ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
πρὸς τὰς ἐκ μεταθέσεως παραβάλλοις , ταῖς μὲν ἀποφάσεσι τὰς καταφάσεις ἑπομένας εὑρήσεις , οὐκέτι μέντοι τὰς ἀποφάσεις ταῖς καταφάσεσιν | ||
ὅτι ὁ μὴ ἀξιῶν τὰ μέρη τοῦ λόγου θεωρεῖν ὡς καταφάσεις , ἀλλ ' ὡς ἁπλᾶς φωνάς , πολλῷ δήπου |
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
ἐπ ' ἐκείνου : αἱ διάμετροι τῶν κύκλων καὶ τῶν ἐλλείψεων τά τε χωρία δίχα διαιροῦσι καὶ τὰς περιεχούσας τὰ | ||
ΓΑ , τουτέστιν ὡς τὸ ἀπὸ τῆς διαμέτρου τῶν ὁμοίων ἐλλείψεων τῶν ἀπὸ τοῦ αὐτοῦ μέρους ἠγμένων πρὸς τὸ ἀπὸ |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
σπόρῳ καὶ τοῖς ἄλλοις ἔργοις βλαβερά . ἀθρόοι δὲ ἔσονται ἐπιτάσεις ὕδασί τε καὶ ψύξεσι καὶ χιόσι . τὸ θέρος | ||
οὕτω καταστοχάζεσθαι τῶν νοσημάτων . καὶ τὰς ἀνέσεις δὲ καὶ ἐπιτάσεις ἔκ τε τῶν τῆς Σελήνης φωτισμῶν καὶ τῆς τῶν |
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς | ||
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ ' |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
δὴ ταῦτά τις οὕτω διατείνοιτο , καὶ τὰς δύο ἀρχὰς ἀντικειμένας ποιῶν καὶ τὴν τοῦ ἑνὸς προτάττων ἀμφοῖν , ῥητέον | ||
τρεῖς , καὶ ὅτι ταῦτα ἀντιτέτακται ἀλλήλοις καὶ ἐκείνας ὑποτίθεσθαι ἀντικειμένας , καὶ ὅτι πρὸ τοῦ πέρατος καὶ τῆς ἀπειρίας |
μηνῶν καὶ ἡμερῶν καὶ ὡρῶν συνημμένων αὐτοῖς τῶν περιεχόντων τὰς διαστάσεις τῶν περὶ αὐτὸν τὸν ζῳδιακὸν ἀπλανῶν τῶν μέχρι δεκαμοίρου | ||
ἐπεὶ διαστατὸν ἂν ὑπῆρχε , τοῦ σώματος τὰς τρεῖς ἔχοντος διαστάσεις . καὶ μὴν οὐδὲ ἀσώματον . εἰ γὰρ ἀσώματόν |
οὐ διαλέγεται : καὶ γὰρ ἐνδέχεται τὰς δύο προ - τάσεις ταύτας ἤτοι ἀληθεῖς εἶναι ἢ ἀμφοτέρας ψευδεῖς . ἐπὶ | ||
γεγόνασι πρὸς τὰς τῶν σωμάτων ἀγωγάς , λέγω δὲ τὰς τάσεις . τῶν δ ' ἀξόνων οἱ μέν εἰσιν ἔκθετοι |
τοῖς πάθεσιν αὐτοῖς ἀλλὰ καὶ ἐν τοῖς περὶ τὰ πάθη μεσότητές εἰσι , καθάπερ ἐπὶ τῆς αἰδοῦς φαίνεται . καὶ | ||
ἐπανιτέον δὲ ἐπὶ τὸν τῶν ἀναλογιῶν καὶ μεσοτήτων λόγον . μεσότητές εἰσι πλείονες , γεωμετρικὴ ἀριθμητικὴ ἁρμονικὴ ὑπεναντία πέμπτη ἕκτη |
Καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ , ΒΗ , ΗΘ ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ ΑΘΗ , ΑΗΒ , | ||
, ἀνδρειοτέρας ἡγῇ τὰς γυναῖκας , ὅτι ἐγγύτατα μάχονται ἐπιπεσοῦσαι ἀλλήλαις ; ὁ δὲ Ἀχιλλεὺς ταῦτα ἀκούων ἅμα θυμοῦ καὶ |
: δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας [ διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς | ||
παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας ] . Ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α |
αἱ μὲν ἀνατολικαὶ ὡροσκοπίαι καὶ μάλιστα αἱ ἰδιοπροσωπίαι ἐλευθερίους καὶ ἁπλᾶς καὶ αὐθάδεις καὶ ἰσχυρὰς καὶ εὐφυεῖς καὶ ὀξείας καὶ | ||
τῷ προκειμένῳ λόγῳ μεταλαμβάνειν τὰς τοιαύτας τῶν ἀντωνυμιῶν εἴς τε ἁπλᾶς καὶ συνθέτους , τὰ νῦν περιγραφομένης τῆς πολλῆς παραθέσεως |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
βαρύνεται , ὥσπερ καὶ τὰ αὐτῶν ἐπιῤῥήματα . Αἱ μέντοι ὑπολειπόμεναι πληθυντικαὶ γενικαὶ , αἱ μὴ ὑποπίπτουσαι τούτοις τοῖς κανόσιν | ||
βάσεως τὰς χοιράδας κομισόμεθα , ἢ κατὰ συσσάρκωσιν , ἐὰν ὑπολειπόμεναι βάσεις τινὲς ἢ χοιράδες δέοιντο ἐκτακῆναι . τὸ δὲ |
οὐδενὶ καὶ παντὶ καὶ τινί . ὅτι δείκνυσιν τὰς καθόλου ἀντιστρεφούσας ἀλλήλαις καὶ τὰς μερικὰς ἀλλήλαις οὐ διὰ τοῦ ὅρου | ||
. ἔστι δὲ ἡ ᾠδὴ μονόστροφος , αἱ δὲ μονόστροφοι ἀντιστρεφούσας ἔχουσι τὰς στροφὰς ἀλλήλαις , ὥστε ἴσα εἶναι τά |
καὶ ἐδεδοίκει καὶ ἐς τὰς δι ' Ἀρχελάου γενο - μένας συνθήκας ἐνεδίδου τάς τε ναῦς καὶ τὰ ἄλλα πάντα | ||
μὲν ὁ νοῦς εἰς ἱερὰς καὶ ὁσίους καὶ κεκαθαρ - μένας δόξας , ἀλλὰ ἀνθρωπείους ταύτας , οἷον τὰς περὶ |
ἀπορεῖ καὶ τὴν ἀπορίαν ἐπιλύεται . τὰς δὲ καθόλου προτάσεις ἀποφατικὰς καὶ καταφατικὰς λέγει ἐναντίως μάχεσθαι . διὰ τί δὲ | ||
' ὧν τὰς μὲν τοῦ ἀδυνάτου προτάσεις καταφατικάς τε καὶ ἀποφατικὰς ἀκολούθως ἐκκεῖσθαί φησι καὶ ὑποτετάχθαι ταῖς τοῦ δυνατοῦ καὶ |
δύο εὐθείας μείζους τῶν ἐκτὸς καὶ πάλιν ἄλλας μείζονα γωνίαν περιεχούσας τῆς ὑπὸ τῶν ἐκτὸς περιεχομένης . τούτου γὰρ δειχθέντος | ||
' ἡμᾶς θάλαττα τοιαύτη τις . Ὑπογραπτέον δὲ καὶ τὰς περιεχούσας αὐτὴν γᾶς , ἀρχὴν λαβοῦσιν ἀπὸ τῶν αὐτῶν μερῶν |
κατὰ τὴν ὕλην αὐτῶν , ἀλλὰ καὶ τὰς ἐν αὐτοῖς ὑποκειμένας ποιότητας . αὗται γάρ εἰσιν αἱ μαχόμεναι καὶ δρῶσαι | ||
τῷ μοναδικῷ ἀριθμῷ : ἐκεῖνοί τε εἰ τὰς μονάδας τὰς ὑποκειμένας τῷ μοναδικῷ ἀριθμῷ διαφόρους εἶναι λέγουσι , δικαίως ἐγκαλοῦνται |
τὸ δὲ δεύτερον βιβλίον λόγου ἀποτομῆς ἔχει τόπους ιδʹ , πτώσεις δὲ ξγʹ , διορισμοὺς δὲ τοὺς ἐκ τοῦ πρώτου | ||
τὸ παιδεῖον . κοινὸν δέ ἐστιν ὃ τὰς μὲν [ πτώσεις ] ? [ ] ἔχει ? ? ? [ |
ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν | ||
ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν |
ἅπτεται τοῦ ἐπιπέδου . πρῶτον μὲν γὰρ καὶ αὗται αἱ ἀποδόσεις ὑποπίπτουσι ταῖς πρότερον ἡμῖν εἰρημέναις ἀπορίαις : εἶτα , | ||
ὡς ἔοικε , πειραθεῖσα τοῦ Γοργίου καὶ μικροπρεποῦς περὶ τὰς ἀποδόσεις , τὴν ὀργὴν ἔναυλον [ ἐγκειμένην ] ἔχουσα , |
ζῶον . καὶ εἰ ἄπειροι ἑκατέρωθεν , ἢ πᾶσαι πάσαις ἐφαρμόσουσι κἀντεῦθεν ἄπειροι δήπου καὶ ψυχαὶ τῷ ζώῳ ἐνέσονται , | ||
ἐπίπεδά ἐστι σχήματα . Δῆλον , ὅτι ἐφαρμοζουσῶν τῶν εὐθειῶν ἐφαρμόσουσι καὶ τὰ πέρατα αὐτῶν , εἰ δὲ τοῦτο , |
ἐξ ἀτόμων αὐτὴν συγκεῖσθαι λειοτάτων καὶ στρογγυλωτάτων , πολλῷ τινι διαφερουσῶν τῶν τοῦ πυρός : καὶ τὸ μέν τι ἄλογον | ||
ὁπότε οὐσῶν , ὡς ἂν φαίη , δυοῖν καὶ τοσοῦτον διαφερουσῶν τοσαύτην φαίνεται σπουδὴν πεποιημένος τοῦ καθάπαξ κακῶς εἰπεῖν . |
τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
λέγειν . εἰ δέ τί ποτε καὶ κατὰ τὰς ἄλλας ἐγκλίσεις ὑποκείμενον γίνεται , καθάπερ τὸ ὑγιαίνω ἐν τῷ τὸ | ||
γράφει κατηγόρημα ἢ σύμβαμα , καὶ ἔτι τὰς ἀπὸ τούτων ἐγκλίσεις . . Διὰ τοῦτο καὶ ὡς ἐπὶ γενικὸν ὄνομα |
ἐν αὐταῖς καταφάσεις , ἢ κατὰ δύναμιν , ὡς αἱ ἀποφάσεις : τὸ γὰρ οὐδεὶς ἄνθρωπος πᾶν ζῷον διὰ τοῦτο | ||
μὲν αὐτὸς φανήσεσθαι , παραδοχῆς δὲ μᾶλλον ἀξιωθήσεσθαι τὰς ἐγκωμιαστικὰς ἀποφάσεις αὐτοῦ περὶ Φιλίππου . καὶ μὴν οὐδὲ περὶ τὰς |
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
γενέσεως καὶ φθορᾶς ταῦτα ὑπομένειν ἤγουν πάσχειν : τὰς δὲ στιγμὰς καὶ τὰς γραμμὰς καὶ τὰς ἐπιφανείας οὐκ ἐνδέχεται οὔτε | ||
προσήκει καλεῖν , οὐχὶ μονάδας . ἐπειδὴ τοίνυν ἅπαν σῶμα στιγμὰς ἔχει καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ |
, Τρόμης Τρόμητος . Εἰς ης εἶπε διὰ τὰς ἄλλας καταλήξεις , οἷον διὰ τὸ Θόας : ἰδοὺ γὰρ τοῦτο | ||
ἀφαιρῶν ἀπὸ τοῦ κβ , ὁσάκις δυνατόν , εἰς μονάδα καταλήξεις : διὰ τοῦτο πρῶτοι καὶ ἀσύνθετοι πρὸς ἀλλήλους εἰσὶ |
ἥττονα ποιησόμεθα λόγον , τοῦ δ ' ἀσφαλοῦς προνοούμενοι δύο διαιρέσεις ἐμβαλοῦμεν συμμέτρους ὡς πρὸς τὸ ἀπόστημα , τὴν μὲν | ||
Ἐνταῦθα δηλοῖ τὸ πρῶτον διαιρετικὸν παράγγελμα τὸ λέγον δεῖν τὰς διαιρέσεις ἀπὸ τῶν γενικωτάτων μέχρι τῶν εἰδικωτάτων προάγειν καὶ μὴ |
ἐν δέ γε τούτοις τὰς μὲν καθόλου ἐπὶ τῶν καθόλου ἀποφάνσεις ἐναντίας εἶναί φησι , δι ' ἃς ἐλέγομεν αἰτίας | ||
κύριος , εἰκότως συνάψας εἶπε δαιμονίας τύχας τὰς τῆς κρίσεως ἀποφάνσεις , εἰ μὲν θεῖον καὶ νοερόν ἐστι τὸ κρῖνον |
ὅλης τῆς ἐπιδέσεως τελαμωνιδίου ὡς διδακτυλιαίου καὶ ποσὸν στενοτέρου ἡ μεσότης τῇ ῥινὶ προστίθεται , οὗ τὰ χαλάσματα δι ' | ||
ἐν ταῖς λύπαις . περὶ δὲ τὰς ἐν σώματι ἡδονὰς μεσότης μὲν σωφροσύνη , ὑπερβολὴ δὲ ἀκολασία , ἔλλειψις δέ |
τοῦ ἀκλεής ) . Πρῶτον αἱ πρωτότυποι ἀντωνυμίαι οὐκ ἀκόλουθοι ἐδείχθησαν τοῖς ἄλλοις πτωτικοῖς . ἔπειτα Δωριεῖς ἐπὶ τὸ τέλος | ||
ἔδει δεῖξαι . ἐπισυμβήσεταί τε τούτων οὕτως ἐχόντων , ἐπείπερ ἐδείχθησαν καὶ τῶν ἴσον ἀπεχόντων τοῦ αὐτοῦ ἰσημερινοῦ σημείου αἱ |
τὴν τοῦ πλήξαντος δύναμιν . Ἀλλὰ μὴν καὶ κατὰ τὰς συγκρίσεις θάττων ἑτέρα ἑτέρας ῥηθήσεται , τῶν ἀτόμων ἰσοταχῶν οὐσων | ||
μικροτέροις δὲ ἐγκαλουμένους τιμωρίας τυχόντας ἀποδείξωμεν : καθόλου γὰρ τὰς συγκρίσεις ἀσφαλῶς ποιεῖσθαι χρὴ , μήτε πρὸς ἀπίθανον : μήτε |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
καὶ τῶν κεκρυμμένων : ἀπὸ γὰρ τούτων αἱ τῶν συμφερόντων ἐνδείξεις γίνονται . τεκμήριον δὲ , ὡς ἂν πλέον τι | ||
οἱ Μεθοδικοὶ , εἴτε καὶ μή : καὶ εἰ αἱ ἐνδείξεις ἀπὸ τῶν κοινοτήτων δύνανται γίνεσθαι , ἢ οὔ . |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
ΒΓ : αἱ ἄρα ΑΓ , ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προκείμενα : λέγω , ὅτι τῇ ΑΒ ἑτέρα | ||
Κεχαρίσθω δὲ εἶπεν ἐπειδὴ αἱ Χάριτές εἰσιν αἱ πάντα ἐράσμια ποιοῦσαι . Δύναται δὲ καί τις καὶ τὸ μακρότερα οὕτως |
μὴ εἶναι . τὰς δὴ ἐνδεχομένας ἀποφατικὰς καὶ τὰς ἐνδεχομένας καταφατικὰς συμβέβηκεν ἀντακολουθεῖν ἀλλήλαις , κατὰ τὸ σημαινόμενον τὸ κείμενον | ||
τὰς καταφατικὰς καὶ οὕτω ποιοῦμεν συλλογιστικὰς συζυγίας , οὕτως τὰς καταφατικὰς μεταλαμβάνομεν εἰς τὰς ἀποφατικὰς καὶ δεικνύομεν οὕτω τὰς συλλογιστικὰς |
καὶ ἄψυχον , καὶ ἑξῆς ὁμοίως : αἱ γὰρ λαμβανόμεναι στερήσεις ἰσοδυναμοῦσι ταῖς ἀποφάσεσιν . Παραδοὺς ἡμῖν τὴν περὶ τῆς | ||
ὑποκείμενον οὐκ ἔστι μεταβολή . ὁ δὲ Εὔδημος καὶ τὰς στερήσεις ὑποκειμένοις ἐοικέναι φησίν : οὐ γὰρ ὁμοίως λέγεσθαι τὸ |
καὶ διδασκαλίας . αὗται δὲ καὶ ἔννοιαι καλοῦνται μόναι καὶ προλήψεις : ὁ δὲ λόγος , καθ ' ὃν προσαγορευόμεθα | ||
κατὰ πρόληψιν τὸν τύπον μαθόντες . ἐναργεῖς οὖν εἰσιν αἱ προλήψεις : καὶ τὸ δοξαστὸν ἀπὸ προτέρου τινὸς ἐναργοῦς ἤρτηται |
ὁ μέσος ἥμισυς ἦν τῶν ἄκρων , εἰ περιτταὶ αἱ ἐκθέσεις , εἰ δὲ ἄρτιαι , οἱ μέσοι τοῖς ἄκροις | ||
ἐὰν μὲν γὰρ ἄρτιοι ὦσιν αἱ τοῦ προκεχειρισμένου ἀρτιάκις ἀρτίου ἐκθέσεις , πάντως τὸ ὑπὸ τῶν ἄκρων πρὸς ἄλληλα πολυπλασιαζομέ |
ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ μὲν τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , διὰ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων | ||
τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι |
καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
, διάφορον δ ' ὅμως τὸ εἶναι . Περὶ γὰρ ἐλαττόνως ὂν μᾶλλον ὂν προσελθὸν τάξει μὲν πρῶτον ἂν εἴη | ||
εἶναι . Καὶ διὰ τοῦτο καὶ τοῦτον αἰσθητικόν , ὅτι ἐλαττόνως καὶ ἐλαττόνων ἀντιληπτικὸς εἰκόνων ἐκείνων : ὥστε εἶναι τὰς |
μὲν ὅροι τέσσαρές τε καὶ ἄρτιοι ἔσονται , αἱ δὲ προτάσεις τρεῖς τε καὶ περιτταί : δύο γὰρ οὔσαις αὐταῖς | ||
ἔξεστιν ὃν ἂν βούληταί τις προσαρμόττειν τρόπον , ἀλλὰ τὰς προτάσεις ὁτὲ μὲν ἀληθεῖς ὁτὲ δὲ ψευδεῖς γίνεσθαι συμβαίνει . |
τῶν ἁπλῶν τάς τε καθόλου δυνάμεις καὶ τὰς κατὰ μέρος χρήσεις διελθόντα , κατὰ δεύτερον δ ' ἑκάστου πάθους τὰ | ||
γὰρ ἔχει μὲν διαφορὰς εὐμεγέθεις , ἐπικοινωνοῦσι μέντοι κατὰ τὰς χρήσεις ἀλλήλοις , καὶ ταὐτὸ πεπόνθασι τοῖς τῶν ἀνθρώπων εἴδεσι |
συναληθεύουσαι καταλαμβάνονται , αἱ δέ γε προτάττουσαι τῶν τρόπων τὰς ἀρνήσεις σώζουσι τὸ ἀξίωμα τῆς ἀντιφάσεως μήτε ἅμα ἀληθεῖς μήτε | ||
κανόνας τῷ κυριωτέρῳ πανταχοῦ τῆς προτάσεως μέρει δεῖν προσάγεσθαι τὰς ἀρνήσεις , ἵνα τὰς ἀποφάσεις ποιήσωμεν : ἐπὶ μὲν οὖν |
καὶ σκαληνὸν εἴη καὶ τὰς τὴν ὀρθὴν γωνίαν περιεχούσας πλευρὰς ῥητὰς ἔχῃ , ὅτε δὲ μὴ τοιοῦτόν ἐστιν , ἀλλ | ||
ἄλλων τῶν περιεχομένων ὑπὸ ῥητῶν καὶ ἀποτομῶν τῇ τάξει διαφόρων ῥητὰς ὀφείλεται λαμβάνειν ἐκείνας , αἷς ἐστι σύμμετρος ἢ ἡ |
ἄρτιοι ἀπὸ ῥίζης προχειρισθῶσιν εἰς μίαν μεσότητα , ἀντιπαρωνυμήσουσιν αἱ ἀκρότητες ἐν αὐτοῖς καὶ αἱ μετ ' ἐκείνας καὶ αἱ | ||
τουτονὶ καὶ νῦν ἐκκαλυπτέον , ὅτι ἄρα τούτων αἱ μὲν ἀκρότητες κατ ' ἐναντιότητα τοῦ ποιοῦ θεωροῦνται , τὰ δὲ |
καὶ τῶν παραπλησίως λαμβανομένων , κατὰ τὰς αὐτὰς τοῦ ἐπικύκλου θέσεις γινομένων παραλλάξεων δεῖ πάντως συγχρήσασθαι ταῖς κατὰ τοὺς Ξ | ||
ἐπ ' αὐτοῖς : παρὰ Μωυσεῖ δὲ αἱ τῶν ὀνομάτων θέσεις ἐνάργειαι πραγμάτων εἰσὶν ἐμφαντικώταται , ὡς αὐτὸ τὸ πρᾶγμα |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
ὠφέλιμος καθέστηκεν , αὐξιφωτοῦσα δὲ ποιεῖ θορύβους καὶ οἰκομαχίας καὶ ἐναντιώσεις διὰ γυναῖκα καὶ μετεωρισμοὺς καὶ ζηλοτυπίας καὶ ψόγον καὶ | ||
πραγμάτων καὶ δανείων ἢ ἐγγυητικῶν προσώπων θορύβους καὶ ἐγκλήματα καὶ ἐναντιώσεις φίλων καὶ δούλων καὶ σωματικοὺς κινδύνους ποιεῖ εἰ μή |
εὐδαίμονα εἶναι ἐν λύπαις ὄντα μεγάλαις καὶ ἐμποδιζόμενον ἐπὶ τὰς προηγουμένας ἐνεργείας ; ὅμως δὲ καὶ ἐν τούτοις διαλάμπει ἡ | ||
τοιγάρτοι μετὰ τὰς διηγήσεις τὰς οὕτως ᾠκονομημένας οὐκ ἔτι τὰς προηγουμένας ἀποδείξεις πολλοῖς βεβαιοῦται λόγοις οὐδ ' ἔστιν ὅμοιος τοῖς |
ποτε εἰς ἔλαιον γλυκὺ , ἄλλοτε εἰς χαμαιμήλινον καὶ οὕτω θερμαίνοντας ἀλλάττειν συνεχέστερον . ὑπάγειν δὲ δεῖ καὶ τὴν γαστέρα | ||
τοὺς ψυχροὺς χυμοὺς ἐν τοῖς ἐντέροις ὀδύνας ἰᾶσθαι ; Οὐ θερμαίνοντας σφοδρῶς καταιονήσεσιν ἢ καταπλάσμασιν . ἐπὶ γὰρ τῶν θερμαινόντων |
φιλαλήθους ἂν εἴη . διὰ μὲν δὴ ταῦτα καὶ τὰς ἐκκειμένας τῶν ἐπισκοτήσεων παρόδους τῆς σελήνης ὡς ἀδιαφορούντων πρὸς αἴσθησιν | ||
ΘΖ καὶ ΖΓ εὐθειῶν τὴν μὲν ΘΖ ποιεῖ πρὸς τὰς ἐκκειμένας τῶν ΓΑ καὶ ΑΖ πηλικότητας ε ια νε , |
ἐὰν αἱ τῆς μιᾶς συμπτώσεις μὴ περιέχωσι τὰς τῆς ἑτέρας συμπτώσεις , τὸ μὲν Δ σημεῖον ἐντὸς ἔσται τῆς ὑπὸ | ||
. Τῶν αὐτῶν ὄντων ἐὰν περιέχωσιν αἱ τῆς μιᾶς εὐθείας συμπτώσεις τὰς τῆς ἑτέρας , καὶ τὸ ληφθὲν σημεῖον ἐν |
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν | ||
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν | ||
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία |
δύναμις ἀσθενής , καὶ τὸ τηνικαῦτα φθείρονται καὶ ἀπόλλυνται . ἀποστάσεις γὰρ αὐτοῖς οὐ γίνονται . Ταῦτα εἰρηκὼς θεώρημα πάνυ | ||
περιπνευμονία . Τρίτον προσδιορισμόν φησι τοιοῦτον , ὅτι αὗται αἱ ἀποστάσεις τὴν μὲν περιπνευμονίαν ἀπαλλάσσουσι προδήλως , ἔστι δ ' |
πόρους . ἀλλοῖα οὖν φαίνεται τὰ προσπίπτοντα παρὰ τὰς ποιὰς διαθέσεις . οὐδὲ γὰρ οἱ μαινόμενοι παρὰ φύσιν ἔχουσι : | ||
ἐλαίου τὸ βούτυρον ἐμβαλεῖς καὶ ποιήσεις χρησιμώτερον πρὸς τὰς αὐτὰς διαθέσεις . γίνεται δὲ καὶ οὕτως : ὕδατι διαλύεται ὁ |
συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ ἐκτὸς τῆς τομῆς . κατήχθωσαν γὰρ ἀπὸ τῶν Ε , Ζ τεταγμένως ἐπὶ μὲν | ||
ὅτι ἡ ΕΖ συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ . κατήχθωσαν ἀπὸ τοῦ Η ἐπὶ τὰς ΑΒ , ΓΔ τεταγμένως |
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
φησί , τὰς ἑνικὰς χρήσεις ἐπιστάμενοι διὰ τοῦ υ τὰς πληθυντικὰς οὐκ ἔτι ἀκολούθως ἐπιφέρουσιν . ὁ γοῦν Ἀριστοφάνης ἐν | ||
. καὶ ἀλλαχοῦ : λεῖος ὥσπερ ἔγχελυς . τὰς μέντοι πληθυντικὰς οὐκ ἔθ ' ὡς ὁ ποιητής : τείροντ ' |
γὰρ αἱ ΑΒ , ΒΓ , ΓΑ καὶ ταύταις παραπλησίως λαμβανόμεναι ἀδιαφοροῦσιν εὐθειῶν . καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΒΓ | ||
τῶν ὅρων ὁ δὲ ἐν μέρει , ὅσαι ἐξ ὑπαρχουσῶν λαμβανόμεναι προτάσεων συζυγίαι ἐν τῷ τρίτῳ σχήματι συλλογιστικὰς ἐποίουν συμπλοκάς |
τὸ γὰρ ἀγαθόν ἐστιν ἐναντίον τῷ κακῷ . ἐὰν αἱ σωματικαὶ ἡδοναὶ ὦσι κακαί , λείπεται ἄρα τὸ ἐναντίον , | ||
ἐνεργούσης τῆς ψυχῆς . Ἐπεὶ δὲ δοκοῦσι τοῖς πολλοῖς αἱ σωματικαὶ ἡδοναὶ αἱρετώταται εἶναι , τὸ αἴτιον τοῦ ψεύδους τούτου |
, φησὶν ὁ Ἀριστοτέλης , οὕτω κεῖσθαι τὰς τοῦ ἀναγκαίου ἀντιφάσεις , ἴσον λέγων τῷ ἀδύνατον οὕτω κειμένας ὑγιῆ ἔχειν | ||
γὰρ αὐτούς , πότερον ἕκαστον τῶν ὄντων πάσας δέχεται τὰς ἀντιφάσεις ἢ οὔ , ἀλλὰ τάσδε μὲν τάδε ἄλλας δὲ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
τῆς σελήνης ἐκλειπτικοὶ ὅροι ἐφ ' ἑκάτερα τοῦ διὰ μέσων ἀπολαμβάνουσιν ἐπὶ τοῦ πρὸς ὀρθὰς τῷ λοξῷ σελήνης μοῖραν α | ||
αὐτῶν ἐπὶ πάντων ἁπλῶς ἐν τοῖς ἴσοις χρόνοις ἴσας γωνίας ἀπολαμβάνουσιν πρὸς τοῖς κέντροις ἑκάστης τῶν περιφορῶν , αἱ δὲ |
μὲν δυσκατάληπτος ἡ ἰδιότης γνῶναι γὰρ εἰς τὸ ἀκριβὲς τὰς ἐξαλλαγὰς τῶν παρακολουθημάτων ἀδύνατον , ἐπὶ δὲ τοῦ χαρακτῆρος αὐτὸ | ||
ἔαρος . οὐκοῦν ἀναγκαῖον τὰς κατ ' εἶδος τῶν ἀνέμων ἐξαλλαγὰς οὐ ταῖς καθ ' ἡμέραν συντρέχειν διαφοραῖς . καὶ |
ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
δὲ ΒΕ τῇ ΔΖ . αἱ δὲ ΑΕ , ΕΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι : καὶ αἱ ΓΖ , | ||
πλειόνων ἄκρων . διὰ γὰρ τοῦτο ἡ ψυχὴ καὶ αἱ μέσαι φύσεις πᾶσαι πλείοσι μαθήμασιν ἀναδιδάσκονται , ὡς πρὸς πλείονας |
τὸν ὄγκον κατ ' ἐπιρροάν , οἷον δι ' ὀχετῶν ἀγομένας καὶ ἀρδομένας ὑπὸ τῶ πνεύματος , ὃ διαχεῖ αὐτὰν | ||
ὁρᾶν ἁλισκομένην πόλιν , τειχῶν κατασκαφάς , ἐμπρήσεις οἰκιῶν , ἀγομένας γυναῖκας καὶ παῖδας εἰς δουλείαν , πρεσβύτας ἀνθρώπους , |
τῶν ὀροβοειδῶν φθάσαντες ἐξεθέμεθα . Τάς γε μὴν τῶν ὑποστάσεων πεταλώδεις μαθεῖν ἔστι γινομένας , ὁπόταν καὶ στερεῶν αὐτῶν ὁ | ||
ἔφασκον χρώματα . αἵ γε μὴν ὀροβοειδεῖς καὶ πιτυρώδεις , πεταλώδεις τε καὶ κριμνώδεις τῶν ὑποστάσεων , σαρκῶν τε καὶ |
τῆς ΑΓ : ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν , καλείσθω δὲ ἐκ δύο ὀνομάτων : ὅπερ ἔδει δεῖξαι . | ||
ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ , καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ |
, καὶ ὁ καλλίων τοῦ καλλίονος , ἔχουσι δὲ τὰς αἰτιατικὰς βελτίω καὶ καλλίω , οὕτω καὶ τὸ ἀλγίω αἰτιατική | ||
δυσὶν αἰτιατικαῖς , λέγω δὴ τὴν ἑαυτόν , πάντως δύο αἰτιατικὰς σημαίνει : αὐτὸς γὰρ αὑτὸν ἔπαισεν . Κἀκεῖνο δὲ |
: αὗται γὰρ ταῖς τῶν προσπιπτόντων αἰσθήσεσί τε καὶ φαντασίαις ἑπόμεναι φωνεῖν τε παρασκευάζουσι τὰ ἔχοντα ταύτην τὴν δύναμιν κατὰ | ||
συμψεύδονται γὰρ ἀλλήλαις αἱ μὲν ταῖς ἁπλαῖς τοῦ δυνατοῦ προτάσεσιν ἑπόμεναι , ἡ οὐκ ἀναγκαῖον εἶναι καὶ ἡ ἀναγκαῖον μὴ |
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
τοῖς ὑπὸ τοῦ Ἱππάρχου λεγομένοις . κατὰ ταύτας οὖν τὰς πηλικότητας σκεψώμεθα πρότερον , πόσον ἐστὶν τὸ πλεῖστον διάφορον τῆς | ||
, τὰ δὲ δεύτερα τὰς τῶν παρακειμένων ταῖς περιφερείαις εὐθειῶν πηλικότητας ὡς τῆς διαμέτρου τῶν ρκ τμημάτων ὑποκειμένης , τὰ |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
τὰς δὲ τεκτονικῇ πλείονος . Κείσθω . Τούτων δὲ ταύτας ἀκριβεστάτας εἶναι τέχνας , ἃς νυνδὴ πρώτας εἴπομεν . Ἀριθμητικὴν | ||
, εἰ πολλὰς ἑορτὰς ἐνόμισαν , εἰ πλείστας θυσίας ἢ ἀκριβεστάτας , εἰ πλεῖστα ἱερὰ ᾠκοδόμησαν ἢ πάντων θεῶν ἢ |
κεφαλαίοις πλεονάζει , παραγραφικῷ τε καὶ συγγνωμονικῷ : οἱ δὲ πλεονασμοὶ τῶν κεφαλαίων ἐλλείψεις τε καὶ ἐναλλαγαὶ , ὡς πολλάκις | ||
οἱ πυρετοὶ ἕπονται καὶ ὄμβροισιν , ἐξ ὁποίων ἂν οἱ πλεονασμοὶ μεταπέσωσι , καὶ ὅκως ἂν ἔχοντα τὰ σώματα παραλάβωσιν |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
τὸ ἥκιστα ἡμῖν σύμφορόν ἐστι νέας ἔχουσι βαρυτέρας καὶ ἀριθμὸν ἐλάσσονας : τοῦτο δὲ ἀπολέεις Σαλαμῖνά τε καὶ Μέγαρα καὶ | ||
ΑΒΓ τριγώνῳ , μεῖζον ἄρα τὸ ΑΒΓ τρίγωνον τὸ τὰς ἐλάσσονας ἔχον πλευρὰς τοῦ ΖΗΘ . λθʹ . Τοῦτο μὲν |
καίπερ ἀναπόδεικτα ὄντα τῷ μερικῷ τεχνίτῃ : ἀμέλει καὶ τὰς γεωμετρικὰς ἀρχὰς ἐκεῖνος ἀποδείκνυσι . πῶς οὖν ὁμοίως τοῖς ἄλλοις | ||
ἀέρος ὕδατος γῆς . Περιέχουσιν οἱ ἀριθμοὶ μεσοτήτων ἀριθμητικὰς ε γεωμετρικὰς ζ ἁρμονικὰς γ συμφωνιῶν δὲ ἐν λόγοις ἐπιμορίοις καὶ |
ἁπλαῖς αἱ ἐκ μεταθέσεως ἕπονται ἢ ταῖς ἐκ μεταθέσεως αἱ ἁπλαῖ , ἀπάτην τινὰ ἴσως γενησομένην τισί , δι ' | ||
διορισθήσεται ὅτι τὰ μὲν ὀνόματα καὶ τὰ ῥήματα φωναί εἰσιν ἁπλαῖ μήτε ἀλήθειαν μήτε ψεῦδος σημαίνουσαι , ὡς καὶ ἐν |
δέον μὴ ἀνάλωσεν . Εἰρῆσθαι δέ φησι πρότερον , ὅτι ὑπερβολαὶ καὶ ἐλλείψεις εἰσὶν ἡ ἀσωτία καὶ ἡ ἀνελευθερία : | ||
γὰρ τῷ πλεονάζειν τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . |