ΗΚ , ΘΛ , ΛΚ . λέγω , ὅτι τὸ ΗΘΚΛ τετράγωνόν ἐστιν . ἤχθωσαν διὰ τῶν Η , Θ | ||
. ὁμοίως καὶ αἱ λοιπαί . τετράγωνον ἄρα ἐστὶ τὸ ΗΘΚΛ . δυνατὸν δὲ τὰ ἐξ ἀρχῆς λαμβάνοντα τὰ Η |
διάμετρος δίχα τέμνουσιν ἀλλήλας . Κύβου γὰρ τοῦ ΑΖ τῶν ἀπεναντίον ἐπιπέδων τῶν ΓΖ , ΑΘ αἱ πλευραὶ δίχα τετμήσθωσαν | ||
. Ἐὰν στερεὸν παραλληλεπίπεδον ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους τῶν ἀπεναντίον ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου |
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
ἑκάτερον τῶν ΟΜΝ , ΣΤΥ τριγώνων ἑκατέρῳ τῶν ΛΞΓ , ΡΦΖ . καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρὸς τὴν | ||
Λῆμμα Ὅτι δέ ἐστιν ὡς τὸ ΛΞΓ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον , οὕτως τὸ πρίσμα , οὗ βάσις τὸ |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί | ||
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ |
ΒΗΘ : αἱ ἄρα ὑπὸ ΑΗΘ , ΒΗΘ τῶν ὑπὸ ΒΗΘ , ΗΘΔ μείζονές εἰσιν . ἀλλὰ αἱ ὑπὸ ΑΗΘ | ||
τῇ ὑπὸ ΗΘΔ ἐστιν ἴση . κοινὴ προσκείσθω ἡ ὑπὸ ΒΗΘ : αἱ ἄρα ὑπὸ ΕΗΒ , ΒΗΘ ταῖς ὑπὸ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ | ||
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι |
μόθον ἤματι κείνῳ μάρνασθ ' ὥς τε Γίγαντας ἀτειρέας ἠὲ κραταιοὺς Τιτῆνας : σθεναρὴ γὰρ ἐπὶ σφίσι δῆρις ὀρώρει : | ||
ἢ προσεπιμαρτυρήσῃ , ἤτοι ἰατρείαις ἢ θεοῦ βοηθείᾳ ἀπαλλαγήσονται . κραταιοὺς οὖν τόπους λέγει τὰ κέντρα καὶ τῶν κλήρων τὰς |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
φθερσιγενεῖς ] αἱ ἐπὶ τῷ φθείρειν γεγονυῖαι . . αἱ φθείρουσαι τὸ γένος ἡμῶν . . κῆρες ] θανατηφόροι . | ||
φθερσειγενεῖς ] αἱ φθείρουσαι τὰ γένη . φθερσειγενεῖς ] αἱ φθείρουσαι τὸ γένος . φθερσειγενεῖς ] αἱ τὰ γένη φθείρουσαι |
Νάρκαι ἐς ἀμφότερα ταχὺ μεταπίπτουσαι , κακόν . Στάξιες αἱ ἐλάχισται , κακαί . Κακὸν δὲ πάντως ἐν ὀξεῖ δίψα | ||
δοκεῖ ἥ τε πόλις ἄριστα διοικεῖσθαι , αἵ τε κρίσεις ἐλάχισται γίγνεσθαι . Ἐπειδὴ δὲ πάντα τὰ πρότερον ὡμολογημένα καλῶς |
τοὺς χρόνους ἢ τὸν ἐπιμερισμὸν ἔχουσιν ἀγαθοποιὸς ἐναντίος πίπτῃ ἢ καθυπερτερῇ ἢ συμπαρῶσιν ἐν τοῖς ὑπογείοις καὶ ἀποδημητικὸς ἐνιαυτὸς ἐμπέσῃ | ||
κακοποιῶν κατοπτευθεῖσα μητρὸς προτελευτὴν ἐσήμανεν . Ἄλλως . Ἐπὰν Ἥλιος καθυπερτερῇ Σελήνην , μήτηρ προτελευτᾷ : ἐὰν δὲ Σελήνη Ἥλιον |
ἢ τοῦ αὐτοῦ ἐφάπτονται τῶν παραλλήλων . ἤτοι γὰρ ὁ ΑΗΓ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων ἢ οὔ | ||
πολυγώνου περιμέτρου , τὸ αὐτὸ μέρος ἐστὶν καὶ ἡ ὑπὸ ΑΗΓ γωνία τεσσάρων ὀρθῶν , ὁμοίως δὲ καί , ὃ |
τῶν δύο διαφορῶν μοιρῶν η μ : καὶ λοιπὴν τὴν ΒΡ διάστασιν ρλϚ νβ , ἐλάσσονα τῶν τῆς μέσης ρμε | ||
ὡς ἡ ΑΔ πρὸς ΑΒ , οὕτως ἡ ΔΠ πρὸς ΒΡ . ἐλάττων δὲ ἡ ΑΔ τῆς ΑΒ : ἐλάττων |
ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Δ Ε Ζ τὸ ΚΛΜ , ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Ε Ζ | ||
μὲν ΚΜ ἔσται # μϚ , ἡ δ ' ὑπὸ ΚΛΜ γωνία τοιούτων # μδ , οἵων εἰσὶν αἱ β |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
φεύγοντος . οἱ δὲ ἀγαθοποιοὶ οἷς ἂν ἐπαναφέρωνται ἐκεῖνοι κρειττόνως ἀπαλλάξουσιν , οἱ δὲ κακοποιοὶ χειρόνως . σκοπεῖν δὲ χρὴ | ||
πράξονται τοῦ Λεωδάμαντος φόνου , κἀκείνους τε καὶ Μιλησίους κακῶν ἀπαλλάξουσιν . Χρονιζομένης δὲ τῆς πολιορκίας , ἀφικνοῦνται νεανίσκοι , |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
' αὐτῶν ἐξικνεῖσθαι : αἱ γὰρ τῶν βαρβάρων λόγχαι παχέαι φαινόμεναι ἀγχέμαχοι μέν , ἄφοβοι δὲ ἐς τὸ ἐσακοντίζεσθαι ἦσαν | ||
: αἱ μὲν γὰρ αὐτῶν ἀληθιναὶ λέγονται , αἱ δὲ φαινόμεναι . Ἀληθιναὶ μέν , ὅταν ἅμα κατὰ ἀλήθειαν ἐπὶ |
ἀλλὰ καὶ τοὺς ἀνδρείους , οἵτινες καλοῦνται τέλειοί τε καὶ ὑπερτέλειοι , καὶ τοὺς κιθαριστηρίους δὲ καὶ τοὺς δακτυλικούς . | ||
αὕτη : τῶν ἀριθμῶν οἱ μέν εἰσι τέλειοι οἱ δὲ ὑπερτέλειοι οἱ δὲ ἐλλιπεῖς , οἵτινες καὶ ἀτελεῖς καλοῦνται . |
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον | ||
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ |
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ | ||
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ |
καὶ ΔΛ , κάθετοι δ ' ἤχθωσαν ἐπὶ μὲν τὴν ΓΖΘ ἐκβληθεῖσαν ἀπὸ τῶν Η καὶ Δ ἥ τε ΗΜ | ||
καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ τὴν ΚΘ , |
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν | ||
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
Ἔστι καὶ ἰχθὺς ῥόμβος λεγόμενος : ἔστι καί τις τροχὸς ῥόμβος λεγόμενος , ὃν στρέφοντες καὶ ἱμαντίῳ τύπτοντες ἐκτύπουν . | ||
δεόμενος οὗτος οἰκείου φωτὸς ἀπορίᾳ αὐγῆς ἀλλοτρίας . Ἔστω δὲ ῥόμβος οὗτος , μᾶλλον δὲ σφαῖρα τοιαύτη , ἣ δὴ |
βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ | ||
τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς |
ΕΘ λοιπῇ τῇ ΕΞ ἴση , γενήσονται δὲ καὶ δύο τριπλεύρων ὁμοίων τῶν ΕΗΘ καὶ ΕΚΞ αἱ δύο μὲν πλευραὶ | ||
τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων : ὥστε καὶ ἑκατέρα τῶν ΓΔ , ΡΔ δοθεῖσά |
ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον , | ||
Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
πρὸς τὸν ΒΘΕΖ κῶνον : ὅπερ ἔδει δεῖξαι . Οἱ ἰσοϋψεῖς κῶνοι ὀρθοὶ διπλασίονα λόγον ἔχουσι πρὸς ἀλλήλους ἤπερ τὰ | ||
, ΚΘΕΖ κῶνοι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις , ἰσοϋψεῖς ἄρα εἰσὶ διὰ τὸ ἀντίστροφον τοῦ θεωρήματος τοῦ ιβʹ |
τὸ ΠΝ , καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδῳ τῷ ΤΥΣ παραλλήλῳ τοῖς τῶν ΕΖΗΘ , | ||
ΟΣ , ΣΒ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΕΟ . καὶ ἐπεὶ αἱ ΓΝ , ΝΚ , ΚΗ |
μύρμηξ τρέφεται , οὕτως καὶ ἐλέφας [ ] καὶ αἱ Βακτριαναὶ κάμηλοι [ ] [ ἂν ] τραφεῖεν [ ] | ||
, οὕτως καὶ [ ] ἐλέφας [ ] καὶ αἱ Βακτριαναὶ κάμηλοι [ ] [ ἂν ] τραφεῖεν [ ] |
τοῖς γαμοῦσιν . καὶ αἱ Σελῆναι δὲ τῶν δύο γενέσεων διαμετροῦσαι ἀλλήλας ἀπαίσιοί εἰσιν : διχονοίας γὰρ παραίτιαι . κρατήσει | ||
τοῖς γαμοῦσιν . ἀλλὰ καὶ αἱ Σελῆναι τῶν δύο γενέσεων διαμετροῦσαι ἀλλήλαις ἀπαίσιοί εἰσιν : διχονοίας γὰρ παραίτιαι . κρατήσει |
νόμους καὶ τὰς μυθικὰς πίστεις καὶ τὰς ἐθνικὰς συνθήκας καὶ δογματικὰς ὑπολήψεις . ἐν τούτῳ περιέχεται τὰ περὶ καλῶν καὶ | ||
ἔθη καὶ τοὺς νόμους καὶ τὰς μυθικὰς πίστεις καὶ τὰς δογματικὰς ὑπολήψεις . χρώμεθα δὲ τῇ τάξει ταύτῃ θετικῶς . |
ἐν τῷ Καρκίνῳ , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ βορείᾳ χηλῇ τοῦ Καρκίνου . Μεσουρανοῦσι δὲ τῶν ἄλλων ἀστέρων | ||
ἡμιπήχιον , καὶ τοῦ Κήτους ὁ προηγούμενος τῶν ἐν τῇ βορείᾳ σιαγόνι . Δύνει δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει |
εὖ δ ' ἐπλίσσοντο πόδεσσιν : ἡ δὲ μάλ ' ἡνιόχευεν , ὅπως ἅμ ' ἑποίατο πεζοὶ ἀμφίπολοί τ ' | ||
ἀρούρης , μαστίζων δ ' ἑκάτερθε συνωρίδος ἰσχία ταύρων γηπόνος ἡνιόχευεν [ ] ἐπ ' ἰξύος ἡνία τείνων ῥινὸς εὐτρήτοιο |
ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς | ||
καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ |
βαρύνεται , ὥσπερ καὶ τὰ αὐτῶν ἐπιῤῥήματα . Αἱ μέντοι ὑπολειπόμεναι πληθυντικαὶ γενικαὶ , αἱ μὴ ὑποπίπτουσαι τούτοις τοῖς κανόσιν | ||
βάσεως τὰς χοιράδας κομισόμεθα , ἢ κατὰ συσσάρκωσιν , ἐὰν ὑπολειπόμεναι βάσεις τινὲς ἢ χοιράδες δέοιντο ἐκτακῆναι . τὸ δὲ |
, Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν | ||
λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς |
τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα τετράπλευρον ἑπταχῶς ἡμῖν ὑποστήσεται : τὸ μὲν γάρ ἐστι τετράγωνον , | ||
εἰκότως τὰ τοιαῦτα εἶπε τῶν πρός τι , εἰ καὶ ἑπταχῶς διαιροῦμεν ἐν Κατηγορίαις , ἐπειδὴ κυρίως ταῦτα ὑπάρχουσιν . |
γὰρ ὄντος τοῦ ΑΕΓ , οὗ διάμετρος ἡ ΑΓ , διχοτομία δὲ τὸ Ε , καὶ κέντρον τὸ Ζ , | ||
λαιὸν εὐώνυμον λέγεται κέρας καὶ οὐρά . αὕτη δὲ ἡ διχοτομία τοῦ μήκους ὀμφαλὸς προσαγορεύεται καὶ στόμα καὶ ἀραρός . |
τοῦ ἀκλεής ) . Πρῶτον αἱ πρωτότυποι ἀντωνυμίαι οὐκ ἀκόλουθοι ἐδείχθησαν τοῖς ἄλλοις πτωτικοῖς . ἔπειτα Δωριεῖς ἐπὶ τὸ τέλος | ||
ἔδει δεῖξαι . ἐπισυμβήσεταί τε τούτων οὕτως ἐχόντων , ἐπείπερ ἐδείχθησαν καὶ τῶν ἴσον ἀπεχόντων τοῦ αὐτοῦ ἰσημερινοῦ σημείου αἱ |
καὶ ἔχουσί γε οἱ ἱεροὶ ἐκεῖνοι καὶ ἐντεῦθεν θοίνην . Κυνῶν ἐς τοὺς τρέφοντας αὐτοὺς ἄμαχον εὔνοιαν ὁμολογεῖ καὶ ἐκεῖνο | ||
: ἀνέβαινε γὰρ ἕκαστος τῶν ἐρσένων τούτων εἴκοσι ἵππους . Κυνῶν δὲ Ἰνδικῶν τοσοῦτο δή τι πλῆθος ἐτρέφετο ὥστε τέσσερες |
προσηγορεύθη . Ἀντίγονος τὸ μὲν ἐν Ἱεραπόλει θερμὸν ὕδωρ πάντα ἀπολιθοῦν φησι , καὶ αὐτὸ δὲ πέσσεσθαι καὶ λίθον γίνεσθαι | ||
, πάντα βιάζεσθε ἃ μὴ πεφύκατε . τὰ Φασὶ ταύτην ἀπολιθοῦν τοὺς θεασαμένους αὐτήν , καὶ Περσέως ἀποτεμόντος αὐτῆς τὴν |
τὸ ξύλον ἐκκοπὴν ἔχει τετράγωνον βαθεῖαν , εἰς ἣν ἔγκειται σκαλμὸς ὁ λεγόμενος πριαπίσκος . ἔστι δ ' ἄλλη μέση | ||
τὸ ὄρθιον ξύλον , εἰς ὃ εἰσέρχεται ὁ τροπωτὴρ . σκαλμὸς τὸ ξύλον , ἐν ᾧ ἡ κώπη δέδεται . |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
τρίγωνον πρὸς τὸ ΔΕΖ [ τρίγωνον ] , οὕτως τὸ ΛΞΓ [ τρίγωνον ] πρὸς τὸ ΡΦΖ τρίγωνον . ἀλλ | ||
ἀπεναντίον δὲ ἡ ΟΜ , καὶ οὗ βάσις μὲν τὸ ΛΞΓ , ἀπεναντίον δὲ τὸ ΟΜΝ , πρὸς τὰ πρίσματα |
διὰ τὸ γελοίως ἐρωτᾶν τοὺς ἐρωτῶντας εἰς τὴν τοῦ ἐρωτῶντος μεταπίπτουσι τάξιν τὰ σοφιστικὰ καὶ ἀσυλλογίστως συναγόμενα διελέγχοντες , καὶ | ||
μεταξὺ τούτων καὶ τῶν τροπικῶν : εἴρηται γὰρ ὅτι τοῖς μεταπίπτουσι σημείοις οὐχ ὁριστέον τὰ ἀμετάπτωτα . οὐδὲ τοῖς τροπικοῖς |
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα , | ||
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ |
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους | ||
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
τὰς ἐνοχλήσεις καὶ τὰς ἀπάτας τῶν σοφιστῶν ἐκφυγόντες ἀνεμποδίστως τοῖς ἀποδεικτικοῖς χρώμεθα . οὐ τὸ προσεχὲς οὖν τέλος ἐνταῦθα ἀναφωνεῖ | ||
οἱ μὲν τοιοίδε Ὅτι οἱ τῷ λόγῳ ἀκολουθοῦντες χαίρουσι τοῖς ἀποδεικτικοῖς λόγοις , οἱ δὲ τῷ θυμῷ τοῖς ἀνδρώδεσι καὶ |
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |
τῷ ΚΖΛ . καὶ φανερόν , ὅτι ἴσον γίνεται τὸ ΚΖΛ τρίγωνον τῷ ΜΗΚΔ τετραπλεύρῳ . Τῶν αὐτῶν ὑποκειμένων ἐὰν | ||
ΑΒ ἡ ΕΜ . ἐπεὶ οὖν ἴσον ἐστὶ τὸ ὑπὸ ΚΖΛ τῷ ἀπὸ ΑΖ , ἔστιν , ὡς ἡ ΚΖ |
' αὖτε ξανθοῖο κρόκου θυόεσσαν ἔθειραν δρέπτον ἐριδμαίνουσαι : ἀτὰρ μέσσῃσιν ἄνασσα ἀγλαΐην πυρσοῖο ῥόδου χείρεσσι λέγουσα οἷά περ ἐν | ||
Δάφνης , ἧχί περ Ἀντιόχοιο ἐπώνυμος Ἀντιόχεια : αὐτὰρ ἐνὶ μέσσῃσιν Ἀπαμείης πτολίεθρον : τῆς δὲ πρὸς ἀντολίην κατασύρεται ὑγρὸς |
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
ταῖς κεφαλαῖς ἔχοντες , οὐκ οἶδα εἰ Διοσκούρους σφᾶς ἢ Κορύβαντας νομίζουσι : τρεῖς δ ' οὖν εἰσί , τέταρτον | ||
χυτροπωλίοις καὶ λαχανοπωλίοις . Κορύβαντες : Ἔνιοι τοὺς Κούρητας καὶ Κορύβαντας τοὺς αὐτοὺς ὑπειλήφασιν . ἦσαν δὲ Διὸς τροφεῖς οὗτοι |
καὶ ἔμβολα οἱ μὲν τοὺς καθέτας , οἱ δὲ τοὺς στροφεῖς : χαλκόδετά τ ' ἔμβολα : τοὺς μοχλοὺς τοὺς | ||
ἀστραβέστατον τὸ τῆς πτελέας , δι ' ὃ καὶ τοὺς στροφεῖς τῶν θυρῶν ποιοῦσι πτελεΐνους : ἐὰν γὰρ οὗτοι μένωσι |
, θλιαὶ , καὶ μεταθέσει τοῦ θ εἰς φ , φλιαί . Φρούριον . οὐκ ἀπὸ τοῦ φρουρός : ἦν | ||
: οὕτω φησὶ καλεῖσθαι Ἐπικλῆς τὸ στίμι καὶ Νίγρος . φλιαί : τὰ ἑκατέρωθεν τοῦ βάθρου ὄρθια ξύλα , ἐν |
τῶν Χρυσῶν , τοῖς Χρύσαις , τοὺς Χρύσας , ὦ Χρῦσαι : εἴρηται . Ἑνικά . Ὁ Δημοσθένης τοῦ Δημοσθένους | ||
καὶ Χρύσην [ νέμω ” . ] εἰσὶ καὶ ἄλλαι Χρῦσαι ὁμώνυμοι πόλεις καὶ τόποι πολλοί . περὶ Σκῦρον . |
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ διπλασίονα λόγον ἔχει ἤπερ ὁ ΒΘΕΖ πρὸς τὸν ΚΗΓΔ | ||
πρὸς τὸν ΚΗΓΔ : ὁ ἄρα ΑΗΓΔ κῶνος πρὸς τὸν ΚΗΓΔ τετραπλασίονα λόγον ἔχει ἤπερ τὸ ΒΕΖ τρίγωνον πρὸς τὸ |
καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ | ||
πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν |
μηδὲ μένειν μηδ ' αἰδεῖσθαι κακὸς εἶναι . ἡ δὲ γυμνοπαιδικὴ παρεμφερὴς τῇ τραγικῇ , ἣ ἐμμέλεια καλεῖται : ἐν | ||
περὶ τὸν Διόνυσον καὶ Ἰνδοὺς καὶ Πενθέα . ἡ δὲ γυμνοπαιδικὴ ἔοικε τῇ πάλαι καλουμένῃ ἀναπάλῃ : γυμνοὶ γὰρ ὀρχοῦνται |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
ἣ κοινή ἐστι τομὴ τοῦ τε ΜΝΞ κύκλου καὶ τοῦ ΜΖΝ τριγώνου , ἡ δὲ κοινὴ τομὴ τοῦ ὑποκειμένου ἐπιπέδου | ||
τὸ ὑποκείμενον ἐπίπεδον , ὀρθὸς δέ ἐστι καὶ πρὸς τὸ ΜΖΝ τρίγωνον , ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΞΛ |
μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος | ||
δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ |
: μάλιστα μὲν οὖν τυχόντες κακοποιοὶ μαρτυροῦντες τοῖς τόποις ἢ ἐναντιούμενοι : ἐὰν δὲ ἀγαθοποιοὶ τύχωσιν ἐπίκεντροι ἀνατολικοὶ καὶ προσθετικοί | ||
ὑπὸ Θουκυδίδου γραφέντων συκοφαντεῖν ἐπιβαλοίμεθα , οὐ ταῖς κοιναῖς μόνον ἐναντιούμενοι δόξαις , ἃς ἅπαντες ἐκ τοῦ μακροῦ χρόνου παραλαβόντες |
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ | ||
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς |
' ἀλεύρου , πάντα δ ' ὁμοῦ Χίῳ νέκταρι συγκεράσας κυκλοτερεῖς ἀνάπλασσε τροχοὺς ἰσότητι μερίζων ἡμιδράχμοιο ῥοπὴν ὄφρ ' ἂν | ||
συνεπιδέηται τῷ σφυρῷ τὸ πεδίον , ἅμα τῇ εἰρημένῃ πλοκῇ κυκλοτερεῖς γίνονται περιειλήσεις . Κυκλοτερὴς γίνεται περιείλησις περὶ τὸν μέγαν |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
] κομματικῶς ἕκαστον κατ ' ἰδίαν προενεκτέον . αἱ γὰρ διακοπαὶ πρόσφοροι τοῖς πάθεσιν . κομματικῶς ἕκαστον κατ ' ἰδίαν | ||
τοῖς πάθεσιν . κομματικῶς ἕκαστον κατ ' ἰδίαν προενεκτέοναἱ γὰρ διακοπαὶ πρόσφοροι τοῖς πάθεσι τούτοιςκαθ ' ἓν καὶ ἕν . |
, ὦ τέκνον , περιβέβληται χιτῶσιν . ὅταν οὗτοι οἱ χιτῶνες πυκνοὶ ὦσι καὶ παχεῖς , οὐκ ὀξυωπεῖ ὁ ὀφθαλμός | ||
] ὕων [ σπαρναί τε χλαῖναι [ ] ες τε χιτῶνες [ [ βουκόλοι ] ἀγροιῶται ? [ [ ] |
περὶ τὰς τῆς μητρὸς τῶν θεῶν ἁγιστείας πρὸς ἐνόπλιον ὄρχησιν ᾔθεοι καὶ κόροι τυγχάνουσι παρειλημμένοι . καὶ Κορύβαντες δὲ ἀπὸ | ||
παῖδές τε καὶ παρθένοι , καὶ ἐπὶ τῶν παρηόρων ἑκατέρωθεν ᾔθεοι συγγενεῖς . καὶ παρέπονται ὅσοι παρὰ τὸν πόλεμον ἦσαν |
αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται ὑπὸ μὲν τῆς | ||
ΡΖ , ΖΚ , ΡΣ , ΣΚ . οὐκοῦν αἱ ΡΖ , ΡΣ καθ ' ἓν ἐφάπτονται τῆς σφαίρας . |
κύκλον αὐτῷ ἐπιβαλεῖ . οὗτος γὰρ τῶν ἐπιπέδων τε καὶ ἰσοπεριμέτρων αὐτῷ σχημάτων πολυχωρητότατος ἀποδείκνυται . δεῖ δὲ τὴν ὄψιν | ||
οὖν πρὸ τριῶν ἐδείχθη ὅτι τῶν ἐπὶ τῆς αὐτῆς βάσεως ἰσοπεριμέτρων τριγώνων τὸ ἰσοσκελὲς μέγιστόν ἐστιν , μεῖζον ἄρα τὸ |
. ] οὕτως γράφεται ὁ ὅρος ἐν τῷ ζʹ . Ἐπίπεδος ἀριθμός ἐστιν ὁ γεγονὼς ὑπὸ δύο ἀριθμῶν πολλαπλασιασάντων ἀλλήλους | ||
καὶ τοῦτο δυνάμει μόνον καὶ οὐ κατ ' ἐνέργειαν . Ἐπίπεδος ἐπιφάνειά ἐστιν , ἥτις ἐξ ἴσου ταῖς ἐφ ' |
ὡς ἄρα τὸ ΑΒΕ πρὸς τὸ ΖΗΛ , οὕτως τὸ ΒΕΓ πρὸς τὸ ΗΛΘ καὶ τὸ ΕΓΔ πρὸς τὸ ΛΘΚ | ||
ὑπὸ τῶν ΑΕΔ τῷ ὑπὸ τῶν ΑΓΔ καὶ τῷ ὑπὸ ΒΕΓ . Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ζ σημεῖον |
Μέμφιδος ἄρχων μέγας Ἀρσάμης , τάς τ ' ὠγυγίους Θήβας ἐφέπων Ἀριόμαρδος , καὶ ἑλειοβάται ναῶν ἐρέται δεινοὶ πλῆθός τ | ||
] * τὰς παλαιάς : λέγει δὲ τὰς ἑκατονταπύλους . ἐφέπων ] * ἐπιτηρῶν , διεξάγων . ἑλειοβάται ] * |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ | ||
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν |
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |