡ ἐπιφάνεια , καὶ πολὺ μᾶλλον ἡ τοῦ τμήματος τῆς σφαίρας
λοιπὸν ἐνεργείᾳ ἐστίν . οὕτως οὖν , φησί , καὶ ἐπιφάνεια δυνάμει ἐστὶν ἐν τῷ κύβῳ * * * ἡνίκα
6487903 ἀκροτητων
τὸ τῆς ἀνθρωπίνης φύσεως , ἀτελὲς μὲν πρὸς ἑκατέραν τῶν ἀκροτήτων , εὐκατάφορον δὲ πρὸς τὴν ἐκ τῆς ἐναλλαγῆς τῶν
' ἀκμὴ πάντων τῶν ζῴων ἐν τῷ μέσῳ καθέστηκε τῶν ἀκροτήτων , οὔτε εἰς ἐσχάτην ἥκουσα ξηρότητα ὡς τὸ γῆρας
6473913 ὑπερεχουσα
τις μικρὰ καλεῖται εὐωδεστέρα οὖσα , ἡ δὲ μείζων , ὑπερέχουσα τῷ θάμνῳ καὶ τοῖς φύλλοις , πλατυτέρα καὶ βαρύοσμος
καὶ τῶν οἱστισινοῦν πρὸς ἀλλήλους καθ ' ἑταιρίαν γενομένων παμπληθὲς ὑπερέχουσα . ἀνθ ' ὧν αὖ καὶ πρώτη πόλεων ἥδε
6457857 στιγμη
μονάδες κεῖνταί που καὶ τὴν ἐν σώματι θέσιν ἔχουσι . στιγμὴ γοῦν καὶ μονὰς ἐνταῦθα ταὐτόν . γραμμαὶ δ '
: οὐδὲ γὰρ τὸ φερόμενον τῆς φορᾶς , οὐδὲ ἡ στιγμὴ τῆς γραμμῆς : γραμμῆς γὰρ μέρος γραμμὴ καὶ κινήσεως
6456891 ἀλογος
κατὰ μέν τινας τὸ αὐτό : κατὰ δέ τινας ἡ ἄλογος καὶ καθ ' ὑπερβολὴν δαπάνη . ἔστι γὰρ λάπτω
οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον . αὕτη δέ ἐστιν ἄλογος : οὐχ ὑποπίπτει γὰρ ἀριθμῷ . Τοῦτό ἐστι τὸ
6451499 ὑπερβολη
ἡ Ζ γωνία τῇ Δ γωνίᾳ . Ἔστω ἡ τομὴ ὑπερβολή , καὶ γεγονέτω , καὶ ἔστω ἐφαπτομένη ἡ ΓΔ
ἕν . ἔστωσαν ἀντικείμεναι αἱ ΑΒΓ , ΕΖΗ , καὶ ὑπερβολή τις ἡ ΔΑΓ ἐφαπτέσθω μὲν κατὰ τὸ Α ,
6447152 ὀξεια
χαλεπὸν εἶναι καὶ ἐλέφαντι ἐνεγκεῖν : καὶ ἄνωθεν ἡ κατάβασις ὀξεῖα ἦν : ὁ δὲ καὶ ἐνταῦθα ἔπαιεν . εἰ
ὀφείλει εἶναι , οὐ περισπωμένη γίνεσθαι : ἄτοπον γάρ . ὀξεῖα τοίνυν ὀφείλει τίθεσθαι καὶ ἐνταῦθα ἐπὶ τῷ δείν '
6440850 νοεισθω
μοίρᾳ , τόδ ' αὐτὸ καὶ ἐπὶ τῶν ἄλλων ζωδίων νοείσθω , ὡς θέμις , συγκρίνοντός μου ἢ ὡροσκοποῦντος ♌
δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ νοείσθω πρῶτον ἐπ ' αὐτοῦ τοῦ ἀπογείου τὸ κέντρον τοῦ
6440810 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
6435503 ἀποτομη
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ
6419525 ΡΑ
͵Ϛψν πρὸς τὰ τλζ : ἀνάπαλιν ἄρα καὶ συνθέντι ἡ ΡΑ πρὸς τὴν ΑΒ μείζονα λόγον ἔχει ἢ ὃν τὰ
ἐπιπέδῳ τῷ ΖΗ τετμήσθω παραλλήλῳ ὄντι τοῖς ἀπεναντίον ἐπιπέδοις τοῖς ΡΑ , ΔΘ : λέγω , ὅτι ἐστὶν ὡς ἡ
6419015 μεση
τὸ τοῦ ἀστέρος λόγον ἔχειν , ὃν ἡ τοῦ ἡλίου μέση πάροδος , τουτέστιν ἥ τε κατὰ μῆκος καὶ ἡ
Ἶρόν φησι Μερμέρου παῖδα . . . : Χαονία , μέση τῆς Ἠπείρου . Οἱ οἰκήτορες Χάονες . Ἑλλάνικος Ἱερειῶν
6415201 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
6412381 εὐθυτης
παράθεσις ἀπότασις : τὸ δ ' οὗ ἕνεκεν , ὀρθότης εὐθύτης : καὶ ἐπὶ τῶν ἄλλων ὁμοίως . Τὰ μὲν
τὸ δὲ ἐναντίον τούτου θηλυδρίαν καὶ ἀμαθέστερον σημαίνει ἄνδρα . εὐθύτης ῥινὸς γλώττης ἀκρασίαν τινὰ λέγει . ῥὶς ἡ μείζων
6395734 ΤΑ
] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ]
λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον
6372841 ἀτμητος
δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἄτμητος ἡ ΑΒ , ἡ δὲ τετμημένη ἡ ΑΓ κατὰ
τὸ Ῥηματικὸν αὑτοῦ . . . . . ἄτμητος : ἄτμητος : τὸ τμητὸς καὶ ἄτμητος οὐ πεποίηται ἀπὸ τῶν
6340979 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
6333347 ὑποκεισθω
συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως . Ὑποδείγματος δὲ ἕνεκεν ὑποκείσθω τὸ ἀκριβὲς κέντρον τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου
πρὸς ἑκατέραν τῶν ΑΛ , ΛΚ λόγος ἔσται δοθείς . ὑποκείσθω καὶ πρὸς τὸ ΚΔ ἀπόστημα τῆς ΑΚ λόγος δοθείς
6333018 ἀνισος
τίνες ἂν ἰσοκρατῶς ἀπομάχεσθαι δυνηθεῖεν , ὁπότε καὶ παρεσκευασμένοις ἀγὼν ἄνισος ; ὁ τοίνυν Ἄβελ τέχνας μὲν λόγων οὐκ ἔμαθε
διὰ τοῦτο δοκεῖ πλεονέκτης εἶναι . ἔστι δὲ ὁ ἄδικος ἄνισος : τοῦτο γὰρ περιεκτικὸν ὄνομα καὶ κοινόν ἐστι πᾶσι
6329587 γεωμετρικη
ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ .
ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς
6316932 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6306493 ἑξας
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται ,
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ
6299504 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6276846 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
6253117 ἐκκεισθω
ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ
γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου
6239919 ἐλλειψει
τὰς αἰσθήσεις . ̈ . , Π . , Ἐμπεδοκλῆς ἐλλείψει τροφῆς τὴν ὄρεξιν [ . γίνεσθαι ] . .
: μὴ σπεῖραι παίδων ἄλοκα : παρὰ τὸ αὖλαξ : ἐλλείψει τοῦ υ : καὶ τροπῆ τοῦ α εἰς ο
6224818 ٣١
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ
6218266 παραπληρωμα
, σὺν αὐτοῖς δὲ καὶ τὴν ἐκτὸς εὐετηρίαν ὥς τι παραπλήρωμα τάττοντες . δεῖ γὰρ καὶ αὐτῆς ἐνίοτε τῷ εὐδαίμονι
τὰ παραπληρώματα : περιέχεται γὰρ τὸ μὲν ἀπὸ τῆς ΑΓ παραπλήρωμα , τὸ δὲ ἀπὸ τῆς ΓΒ ἤτοι τῆς ΗΚ
6210197 ἀμερης
οὖν περὶ τὸν ἀστεῖον ἡ τροπὴ βραχεῖα , ἄτομος , ἀμερής , οὐκ αἰσθητή , | νοητὴ δὲ μόνον ,
ὄντος συνεστὼς ἀνύπαρκτος ἔσται . ἄλλως τε , εἰ μὲν ἀμερής ἐστιν ὁ χρόνος , πῶς τὸ μέν τι αὐτοῦ
6207027 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
6204806 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6199456 ΗΠ
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ
6189085 ἀπειληφθω
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου
6181352 εὐθυγραμμῳ
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ ,
6169237 ὁλη
πανταχοῦ τοῦ ἀέρος οὐ μία μεμερισμένη , ἀλλὰ μία πανταχοῦ ὅλη : καὶ τὸ τῆς ὄψεως δέ , εἰ παθὼν
περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ τῇ ΑΔ : ὥστε
6147117 νενοησθω
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον ,
6135467 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
6119156 καταχθῃ
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ
6113260 κατηκται
τοῦ Α παρὰ τὴν ΒΔ ἡ ΑΖ : τεταγμένως ἄρα κατῆκται . ἔσται δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ
δὲ τὴν Ρ , καὶ ἀπό τινος σημείου τοῦ Σ κατῆκται ἡ ΣΟ , καὶ ἀναγέγραπται ἀπὸ μὲν τῆς ἐκ
6108777 ἀδιαστατον
δοκεῖ προκόπτειν . Ἡ τοίνυν στιγμή , ἥν φασι σημεῖον ἀδιάστατον ὑπάρχειν , ἤτοι σῶμα νοεῖται ἢ ἀσώματον . καὶ
οὐ δυνατὸν ἐν τοῖς φαινομένοις λαβεῖν τινος σημεῖον καὶ πέρας ἀδιάστατον , δῆλον ὡς οὐδ ' ἐν τοῖς νοητοῖς ληφθήσεταί
6100216 ΟΥΔΕ
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία
6097214 συμπεσειται
ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ .
Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ
6093972 ٤١
ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤
ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥
6091137 Νοεισθω
Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν
ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ
6089266 συνδει
ὑγράσματα περὶ τὰ ἄρθρα ἔχουσιν ἄνευ φλεγμονῆς : αὐτὴ γὰρ συνδεῖ . Οἱ δὲ καὶ βουσὶν ἐμβάλλοντες καὶ ἀποπερονῶντες ἐξαμαρτάνουσι
ἐπιδράττεται γοῦν ἕκαστος τῶν οἰκείων καὶ ἐπιδραξάμενος τὰ μέρη πάντα συνδεῖ : ὁ μὲν εὐφυὴς εὐθιξίας , ἐπιμονῆς , μνήμης
6081941 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
6074650 περιλαμβανει
πάντως δὲ ὁ τῶν λόγων νόμος καὶ τὸ τῶν ἐπιστολῶν περιλαμβάνει μέρος . τότε οὖν συνέστελλέ μοι τὴν ἐπιστολὴν ὁ
τὰς τρεῖς λαμβάνει σχέσεις , ἀρκτικὸς μὲν γινόμενος , ὅτι περιλαμβάνει τὰ ἀειφανῆ τῶν ἄστρων μηδενὸς ἁπλῶς παρὰ ταύτοις ἢ
6071746 ἀνισοτητος
ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν
πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα ,
6069094 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
6067504 δεδομενη
. ] Ἀποστασίου : δίκη τίς ἐστι κατὰ τῶν ἀπελευθερωθέντων δεδομένη τοῖς ἀπελευθερώσασιν , ἐὰν ἀφιστῶνταί τε ἀπ ' αὐτῶν
ἡ ὑπὸ ΕΒΞ δοθεῖσα , λοιπὴ ἄρα ἡ ὑπὸ ΒΝΕ δεδομένη ἔσται . καὶ τὸ ΕΝΞ τρίγωνον τῷ εἴδει .
6059999 ἀναλογια
ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον .
ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν
6039949 βαρυτατος
ὁ μὲν βαρύτερος ὀξύτατος ἐδείχθη πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ὥστ ' ἐπειδὴ τοσαῦτα μέν ἐστι μόνα τὰ
ὁ μὲν βαρύτερος ὀξύτατός ἐστι πυκνοῦ ὁ δ ' ὀξύτερος βαρύτατος . ἀναγκαῖον γὰρ ἐν τῇ συναφῇ τῶν πυκνῶν διὰ
6039868 πεντας
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν
6038415 πεπερασμενης
συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν
ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν
6035900 πολυπτωτον
κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν
κἂν ἄνισοι αἱ βάσεις ὦσιν . ὅτι δὲ καὶ τοῦτο πολύπτωτόν ἐστι τὸ θεώρημα καὶ δυνατὸν τὰς βάσεις τὰς τῶν
6033340 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
6032880 ἐνοειτο
τάξιν τε γὰρ τὸ νοηθὲν εἶχε καὶ οὐθὲν ἔξω καιροῦ ἐνοεῖτο , ἡ δὲ ἑρμηνεία διεσπάσθαι τε ἐδόκει καὶ ῥυθμοῦ
ἐστί , καὶ ἑαυτοῦ γενήσεται μέρος : σὺν αὐτῷ γὰρ ἐνοεῖτο καὶ ὅλος ὁ στίχος : εἰ δὲ τοῦ λοιποῦ
6025293 ΛΡ
ἐν τριγώνῳ οὖν τῷ ΚΛΡ μείζων ἐστὶν ἡ ΛΚ τῆς ΛΡ : αὕτη δὲ τῆς ΛΠ μείζων . ὥστε καὶ
ἀρχόμεναι ἀπὸ μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων
6024228 ἀφῃρησθω
μονάδες ρ , οἵτινές εἰσιν ἴσοι μονάσι ρκ . Καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια , ἤτοι ἀπὸ ἴσων ἴσα .
λοιπὸς περισσὸς ἔσται . Ἀπὸ γὰρ ἀρτίου τοῦ ΑΒ περισσὸς ἀφῃρήσθω ὁ ΒΓ : λέγω , ὅτι ὁ λοιπὸς ὁ
6017824 ἐλλειψεις
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν
6010977 μονωτατη
ἀπὸ συνθέσεως , ἀλλὰ καὶ ὅτι οὐδὲ τὴν εἰς ἄνισα μονωτάτη διαίρεσιν ἐγχωρεῖ . καὶ φύσιν δὲ αὐτὴν καλοῦσι :
καὶ αὐτὴ τελεία , ὅτι ἀρχὴν καὶ μέσον καὶ τέλος μονωτάτη ἔχει . τρίτον δὲ τὸ ἓν καὶ δύο καὶ
6009619 ΛΚΜ
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη
6003057 ἐφαψεται
, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἀγομένη ἐφάψεται τῆς τομῆς . ἤχθω γὰρ ἐφαπτομένη ἡ ΔΖ ,
ἡ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ληφθὲν σημεῖον ἐπιζευγνυμένη ἐφάψεται τῆς τομῆς . ἔστω παραβολή , ἧς διάμετρος ἡ
6000109 συνεστωσα
δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους
συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ
5998386 διαστημασι
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων ,
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι
5997721 αδʹ
ἐλάσσων ἡ αδʹ , τοῦτο γὰρ φανερόν : ἡ ἄρα αδʹ εὐθεῖα ἐλαχίστη ἐστὶ πασῶν τῶν ἀπὸ τοῦ δʹ πρὸς
ὁρίζοντι . Συμβαλλέτω κατὰ τὸ λʹ σημεῖον καὶ ἐπεζεύχθωσαν αἱ αδʹ δλʹ αγʹ . Ἐπεὶ ἐν σφαίρᾳ μέγιστος κύκλος ὁ
5992204 περιεχουσα
ἐν θεοῖς ὁλοτελής ἐστι , πάντα ἐν ἑαυτῇ καὶ αὐτὴ περιέχουσα κατὰ τὸ ἑαυτῆς ἰδίωμα . Ἡ μὲν γὰρ ἐν
ἀριθμόν : ἡ γὰρ ὑστάτη τελειότης αὐτὸς ἦν ἡ πᾶν περιέχουσα ἐν ἑαυτῇ . τοῦ δὲ κενοῦ παράδειγμα μὲν ἐν
5989813 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
5982013 μετωνυμια
ἀπὸ τοῦ σκυλεύειν . Ἔστι δὲ καὶ ἄλλος τρόπος ἡ μετωνυμία , λέξις ἐπ ' ἄλλου μὲν κυρίως κειμένη ,
μεταφορά , κατάχρησις , ἀλληγορία , αἴνιγμα , μετάληψις , μετωνυμία , συνεκδοχή , ὀνοματοποιΐα , περίφρασις , ἀναστροφή ,
5979577 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
5978456 προσαρμοζει
. Τῇ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσῃ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ , μετὰ δὲ
. ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΘΝ αὐτῇ προσαρμόζει : τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει εὐθεῖα
5978324 περιφερης
ἅμα τῇ πόσει περιρρεῖσθαι πεσόντα . ὁ δὲ Ἀρίσταρχος στροβηθεὶς περιφερὴς ἔπεσε τῇ τραπέζῃ , ὡς περικλασθῆναι περὶ αὐτήν :
τοῖς τῶν ἐλάφων δὲ παραπλήσια , σφυρὸν ὕπτιον , ὁπλὴ περιφερὴς , ὑφηλὴ , κραταιὰ κατὰ τῶν ἐλάφων τὰ ἰσχυρότατα
5977186 ἀριθμητικη
λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν
, Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν
5966601 δοθησεται
τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς
ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ
5964515 πτωσις
λέγομεν τὸ πεφυκὸς ἐπιδέχεσθαι πτώσεις : καὶ γὰρ ἡ εὐθεῖα πτῶσις μὲν οὐκ ἔστι , κλίνεται δὲ εἰς πτώσεις ,
νῆα μέλαιναν . * ) [ ἡ διπλῆ ὅτι ἤλλακται πτῶσις σὲ ἀπηύρα νῆα ἀντὶ τοῦ σοῦ ] ὁμοίως τῷ
5962683 διαγωνιος
καὶ τῆς ἀναγκαῖον μὴ εἶναι καταφάσεως οὔσης ἀπόφασίς ἐστιν ἡ διαγώνιος ἡ οὐκ ἀναγκαῖον μὴ εἶναι . διὰ τοῦτο οὖν
ῥητοῖς καὶ τοῖς μὴ ῥητοῖς , οἷον ἡ τοῦ τετραγώνου διαγώνιος ὡς μὲν ἐν ῥητοῖς λόγοις πρὸς τὴν πλευρὰν ἄλογος
5959055 ὑποκειται
μίαν διάθεσιν ὑποκεῖσθαι καὶ ποικίλα ἐκκρίνεσθαι διαχωρήματα . οὕτως γὰρ ὑπόκειται εἷς πυρετὸς καὶ τῷ χρόνῳ κατὰ μέρος διάφορον ἐγέννησε
τὸ μέσον : οὐδὲν γὰρ μᾶλλον τὸ μέσον τῷ μείζονι ὑπόκειται ἢ οὐχ ὑπόκειται , καὶ οὐδὲν μᾶλλον τοῦ ἐλάττονος
5953553 καθετων
τῆς ΔΒ καὶ τῆς ΒΘ καὶ ἔτι τῆς ΕΘ , καθέτων δ ' ἀγομένων ἐπὶ μὲν τὴν ΔΒ τῆς ΖΚ
κώνου , οὗ βάσις μὲν ὁ ὑπὸ τῶν πτώσεων τῶν καθέτων γραφόμενος κύκλος , κορυφὴ δὲ ἡ αὐτὴ τῷ ἐξ
5953281 ΡΕ
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ ,
5950730 δυναμενη
τῆς σήψεως ἐπιτεινομένης ἥ τε δύναμις ἀσθενεστέρα γίνεται οὐκ ἔτι δυναμένη φέρειν τὸ μέγεθος τῶν πυρετῶν οὔτε [ ἔτι δύνασθαί
τοῦ Κυπρίων βασιλέως , καὶ ὅμως οὐκ ἠγανάκτησεν ἡ θεὸς δυναμένη λίθον αὐτὴν ὥσπερ τὴν Νιόβην ἀπεργάσασθαι . ἐῶ γὰρ
5945071 ١٦
٥٦ ٥٢ ١٥ ἡ αὐτῆς ἡμίσεια ٥ ١١ ٥ ⸎ ١٦ ٣٠ τὸ ἀπὸ ταύτης ἤτοι τῆς ἡμισείας τῆς ΑΗ
٤٣ ἡ ΖΒ ١ ١٠ ٢١ ἡ ΑΖ ١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠
5937747 φθογγος
γίνεται . Τόνος δὲ λέγεται τετραχῶς : καὶ γὰρ ὡς φθόγγος καὶ ὡς διάστημα καὶ ὡς τόπος φωνῆς καὶ ὡς
τἀναντία συνισταμένῃ : ὅτε γὰρ τῷ διὰ τεσσάρων τινὸς βαρύτερος φθόγγος τῷ διὰ πέντε τοῦ ὁμοφώνου αὐτῷ κατὰ τὸ βαρύτερον
5936999 καταγραφη
πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ
πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ
5936388 ῥητη
ἐδείχθη δὲ καὶ ἡ ΓΑ ἀποτομή . Ἐὰν ἄρα εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ , ἑκάτερον τῶν τμημάτων
, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ . ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ . καὶ γεγονέτω ὡς

Back