ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν | ||
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ . |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
ΟΤ . Κοινὴ ἀφῃρήσθω ἡ ΓΤ : λοιπὴ ἄρα ἡ ΤΨ τῇ ΟΓ ἴση ἐστίν . Διπλῆ δὲ ἡ ΓΟ | ||
δὲ ἡ ΓΟ τῆς ΤΣ : διπλῆ ἄρα καὶ ἡ ΤΨ τῆς ΤΣ : ἴση ἄρα ἡ ΨΣ τῇ ΣΤ |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
. Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
, Ζ μέρη , ὁμοία ἐστὶν ἡ ΠΩ περιφέρεια τῇ ΦΖ περιφερείᾳ . ἀλλὰ ἡ ΠΩ τῇ ΨΣ ἐστιν ὁμοία | ||
αἱ ΕΚ , ΜΛ , ἐκβληθεισῶν δὲ τῶν ΥΖ , ΦΖ ἐπὶ τὰ Ψ , Χ , κείσθω ἑκατέρα τῶν |
, καὶ φιμώσας ἐκτρόχιζε ὕελον λευκόν . ΧΡΥΣΟΠΟΙΙΑΣ ΖΩΜΟΙ . ΧΡΥΣΟΥ ΜΑΛΑΞΙΣ ΩΣΤΕ ΕΝ ΑΥΤῼ ΣΦΡΑΓΙΖΕΙΝ . Λαβὼν νίτρου πυρροῦ | ||
ἐμβαῖνον κρόκου ὠμοῦ ὄξος τετιμημένον , οὕτως ποίει . ΚΑΤΑΒΑΦΗ ΧΡΥΣΟΥ . Λαβὼν μίσιος μεταλλικοῦ μέρη δʹ , ἐλυδρίου ῥίζης |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ | ||
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς |
τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
' ὅμως τιμὴ ἀκολουθεῖ καὶ τούτοις . . ΤΡΙΤΟΝ ΑΛΛΟ ΓΕΝΟΣ . Τοῦτο τὸ γένος εἰκότως τρίτον , οὔτε νωθρὸν | ||
τιμὴν βασιλικὴν , ἤγουν βασιλεῦσι πρέπουσαν . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ . Ὁ μὲν Ὀρφεὺς τοῦ ἀργυροῦ γένους βασιλεύειν φησὶ |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
, Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν | ||
λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς |
ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας καὶ ὕλης ὁμοῦ | ||
μίμησιν ἐκείνων ταύτης τυγχάνουσιν τῆς εὐδαιμονίας . . ὩΣ ΤΕ ΘΕΟΙ Δ ' ΕΖΩΟΝ . Ἤγουν ἀκοπίαστον καὶ ἄμοχθον καὶ |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
προσκλυζόμενον . Πεσσὸς κάλλιστος ἀνακαθαρτικὸς τῶν ῥυπαρῶν ἑλκῶν οὗτος . Τερεβινθίνης δραχ . δ . στέατος χηνείου δραχ . ζ | ||
τὸ ἄλειμμα γένηται . Ἄλλο ἄλειμμα πρὸς τὸ αὐτό . Τερεβινθίνης , δαφνίνου ἐλαίου ἀνὰ γοστ . ἰρίνου , ἀνηθίνου |
٤٩ ٤٢ ἡ Β ٧ ٤٩ ٢٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤ | ||
τὴν ἁρμόζουσαν λαμβάνειν καὶ προστιθέναι . Ἡ ΛΝ ٨ ٥٢ ٣٩ ἡ ΑΓ δ ἡ ΑΔ ٢٠ τὸ ΑΒ χωρίον |
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς | ||
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ |
δεδειγμένα ἄρα ἐν τῷ μγʹ θεωρήματι ἴσον ἐστὶ τὸ μὲν ΘΝΖ τρίγωνον τῷ ΛΒΖΞ τετραπλεύρῳ , τὸ δὲ ΗΘΚ τρίγωνον | ||
πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ |
ὑποστατός . Οἰνόῃ σύγχορτα ναίω πεδία ταῖς τ ' Ἐλευθεραῖς Ὑσιαί τὸν μὲν κίκλησκε Ζῆθον : ἐζήτησε γὰρ τόκοισιν εὐμάρειαν | ||
ἄλλων δῆλον καὶ ἐκ τοῦ Δημοσθένους κατ ' Ὀλυμπιοδώρου . Ὑσιαί : Ὑπερείδης ἐν τῷ ὑπὲρ Ξενοφίλου . Ὑσιαὶ τῆς |
ἢ ὁμοία ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ | ||
ἡ μὲν ΛΤΜ τῆς ΜΤ , ἡ δὲ ΠΛ τῆς ΥΤ , ὅλη ἄρα ἡ ΠΜ ὅλης τῆς ΜΥ ἐστὶν |
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί | ||
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ |
μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος | ||
φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη |
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ , | ||
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
ΣΡ τῆς ΡΓ πολλῷ ἐλάσσων ἐστὶν ἢ β . ἡ ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ | ||
γωνίαι , δύο δὴ αἱ ΒΓ , ΓΦ δυσὶ ταῖς ΣΓ , ΓΦ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ γωνία |
Μ , Λ , ΘΚ καὶ Ε . τὰ γὰρ σμη καὶ ρκδ καὶ ξβ καὶ λα ποιοῦσι πάλιν συντεθέντα | ||
σμϚ Λειμώνιον ἢ κυνόγλωϲϲον σμζ Λειχὴν ὁ ἐπὶ τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη |
. . . . . . ξη γʹ μγ γʹ Κερασοῦς . . . . . . . . . | ||
αὐτοῦ λαμβάνειν φασὶν μεγίστην , μὴ διδόντας τὴν τροφήν . Κερασοῦς Σινωπέων ἄποικος καθ ' ἣν ἔρημος κειμένη παρήκει νῆσος |
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
διπλάσιον ; καὶ δεικτέον οὕτως : ἐπεὶ γὰρ ἐπιζευγνυμένων τῶν ΨΟ , ΨΣ αἱ ὑπὸ ΚΨΒ , ΚΨΣ , ΣΨΟ | ||
τὸ ἀπὸ τῆς ΑΨ . λοιπὸν ἄρα τὸ ἀπὸ τῆς ΨΟ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΨΣ . ἴσον δὲ |
ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ ΕΙΔΟΤΕΣ . Τουτέστιν οὔτε εἰς θεοὺς εἰδότες ἐπιστρέφεσθαι | ||
Νῦν γὰρ θεοὺς τὰς ψυχικὰς δυνάμεις φησίν . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ |
ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ ΣΝΡ ἴσον ἐστὶ τῷ ὑπὸ ΞΝΖ . τὸ δὲ ἀπὸ | ||
ὡς ἄρα τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως ἡ ΘΖ πρὸς ΖΛ , τουτέστιν ἡ |
αἱμάτων ; τάλαιν ' ἐγὼ τάλαινα , πότερον ἄρα νέκυν ὀλόμενον ἀχήσω ; φεῦ δᾶ φεῦ δᾶ , δίδυμοι θῆρες | ||
ἄστυ καὶ καλλίβωλον Ἴδας ὄρος ἱερόν , ὥς ς ' ὀλόμενον στένω [ ἁρμάτειον ἁρμάτειον μέλος ] βαρβάρωι βοᾶι † |
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων | ||
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
ἴσον ἐστὶ τῷ ὑπὸ τῶν ΞΝΖ . τὸ δὲ ὑπὸ ΞΝΖ ἐστι τὸ ΞΖ παραλληλόγραμμον . ἡ ἄρα ΜΝ δύναται | ||
τὸ ἀπὸ τῆς ΜΝ ἄρα ἴσον ἐστὶ τῷ ὑπὸ τῶν ΞΝΖ . τὸ δὲ ὑπὸ ΞΝΖ ἐστι τὸ ΞΖ παραλληλόγραμμον |
σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
δὲ καὶ καθ ' αὑτὴν ἡ λεπίς . Ἄλλο . Ἀσβέστου , λεπίδος χαλκῆς , μάννης ἴσα . ποιεῖ τοῦτο | ||
. Χαλκίτεως , μίσυος , λεπίδος , κηκῖδος ἴσα . Ἀσβέστου # α , φέκλης ⋖ α , νίτρου # |
τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ ἐπεὶ | ||
ἐστὶν ἡ ΠΩ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ΥΩ πενταγώνου ἐστίν , ἐπειδήπερ , ἐὰν ἐπιζεύξωμεν τὰς ΦΚ |
καὶ εἰς μερίμνας ἐμβάλλεσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙ ΜΕΜΙΞΕΤΑΙ . Τοῦτο δέ φησι , πρὸς τὸ μὴ | ||
ἤτοι ἐν τοῖς κοιλώμασι τῶν στελεχῶν , μελίσσας . . ΤΟΙΣΙ ΦΕΡΕΙ ΜΕΝ . Τούτοις τοῖς κατὰ δίκην ζῶσιν , |
ἐφαπτομένη παράλληλός ἐστι τῇ ΑΓ . ἔστω οὖν ἐφαπτομένη ἡ ΘΒΚ : συμπεσεῖται δὴ ταῖς ΕΔ , ΔΖ . ἐπεὶ | ||
καθέτου διάμετρος ἡ ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ , |
ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , . | ||
ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας |
οὗ αἱ ἀρχαὶ ἀγέσθωσαν κάτω , καὶ πάλιν αἱ αὐταὶ δοκιμαζέσθωσαν τάσεις , καὶ μετὰ τὰς τάσεις αἱ ἱστορημέναι μοχλεῖαι | ||
δὲ χερσαῖοι ἔγχυλοι , ὡς ἀντιπαθὲς κωλικῇ διαθέσει βρῶμα , δοκιμαζέσθωσαν : ἔμβαμμα δὲ καὶ ἄρτυμα κύμινον , πήγανον , |
τῶν δύο διαφορῶν μοιρῶν η μ : καὶ λοιπὴν τὴν ΒΡ διάστασιν ρλϚ νβ , ἐλάσσονα τῶν τῆς μέσης ρμε | ||
ὡς ἡ ΑΔ πρὸς ΑΒ , οὕτως ἡ ΔΠ πρὸς ΒΡ . ἐλάττων δὲ ἡ ΑΔ τῆς ΑΒ : ἐλάττων |
μὲν ΒΦ περιφέρεια τῆς ΦΧ , ἡ δὲ ΦΧ τῆς ΧΗ : ἐν πλείονι ἄρα χρόνῳ τὸ Φ τὴν ΦΒ | ||
ΜΚ ἄξων τοῦ ΚΖ ἄξονος , τοσαυταπλασίων ἐστὶ καὶ ὁ ΧΗ κύλινδρος τοῦ ΗΔ κυλίνδρου . καὶ εἰ μὲν ἴσος |
καὶ ἡ ΠΧ . καὶ ἐπεὶ ἑξαγώνου μέν ἐστιν ἡ ΠΧ , δεκαγώνου δὲ ἡ ΧΩ , καὶ ὀρθή ἐστιν | ||
κάθετοι αἱ ΚΞ , ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν |
ΠΡΩΤΟΣ Ο ΔΙΑ ΤΟΥ ΑΡΣΕΝΙΚΟΥ Ο ΒΑΠΤΩΝ ΤΟΝ ΧΑΛΚΟΝ , ΩΣ ΕΝ ΤΟΥΤΟΙΣ . Ἀρσένικον ὅ ἐστι θεῖον καὶ ταχέως | ||
χρυσοῦν , χαλκοῦς χαλκοῦν , εὔνους εὔνουν . Τὰ εἰς ΩΣ λήγοντα ἔχοντα οὐδετέρου παρασχηματισμὸν ὁμοτονοῦσιν : ἀξιόχρεως ἀξιόχρεων , |
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ | ||
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ |
ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
ιϚʹ , Ὅμηρος δ ' ὁ παλαιὸς ιγʹ . Καθολικὴ προσωιδία , . . . . . . . . | ||
συμπράξας ἐποίησεν ἐκπεσόντα τῆς ἀρχῆς φυγεῖν εἰς Πέρσας . Καθολικὴ προσωιδία , . . . . . . . . |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
. . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι , | ||
. Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς |
ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
νικᾷ , καὶ ἡ φύσις τὴν φύσιν κρατεῖ . ΟΙΚΟΝΟΜΙΑ ΠΥΡΙΤΟΥ . ΟΙΚΟΝΟΜΙΑ ΠΥΡΙΤΟΥ ΑΡΓΥΡΙΤΟΥ . ΘΕΙΟΥ ΜΕΛΑΝΟΣ ΕΝΚΑΥΣΤΟΙΙΟΙΗΣΙΣ . | ||
σβέννυται ὄξει : εἶτα λειοῦται : πυρροκαταβάπτεται διστάκις . ΟΙΚΟΝΟΜΙΑ ΠΥΡΙΤΟΥ . Ἐκζέσας αὐτὸν ἐν θαλασσίῳ ὕδατι τριβέντα ἡμέραν αʹ |
ἡ δὲ ΡΒ ὁμοίως μοιρῶν ζ μ . ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν | ||
, ΘΠ , ἐν ἴσῳ δὲ ἡ μὲν ΑΞ τῇ ΡΓ , ἡ δὲ ΞΟ τῇ ΠΡ , ἡ δὲ |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ | ||
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ |
δὴ καὶ ἑκάστη τῶν ΠΡ , ΡΣ , ΣΤ , ΤΥ πενταγώνου ἐστὶν ἰσοπλεύρου τοῦ εἰς τὸν ΕΖΗΘΚ κύκλον ἐγγραφομένου | ||
ταῖς βάσεσι τοῦ ΟΧ κυλίνδρου καὶ ποιείτωσαν τοὺς ΡΣ , ΤΥ κύκλους περὶ τὰ Ν , Ξ κέντρα . καὶ |
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ . | ||
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ |
, περὶ τὰς θεὰς ἐξαμαρτήσας καὶ τὰ μυστήρια . ΠΡΟΟΙΜΙΟΝ ΔΕΥΤΕΡΟΝ . Ἐγὼ μὲν οὖν καὶ νῦν ἀπὸ τῶν ἱερῶν | ||
ἠδίκησαν , καὶ ἀποστερήσαντες τῆς τιμῆς καὶ φόνου γραφόμενοι . ΔΕΥΤΕΡΟΝ ΠΡΟΟΙΜΙΟΝ : Θαυμάζωμεν οὖν καὶ τοὺς πεπεισμένους τότε τῶν |
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ | ||
μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ |
ἀρκτοῦρος ἑσπέριος ἐπιτέλλει . τῇ νεομηνίᾳ τοῦ Ἀπριλλίου , πλειάδες ἀκρόνυχοι κρύπτονται . τῇ ιϚʹ τοῦ Ἀπριλλίου , πλειάδες ἑσπέριοι | ||
ὅταν προανατέλλῃ τοῦ ἡλίου τὸ ἄστρον , αἱ δ ' ἀκρόνυχοι ὅταν ἅμα δυομένῳ ἀνατέλλῃ . Αἱ μὲν οὖν τοῦ |
ἐμπύρῳ κόπρῳ βοῶν νυχθήμερον , καὶ ἔχε ὑδράργυρον παγεῖσαν . ΟΙΚΟΝΟΜΙΑ ΥΔΡΑΡΓΥΡΟΥ . Λαβὼν ὑδράργυρον , ζέσον ἐλαίῳ ῥεφανίνῳ : | ||
ἑπτάκις , καὶ ξηράνας ἐν ἡλίῳ , οὕτως χρῶ . ΟΙΚΟΝΟΜΙΑ ΠΥΡΙΤΟΥ . Λαβὼν πυρίτην τὸν χρυσίζοντα : χρυσίζοντα τοῦτον |
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
. . . . . . ξϚ μ γʹ : Στρατηγίας Σαργαραυσηνῆς Φίαρα . . . . . . . | ||
. . . . . . ξη Ϛʹ λη γʹ Στρατηγίας Λαουϊνιανῆς πρὸς μὲν τῷ Εὐφράτῃ ποταμῷ Κόρνη . . |
. διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς | ||
δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ |
Παρθένου ἐπιτέλλουσι : καὶ ἐτησίαι λήγουσιν . Ἐν δὲ τῇ ιῃ ἡμέρᾳ Εὐκτήμονι Προτρυγητὴρ φαίνεται : ἐπιτέλλει δὲ καὶ Ἀρκτοῦρος | ||
τῇ εῃ Εὐδόξῳ Ἀετὸς ἑῷος δύνει . Ἐν δὲ τῇ ιῃ ἡμέρᾳ Εὐδόξῳ Στέφανος δύνει . Ἐν δὲ τῇ ιβῃ |
ἀναρραφῆϲ καὶ καταρραφῆϲ βλεφάρων οβ Περὶ καταρραφῆϲ ογ Περὶ ἐκτροπίου Δημοϲθένουϲ οδ Χειρουργία ἐκτροπίου Ἀντύλου οε Περὶ λαγωφθάλμων Δημοϲθένουϲ οϚ | ||
χαλῶϲαν καὶ λιπαίνουϲαν ἀγωγὴν ἐπὶ τούτων παραλαμβάνειν . Περὶ ϲκληροφθαλμίαϲ Δημοϲθένουϲ . ϲκληροφθαλμία ἐϲτίν , ὅταν ϲυμβῇ τὰ βλέφαρα ϲκληρὰ |
ΟΥΡΑΝΟΘΕΝ ΔΕ . Ἐκ τῆς τῶν ἀστέρων κινήσεως . . ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ . Ἐπὶ τούτοις , ἤγουν κατὰ | ||
τοὺς ὕστερον μέλλοντας γενέσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙΝ . Ἀλλ ' ὅμως καὶ ἐπὶ τούτοις μεμιγμένα ἔσται |
Περὶ διπλῶν βάνδων . ΠΕΡΙ ΣΤΑΣΕΩΣ ΤΑΓΜΑΤΟΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΡΙΤΟΥ ΛΟΓΟΥ Αʹ . Γνῶσις σημείων δηλούντων τινὶ τοῦ τάγματος στάσιν | ||
τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας καὶ ἀπάτης κατ ' ἐχθρῶν |
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά | ||
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω |