δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ , | ||
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ |
ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ | ||
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
ἔπεστι κολοσσὸς λίθινος κατήμενος ἐν θρόνῳ . Οὕτω αἱ μὲν πυραμίδες εἰσὶ ἑκατὸν ὀργυιέων , αἱ δ ' ἑκατὸν ὀργυιαὶ | ||
. , ] αἱ γὰρ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις : ἴσαι δὲ |
διάμετρος δίχα τέμνουσιν ἀλλήλας . Κύβου γὰρ τοῦ ΑΖ τῶν ἀπεναντίον ἐπιπέδων τῶν ΓΖ , ΑΘ αἱ πλευραὶ δίχα τετμήσθωσαν | ||
. Ἐὰν στερεὸν παραλληλεπίπεδον ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους τῶν ἀπεναντίον ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου |
τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
κεραῖαι , καθάπερ ἀπαντῶσαι τῷ σπερματικῷ πόρῳ , προμήκεις ἑαυτῶν ἀποφύσεις ἐκτείνουσιν ἐς τὰ πλάγια , δι ' ὧν ὑποδέχονται | ||
, ἀλλ ' ἀναλόγως τοῖς ὀργάνοις τοῖς παραδεξαμένοις καὶ αἱ ἀποφύσεις τῶν νεύρων γεγόνασι τῇ μὲν παχύτεραι τῇ δὲ λεπτότεραι |
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
ἐμπίπτουσι , παραλλὰξ ἐντιθεῖσαι τὰς ἐξοχάς , ὡς δοκεῖν δύο πριόνων τοὺς κυνόδοντας ἐς ἀλλήλους συνέρχεσθαι . οὐκοῦν τῶν ἁλιέων | ||
φωνὴ προσδιατίθησι τὸ ὅλον σῶμα : οἵ τε γὰρ τῶν πριόνων ἦχοι καὶ αἱ βρονταὶ οὐχ ὑπεχομένην ἔχουσι τὴν ἀκοὴν |
καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
βαρύνεται , ὥσπερ καὶ τὰ αὐτῶν ἐπιῤῥήματα . Αἱ μέντοι ὑπολειπόμεναι πληθυντικαὶ γενικαὶ , αἱ μὴ ὑποπίπτουσαι τούτοις τοῖς κανόσιν | ||
βάσεως τὰς χοιράδας κομισόμεθα , ἢ κατὰ συσσάρκωσιν , ἐὰν ὑπολειπόμεναι βάσεις τινὲς ἢ χοιράδες δέοιντο ἐκτακῆναι . τὸ δὲ |
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων | ||
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ |
δύο γραμμῶν πάσας τὰς ἀγομένας παραλλήλους εὐθείας εὐθείᾳ τινὶ καὶ ἀπολαμβανομένας μεταξὺ τῶν γραμμῶν δίχα τέμνει , τεταγμένως δὲ ἐπὶ | ||
τοιοῦτο μὲν οὖν ἡμῖν προσπαραμεμύθηται διὰ τὰς ἐν ταῖς ἐκλείψεσιν ἀπολαμβανομένας ὑπὸ γῆν ἐπισκοτήσεις : καὶ τῶν δακτύλων δὲ τῆς |
. Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
θεραπεία . μθʹ Μαλάγματα διάφορα ἐν οἷς τὸ Λευκίου πρὸς ἀγκύλας . καὶ τὸ διὰ τῶν τηκτῶν καὶ τὸ διὰ | ||
τῶν τρυγητῶν ζάγκλῃσι : ταῖς δρεπάναις παρὰ τὸ εἶναι λίαν ἀγκύλας ὀπώρην ] σταφυλήν ῥυσαλέην δὲ τὴν ἐρρυσσωμένην , ἤτοι |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
ἔχει ἤπερ πρὸς τὴν δευτέραν . Τῶν ἴσων στερεῶν παραλληλεπιπέδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν : καὶ ὧν στερεῶν παραλληλεπιπέδων | ||
αἱ βάσεις τοῖς ὕψεσιν : καὶ ὧν κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν , ἴσοι εἰσὶν ἐκεῖνοι . |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς | ||
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς |
τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ , ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΒΓ | ||
εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ , ἴσας γωνίας περιέξουσιν . Δύο γὰρ εὐθεῖαι αἱ ΑΒ , |
τὰ τρήματα , συντέτρηται δὲ καὶ ὁ ἄξων κατὰ τὰς ἀποτορνώσεις , ἵνα , εἴ ποτε πρὸς τὴν χρείαν , | ||
ἐστὶν ἔκθετος μέσον ἔχων τύλον , κατὰ δὲ τὰς ἐκθέτους ἀποτορνώσεις σκυτάλας , τῇ μὲν ὕλῃ χαλκᾶς ἢ σιδηρᾶς , |
τῶν μεταξὺ τῶν Β , Γ σημείων τὰς βάσεις ἐχόντων ἰσοσκελῶν . Ἐὰν ἐπὶ τῆς αὐτῆς βάσεως δύο τρίγωνα συστῇ | ||
. Ἰστέον , ὡς τὸ θεώρημα τοῦτο ἐπὶ μὲν τῶν ἰσοσκελῶν καὶ ἰσοπλεύρων τριγώνων σῴζει τὸ οἰκεῖον , ἐπὶ δὲ |
: ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν | ||
Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ |
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ | ||
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς |
πυραμίδες τριγώνους ἔχουσαι βάσεις πρὸς τὰς ἐν τῇ ἑτέρᾳ πυραμίδι πυραμίδας τριγώνους βάσεις ἐχούσας , τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν | ||
Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις μέν εἰσιν ΑΒΓΔ , |
τὴν κόμην , ὅπως ὀρθοφυῆ τ ' ᾖ καὶ αἱ ῥάβδοι μὴ ἀπαρτῶνται . μετὰ δὲ ταῦτα περιτέμνουσιν , ὁπόταν | ||
λαγαραί * στίλβουσι : λάμπουσι * διαυγέες : καθαραί * ῥάβδοι : γραμμαί ἀίδηλον ἤτοι δήξαντος ἀπροσδοκήτως φρίκη ἔδραμεν ἐπὶ |
: ἵνα δὲ τὸ σχῆμα τὸ δέον καὶ θέσιν καὶ κοιλότητάς τινας καὶ συμφύσεις καὶ τὰ ἄλλα τὰ τοιαῦτα κτήσηται | ||
ἑκάτερον μέρος τοῦ τῆς μήτρας . . . . εἶναι κοιλότητάς τινας καμαροειδεῖς , ἐν αἷς φησι τὴν ἀνατροφὴν τοῦ |
ζῶον . καὶ εἰ ἄπειροι ἑκατέρωθεν , ἢ πᾶσαι πάσαις ἐφαρμόσουσι κἀντεῦθεν ἄπειροι δήπου καὶ ψυχαὶ τῷ ζώῳ ἐνέσονται , | ||
ἐπίπεδά ἐστι σχήματα . Δῆλον , ὅτι ἐφαρμοζουσῶν τῶν εὐθειῶν ἐφαρμόσουσι καὶ τὰ πέρατα αὐτῶν , εἰ δὲ τοῦτο , |
τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις | ||
διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν |
ὁ μέσος ἥμισυς ἦν τῶν ἄκρων , εἰ περιτταὶ αἱ ἐκθέσεις , εἰ δὲ ἄρτιαι , οἱ μέσοι τοῖς ἄκροις | ||
ἐὰν μὲν γὰρ ἄρτιοι ὦσιν αἱ τοῦ προκεχειρισμένου ἀρτιάκις ἀρτίου ἐκθέσεις , πάντως τὸ ὑπὸ τῶν ἄκρων πρὸς ἄλληλα πολυπλασιαζομέ |
ἄλλοις . ταῦτα πέπρακταί μοι . καὶ ἔτι τὰς ἑκασταχοῦ βραδυτῆτας , ὄκνους , ἀγνοίας , φιλονικίας , ἃ πολιτικὰ | ||
τὴν ἔξοδον σπουδῆς καὶ τῷ τάχει τῆς ἀπολείψεως ὑπὸ φθόνου βραδυτῆτας ἐμποιοῦν : λέγεται γὰρ ὅτι „ καὶ ἐπίμικτος πολὺς |
ἄστομοι , νωθροί , ἄθυμοι , βραδεῖαι , κατηφεῖς , ἄποδες : βαρεῖαι τὴν κεφαλήν , σαρκώδεις τῷ μετώπῳ , | ||
ἄποδες . ἢ νηξίποδες ἢ ἀπόγονοι . τὸ μὲν οὖν ἄποδες ψεῦδος : ἔχουσι γὰρ πόδας αἱ φῶκαι : τὸ |
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ | ||
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν , |
πρὸς τὸ τοῦ ΒΗΜΛ παραλληλεπιπέδου ὕψος . ὧν δὲ στερεῶν παραλληλεπιπέδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν , ἴσα ἐστὶν ἐκεῖνα | ||
παραλληλεπιπέδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν [ ὧν δὲ στερεῶν παραλληλεπιπέδων τὰ ὕψη πρὸς ὀρθάς ἐστι ταῖς βάσεσιν αὐτῶν , |
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς | ||
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ ' |
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα | ||
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν |
ἐμῶν οὐδ ' ἔγκαφος . ἐγκεντρίδας τοῖς ποσὶ κατὰ τὰς πτέρνας οἱ ἱππεύοντες περιεδοῦντο , οἷς ἐλαύνονται οἱ ἵπποι . | ||
δ ' ἀγκώνων τὰ μὲν κάτω μέρη τετράγωνα καὶ λεπτὰ πτέρνας ὠνόμασαν οἱ ὀργανικοί , τὰ δ ' ἄνω πλατέα |
γενέσεως καὶ φθορᾶς ταῦτα ὑπομένειν ἤγουν πάσχειν : τὰς δὲ στιγμὰς καὶ τὰς γραμμὰς καὶ τὰς ἐπιφανείας οὐκ ἐνδέχεται οὔτε | ||
προσήκει καλεῖν , οὐχὶ μονάδας . ἐπειδὴ τοίνυν ἅπαν σῶμα στιγμὰς ἔχει καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ |
τῆς ἐν ἡμῖν σοφῆς δημιουργίας οὐδέτερον , τοῖς αἰσθητοῖς ἀεὶ ἀνάλογα προβαλλομένης τὰ αἰσθητήρια : τῷ μὲν γὰρ ῥᾳδίως αἰσθάνεσθαι | ||
' ὕπνον φαντάσματα τῶν ἐν ταῖς ἐγρηγόρσεσι παθῶν ἢ ἐνεργειῶν ἀνάλογα . δόξειε δ ' ἂν Ἀριστοτέλης τῇ φυτικῇ τὸν |
ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς : ἔστι γὰρ μθʹ πρὸς κεʹ . πάλιν εἰ | ||
, ἢ ἕως τῆς Τενέδου , ἔχων ἐκ τῆς ἑτέρας πλευρᾶς τὴν Ἴμβρον νῆσον ὑπὸ τῆς Θρᾴκης . Ὅπου στενὸς |
καὶ ῥιπτασμοί , ἀναισθησίαι τε καὶ ἔμετοι , καὶ ὀφθαλμῶν κοιλότητες , καὶ μετρίως κεχηνὸς στόμα καὶ ἄλλα τοιαῦτα , | ||
τὰ πλατέα τῶν γομφίων , ὁλμίσκοι δὲ καὶ φάτναι αἱ κοιλότητες τῶν γνάθων , εἰς ἃς ἐμπεπήγασιν οἱ ὀδόντες . |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
ΧΦ . καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς ΒΞΔ , ΚΞΝ ἴσαι ἀπειλημμέναι εἰσὶν αἱ ΒΟ , ΚΣ , καὶ | ||
. καὶ δὴ καὶ τὸ ΒΞΔ ἡμικύκλιον καὶ ἔτι τὸ ΚΞΝ πρὸς ὀρθὰς ἱστάμενα χρὴ νοεῖν ἐν τῷ τοῦ ΒΓΔΕ |
αὐτοῦ τὸ παρίεμαι . παραλλήλους μὲν βίους λεκτέον καὶ ἄνδρας παραλλήλους , οὐκέτι δὲ κατὰ τὰς ἄλλας πτώσεις , οἷον | ||
ἄρα ἐστὶν ἡ ΚΘ τῇ ΘΜ : καὶ ἐπεὶ εἰς παραλλήλους τὰς ΚΜ , ΖΗ εὐθεῖα ἐνέπεσεν ἡ ΘΗ , |
μηνῶν καὶ ἡμερῶν καὶ ὡρῶν συνημμένων αὐτοῖς τῶν περιεχόντων τὰς διαστάσεις τῶν περὶ αὐτὸν τὸν ζῳδιακὸν ἀπλανῶν τῶν μέχρι δεκαμοίρου | ||
ἐπεὶ διαστατὸν ἂν ὑπῆρχε , τοῦ σώματος τὰς τρεῖς ἔχοντος διαστάσεις . καὶ μὴν οὐδὲ ἀσώματον . εἰ γὰρ ἀσώματόν |
ἡ ὑπὸ ΛΘΗ , ἐλάσσων ἄρα ἐστὶν ὀρθῆς ἡ ὑπὸ ΛΗΘ : μείζων ἄρα ἐστὶν ἡ ὑπὸ ΛΘΗ τῆς ὑπὸ | ||
τρίγωνον τῷ ΛΗΘ τριγώνῳ , τὸ ΕΒΓ ἄρα πρὸς τὸ ΛΗΘ διπλασίονα λόγον ἔχει ἤπερ ἡ ΓΕ εὐθεῖα πρὸς τὴν |
καὶ γλύφουσι κριὸν καὶ Ἀθηνᾶν καρδίαν κρατοῦσαν . οὗτος ἔχει ζώνας ποικίλους πολλάς , τὰς μὲν ἀεριζούσας , τὰς δὲ | ||
„ . ὁ δὲ Ζηνόδωρος βέλτιον τὰ ζώματα , τὰς ζώνας . ἡμερίς ε . . , : ἡμερίς : |
τοῦ ἀκλεής ) . Πρῶτον αἱ πρωτότυποι ἀντωνυμίαι οὐκ ἀκόλουθοι ἐδείχθησαν τοῖς ἄλλοις πτωτικοῖς . ἔπειτα Δωριεῖς ἐπὶ τὸ τέλος | ||
ἔδει δεῖξαι . ἐπισυμβήσεταί τε τούτων οὕτως ἐχόντων , ἐπείπερ ἐδείχθησαν καὶ τῶν ἴσον ἀπεχόντων τοῦ αὐτοῦ ἰσημερινοῦ σημείου αἱ |
: διὸ καὶ οὐκ ἀνάγκη ἐν πᾶσιν εἶναι τὰς τούτων κριτικάς . Φανερὸν οὖν ἐκ τούτων καὶ ὅπως οὐχ ἁπλοῦν | ||
ἐγκλείονται αἱ ψυχαί , ὥστε εἰς μὲν ἀνθρώπους χωρεῖν τὰς κριτικάς , εἰς δὲ πτηνὰ τὰς ἀπανθρώπους , εἰς δὲ |
τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
ἐπὶ τοῦ πενταγώνου ἐὰν διὰ τῶν κατὰ τὸν κύκλον διαιρέσεων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν , περιγραφήσεται περὶ τὸν κύκλον πεντεκαιδεκάγωνον | ||
εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον ὑπὸ τῶν ἀπὸ |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
τείχους παρέχουσιν . Οὐκ ὀλίγην δ ' εὐχρηστίαν αἱ διπλαῖ κλίμακες πρὸς βοήθειαν καὶ ὑπηρεσίαν παρέχονται , ὅταν καθ ' | ||
προσηλωμένων : καὶ δέρρεις περικρεμάσθωσαν αὐτοῦ κατὰ μέτωπον , καὶ κλίμακες ἔνδοθεν προσκείσθωσαν τοὺς κάμακας ἑαυτῶν πεπερονημένους ἔχουσαι κατὰ τὰ |
εἰσὶν ταῖς τῆς κνήμης κοιλότησιν . ἔχει δὲ καί τινας ἐξοχὰς ἡ κνήμη , αἵτινες οὐκ ἐῶσιν εὐκόλως γίνεσθαι τὰ | ||
γεῖσα , ὄντα τῶν τειχῶν : ἄλλως : τὰς ποικίλας ἐξοχὰς τῶν οἰκοδομημάτων : ἄλλως : τὰ ἄκρα τῶν ἐπάλξεων |
δὴ ταῦτά τις οὕτω διατείνοιτο , καὶ τὰς δύο ἀρχὰς ἀντικειμένας ποιῶν καὶ τὴν τοῦ ἑνὸς προτάττων ἀμφοῖν , ῥητέον | ||
τρεῖς , καὶ ὅτι ταῦτα ἀντιτέτακται ἀλλήλοις καὶ ἐκείνας ὑποτίθεσθαι ἀντικειμένας , καὶ ὅτι πρὸ τοῦ πέρατος καὶ τῆς ἀπειρίας |
δ ? ' ἐξέχυτ ? ' : οὐ γὰρ [ ὁμοῖαι ] [ ἀθάναται ] θνηταῖσι βολαὶ [ κατὰ ] | ||
, ἐπ ' ἀλλήλῃσι δὲ πᾶσαι σκιρτεῦσιν μὲν πρῶτα χοροιτυπέουσιν ὁμοῖαι , εἶτα δέμας βαρύθουσι , προσώπατα δ ' ἐς |
τοῦ τριγώνου . διὰ τὸ ἰσογώνιον γίνεσθαι . , ] ἰσογώνια γίνονται τὰ τρίγωνα διὰ τὸ Ϛʹ τοῦ Ϛʹ . | ||
: ἴση ἄρα : ὅπερ ἔδει δεῖξαι . ] Τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
σμικραὶ σφαῖραι καὶ σκληραὶ , οἷαι ἐκ τῶν πολλῶν σκυτέων ῥάπτονται : ἢν γὰρ μή τι τοιοῦτον ἐγκέηται , οὐ | ||
εἰς τὸ ἴρινον ἢ κύπρινον καθήσομεν , ἢ δακτυλήθρας : ῥάπτονται δ ' αἱ δακτυλῆθραι ἐκ δέρματος Καρχη - δονίου |
καθ ' ἕκαστον πόδα δακτύλους πέντε , ὑποφαίνοντας μὲν τὰς ἐκφύσεις , οὐ μὴν διεστῶτας . ταῦτά τοι καὶ νηκτικός | ||
, τῶν ταπεινοτέρων δὲ παραλυομένων . Εἰς ἑκάτερον τῶν ὀφθαλμῶν ἐκφύσεις ἐγκεφάλου καθήκουσι , πιλούμεναι κατὰ τὴν διὰ τῶν ὀστῶν |
ἡ δ ' εἰς τὸ πρόσθεν ἔκπτωσις κατὰ τὰς ἀμέτρους ἐκτάσεις γίνεται , καθάπερ καὶ τὸ ἐναντίον ἐν ταῖς βιαίαις | ||
καὶ συνδέσμους , καὶ τὰ συμβεβηκότα τούτοις , συστολάς , ἐκτάσεις , ὀξύτητας , βαρύτητας , γένη , πτώσεις , |
μέσους δρόμους ὦσιν , ὅπου μείζους εἰσὶν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον , | ||
λϚ , τετραπλάσιος τοῦ θ , ἀπλανῶν . Αἱ δὲ ὑπεροχαί : λϚ ὑπερέχει δ , λβ η , κδ |
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
πτώσεις , ὅπως ἂν ἔχῃ τὰς βάσεις κειμένας ἢ τὰς κορυφάς , ἡ αὐτὴ μέθοδος , ἄγειν παραλλήλους ταῖς πλευραῖς | ||
τῆς γῆς . κίονες ὑψηλοί , σύνδεσμος αὐτοῖς ἐπιζευγνύων τὰς κορυφάς , τοῖχος ἐπὶ τούτῳ μαρμάροις ἠμφιεσμένος , κίονες ἕτεροι |
τῶν ὀροβοειδῶν φθάσαντες ἐξεθέμεθα . Τάς γε μὴν τῶν ὑποστάσεων πεταλώδεις μαθεῖν ἔστι γινομένας , ὁπόταν καὶ στερεῶν αὐτῶν ὁ | ||
ἔφασκον χρώματα . αἵ γε μὴν ὀροβοειδεῖς καὶ πιτυρώδεις , πεταλώδεις τε καὶ κριμνώδεις τῶν ὑποστάσεων , σαρκῶν τε καὶ |
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν , | ||
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ |
μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
καὶ ἄψυχον , καὶ ἑξῆς ὁμοίως : αἱ γὰρ λαμβανόμεναι στερήσεις ἰσοδυναμοῦσι ταῖς ἀποφάσεσιν . Παραδοὺς ἡμῖν τὴν περὶ τῆς | ||
ὑποκείμενον οὐκ ἔστι μεταβολή . ὁ δὲ Εὔδημος καὶ τὰς στερήσεις ὑποκειμένοις ἐοικέναι φησίν : οὐ γὰρ ὁμοίως λέγεσθαι τὸ |
ΗΚ , ΘΛ , ΛΚ . λέγω , ὅτι τὸ ΗΘΚΛ τετράγωνόν ἐστιν . ἤχθωσαν διὰ τῶν Η , Θ | ||
. ὁμοίως καὶ αἱ λοιπαί . τετράγωνον ἄρα ἐστὶ τὸ ΗΘΚΛ . δυνατὸν δὲ τὰ ἐξ ἀρχῆς λαμβάνοντα τὰ Η |
οὐδενὶ καὶ παντὶ καὶ τινί . ὅτι δείκνυσιν τὰς καθόλου ἀντιστρεφούσας ἀλλήλαις καὶ τὰς μερικὰς ἀλλήλαις οὐ διὰ τοῦ ὅρου | ||
. ἔστι δὲ ἡ ᾠδὴ μονόστροφος , αἱ δὲ μονόστροφοι ἀντιστρεφούσας ἔχουσι τὰς στροφὰς ἀλλήλαις , ὥστε ἴσα εἶναι τά |
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
μὲν αἱ βάσεις εἰσίν , ἔργῳ δὲ ἀκοαί τε καὶ ὄψεις , ἃς ἔχων μέν τις ὁλοκλήρους ἐγήγερται καὶ ἀνωρθίασται | ||
βουλώμεθα ἀκριβῶς νοῆσαι , εἰς ἐρημίαν ἀποδιδράσκομεν , καταμύομεν τὰς ὄψεις , τὰ ὦτα ἐπιφράττομεν , ἀποταττόμεθα ταῖς αἰσθήσεσιν . |
ἡμῖν θείῳ ξυγγενεῖς εἰσι κινήσεις αἱ τοῦ παντὸς διανοήσεις καὶ περιφοραί . ταύταις δὴ οὖν ξυνεπόμενον ἕκαστον δεῖ τὰς περὶ | ||
[ τραγῳδικῆς ] ὀρχήσεως Γ : βέμβικες . βέμβικες ] περιφοραί , περιαγωγαί Γ , τουτέστι στροφαί . Γ βέμβιξ |
: σχετλιαστικόν , ὡς θλιβομένων τῶν πεπεδημένων : ὅτι αἱ χοινικίδες πέδαι τινές εἰσι : χοῖνιξ δὲ πᾶν περιφερὲς καὶ | ||
ὅτι ] ἀντὶ μιᾶς . σύριγγες ] ἄξονες , αἱ χοινικίδες περὶ ἃς ἑλίσσονται οἱ τροχοί . σύριγγες ] περιφραστικῶς |
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη | ||
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ , |
: δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας [ διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς | ||
παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας ] . Ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α |
ἀρχὰς ὡς μηδεμιᾶς τινος ἐπεξειργασμένης ἀγωγῆς , ἀναγκαῖον καὶ τὰς κλεῖδας ἐπιδεῖξαι , δι ' ὧν ἡ παράδοσις κατὰ τὸ | ||
ἢν ἀπὸ μόνης νεωτερίζηι τῆς ἀσπίδος . μεμηχάνηνται δὴ καὶ κλεῖδας , ἃς οἴονται τῆς παρ ' ἐκείνων ἐπιβουλῆς ἰσχυροτέρας |
κύκλα ἀντὶ τοῦ κύκλους , ὡς λύχνα καὶ δίφρα . ἁψῖδες δὲ αἱ συναφαί , περιηγέες δὲ περιφερεῖς , περίδρομοι | ||
φορβὴ παυροτέρη , γενύων δόλος , ἀντὶ δὲ ῥινῶν αἰγοδόρων ἁψῖδες ἀναπτόμεναι κολοκύντης ἀζαλέης θήρειον ἄνω δέμας αὖ ἐρύουσι . |
τρεῖς εὐθείας τὰς ΒΝ , ΒΓ , ΒΖ δύο εὐθεῖαι διηγμέναι εἰσὶν αἱ ΔΕ , ΔΝ , ἔστιν , ὡς | ||
δοθεῖσα τῇ θέσει καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ |
οὐ διαλέγεται : καὶ γὰρ ἐνδέχεται τὰς δύο προ - τάσεις ταύτας ἤτοι ἀληθεῖς εἶναι ἢ ἀμφοτέρας ψευδεῖς . ἐπὶ | ||
γεγόνασι πρὸς τὰς τῶν σωμάτων ἀγωγάς , λέγω δὲ τὰς τάσεις . τῶν δ ' ἀξόνων οἱ μέν εἰσιν ἔκθετοι |
τὰς τῶν ἐλαττόνων τμημάτων τοῦ διὰ μέσων τῶν ζῳδίων κύκλου συνανατολάς . ἔτι δ ' ἂν εὐχρηστότερον καὶ μεθοδικώτερον αὐτὰς | ||
καὶ δύσιν , ἑξῆς ἀποδώσομεν τὰς αὐτῶν τῶν δώδεκα ζῳδίων συνανατολάς τε καὶ συγκαταδύσεις . Τοῦ μὲν οὖν Καρκίνου ἀνατέλλοντος |
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ | ||
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ |
δὲ τὸ Κ σημεῖον , ἴση ἐστὶ πυραμίδι , ἧς βάσις τὸ ΑΕΗ τρίγωνον , κορυφὴ δὲ τὸ Θ σημεῖον | ||
: καὶ δέδεικται , ὅτι , εἰ ὑπερέχει ἡ ΘΓ βάσις τῆς ΓΛ βάσεως , ὑπερέχει καὶ τὸ ΑΘΓ τρίγωνον |
τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν | ||
, ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί |
περὶ ἡμικύκλιον οὗ κέντρον τὸ Σ , γραφῇ τι πολύγωνον ὁποσασοῦν ἔχον πλευράς , ὡς τὸ ΒΕΖΘΛΓ , μενούσης δὲ | ||
ἡ Θ , καὶ διῃρήσθω ἡ ΚΒ περιφέρεια εἰς ἴσας ὁποσασοῦν , καὶ ἐφαπτόμεναι ἤχθωσαν , ὡς καταγέγραπται , ὥστε |
τοῖς γεωργικοῖς προσέθεμεν καὶ τὰ μελιττουργικά , ἰστέον ὡς αἱ ὀπαὶ καὶ αἱ καταδύσεις τῶν μελιττῶν καλοῦνται κύτταροι , οἱ | ||
, ἤτοι τὰ ἅρματα περιφραστικῶς . θ χνόαι ] αἱ ὀπαὶ τῶν τροχῶν ἃς καὶ χοινικίδες καλοῦσιν . ἡμέτερον : |