| δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
| ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
| ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
| ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
| ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
| ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
| γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
| οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
| ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
| ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
| τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
| ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
| ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
| τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
| τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
| πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
| [ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
| ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
| τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
| τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
| . Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
| ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
| τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
| ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
| , ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
| διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
| οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
| . . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
| ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
| , οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
| ἐπίπεδον . λέγω οὖν , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΚΞΑ γωνία τῇ ὑπὸ ΛΟΕ γωνίᾳ . ἐπεὶ γὰρ αἱ | ||
| ἐν τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ , ἡ ἄρα ὑπὸ ΚΞΑ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ |
| ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
| τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
| τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ | ||
| ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ |
| ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
| ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
| ΟΥΡΑΝΟΘΕΝ ΔΕ . Ἐκ τῆς τῶν ἀστέρων κινήσεως . . ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ . Ἐπὶ τούτοις , ἤγουν κατὰ | ||
| τοὺς ὕστερον μέλλοντας γενέσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙΝ . Ἀλλ ' ὅμως καὶ ἐπὶ τούτοις μεμιγμένα ἔσται |
| ιϚʹ , Ὅμηρος δ ' ὁ παλαιὸς ιγʹ . Καθολικὴ προσωιδία , . . . . . . . . | ||
| συμπράξας ἐποίησεν ἐκπεσόντα τῆς ἀρχῆς φυγεῖν εἰς Πέρσας . Καθολικὴ προσωιδία , . . . . . . . . |
| ΣΡ τῆς ΡΓ πολλῷ ἐλάσσων ἐστὶν ἢ β . ἡ ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ | ||
| γωνίαι , δύο δὴ αἱ ΒΓ , ΓΦ δυσὶ ταῖς ΣΓ , ΓΦ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ γωνία |
| τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
| λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
| . . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι , | ||
| . Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς |
| διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν | ||
| δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ . |
| , ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
| , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
| ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
| πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
| διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
| πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
| τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
| , ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
| ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας καὶ ὕλης ὁμοῦ | ||
| μίμησιν ἐκείνων ταύτης τυγχάνουσιν τῆς εὐδαιμονίας . . ὩΣ ΤΕ ΘΕΟΙ Δ ' ΕΖΩΟΝ . Ἤγουν ἀκοπίαστον καὶ ἄμοχθον καὶ |
| μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος | ||
| φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη |
| ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
| ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
| πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
| ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
| πρὸς τὸ τοῦ ΑΒΓΔ κύκλου ἐπίπεδον , ἡ δὲ ὑπὸ ΛΟΕ γωνία ἡ κλίσις , ἐν ᾗ κέκλιται τὸ ΖΛΘ | ||
| πρὸς τὸ τοῦ ΑΒΓΔ κύκλου ἐπίπεδον , ἡ δὲ ὑπὸ ΛΟΕ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ |
| Εἰς κόλπους πτύειν : ὅμοιον τῷ : οὐ μεγαλοῤῥημονεῖν . Κερκωπίζειν : ἀντὶ τοῦ δολιεύεσθαι καὶ ἀπατᾶν . μετενήνεκται δὲ | ||
| τῶν ῥᾳδίως τι ποιούντων . Καθ ' ἑαυτοῦ Βελλεροφόντης . Κερκωπίζειν : ἀντὶ τοῦ δουλεύεσθαι καὶ ἀπατᾶν : μετενήνεκται δὲ |
| τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
| Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
| ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ ΕΙΔΟΤΕΣ . Τουτέστιν οὔτε εἰς θεοὺς εἰδότες ἐπιστρέφεσθαι | ||
| Νῦν γὰρ θεοὺς τὰς ψυχικὰς δυνάμεις φησίν . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ |
| δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ | ||
| καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν |
| , καῦσον ἄλλας ἡμέρας γʹ , ἵνα γένηται ξανθόν . ΧΑΛΚΟΥ ΛΕΥΚΩΣΙΣ . Λαβὼν χαλκὸν κύπριον , καὶ δεῖ κροτεῖν | ||
| καὶ ἐκπυρὶ αὐτὸν , καὶ γίνεται λευκός . ΑΛΛΗ ΠΟΙΗΣΙΣ ΧΑΛΚΟΥ ΚΕΚΑΥΜΕΝΟΥ . Λαβὼν σανδαράχην καὶ θεῖον ἄπυρον , κοράλλιον |
| προσκλυζόμενον . Πεσσὸς κάλλιστος ἀνακαθαρτικὸς τῶν ῥυπαρῶν ἑλκῶν οὗτος . Τερεβινθίνης δραχ . δ . στέατος χηνείου δραχ . ζ | ||
| τὸ ἄλειμμα γένηται . Ἄλλο ἄλειμμα πρὸς τὸ αὐτό . Τερεβινθίνης , δαφνίνου ἐλαίου ἀνὰ γοστ . ἰρίνου , ἀνηθίνου |
| ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
| Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
| ΚΘΕΖ διπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΚΕΖ , ὡς ἐδείχθη . ὡς δὲ ὁ ΑΗΓΔ κῶνος | ||
| τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ τὸ ΑΓΔ πρὸς τὸ ΚΕΖ : τὸ ἄρα ΚΕΖ πρὸς τὸ ΒΕΖ διπλασίονα λόγον |
| ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
| περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
| ἡ δὲ ΡΒ ὁμοίως μοιρῶν ζ μ . ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν | ||
| , ΘΠ , ἐν ἴσῳ δὲ ἡ μὲν ΑΞ τῇ ΡΓ , ἡ δὲ ΞΟ τῇ ΠΡ , ἡ δὲ |
| ] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
| ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
| αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ ΔΒΓ τομεὺς πρὸς τὸν ΕΒΘ , οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ | ||
| ἐπεὶ οὖν μείζονα λόγον ἔχει τὸ ΕΒΖ τρίγραμμον πρὸς τὸ ΕΒΘ τρίγραμμον ἤπερ πρὸς τὸν ΕΑΒ τομέα , καὶ συνθέντι |
| οὗ αἱ ἀρχαὶ ἀγέσθωσαν κάτω , καὶ πάλιν αἱ αὐταὶ δοκιμαζέσθωσαν τάσεις , καὶ μετὰ τὰς τάσεις αἱ ἱστορημέναι μοχλεῖαι | ||
| δὲ χερσαῖοι ἔγχυλοι , ὡς ἀντιπαθὲς κωλικῇ διαθέσει βρῶμα , δοκιμαζέσθωσαν : ἔμβαμμα δὲ καὶ ἄρτυμα κύμινον , πήγανον , |
| Μ , Λ , ΘΚ καὶ Ε . τὰ γὰρ σμη καὶ ρκδ καὶ ξβ καὶ λα ποιοῦσι πάλιν συντεθέντα | ||
| σμϚ Λειμώνιον ἢ κυνόγλωϲϲον σμζ Λειχὴν ὁ ἐπὶ τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη |
| ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
| ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
| , καὶ φιμώσας ἐκτρόχιζε ὕελον λευκόν . ΧΡΥΣΟΠΟΙΙΑΣ ΖΩΜΟΙ . ΧΡΥΣΟΥ ΜΑΛΑΞΙΣ ΩΣΤΕ ΕΝ ΑΥΤῼ ΣΦΡΑΓΙΖΕΙΝ . Λαβὼν νίτρου πυρροῦ | ||
| ἐμβαῖνον κρόκου ὠμοῦ ὄξος τετιμημένον , οὕτως ποίει . ΚΑΤΑΒΑΦΗ ΧΡΥΣΟΥ . Λαβὼν μίσιος μεταλλικοῦ μέρη δʹ , ἐλυδρίου ῥίζης |
| ' ὅμως τιμὴ ἀκολουθεῖ καὶ τούτοις . . ΤΡΙΤΟΝ ΑΛΛΟ ΓΕΝΟΣ . Τοῦτο τὸ γένος εἰκότως τρίτον , οὔτε νωθρὸν | ||
| τιμὴν βασιλικὴν , ἤγουν βασιλεῦσι πρέπουσαν . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ . Ὁ μὲν Ὀρφεὺς τοῦ ἀργυροῦ γένους βασιλεύειν φησὶ |
| ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
| ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
| , τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
| δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
| διδόαϲιν ἐϲθίειν τοῖϲ πεπονθόϲι τὴν κύϲτιν καὶ τοῖϲ λιθιῶϲιν . Ὕαινα ζῶϲα ἐν ἐλαίῳ ἑψομένη ὅλη , ὥϲπερ ἐπὶ τῶν | ||
| , ἃς δεῖ συνάγειν ἐν τοῖς σίμβλοις καὶ ἔχειν . Ὕαινα ζῷόν ἐστι τετράπουν , ἀνήμερον , διφυές . τὸ |
| ٤٩ ٤٢ ἡ Β ٧ ٤٩ ٢٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤ | ||
| τὴν ἁρμόζουσαν λαμβάνειν καὶ προστιθέναι . Ἡ ΛΝ ٨ ٥٢ ٣٩ ἡ ΑΓ δ ἡ ΑΔ ٢٠ τὸ ΑΒ χωρίον |
| ἡ δὲ ἀπόδειξις τοῦ συνεγνωκέναι τὸν ἀγῶνα συνίστησιν . ΠΡΟΟΙΜΙΟΝ ΠΡΩΤΟΝ . Ὤιμην μὲν , ὦ δικασταὶ , ὅτι τρεῖς | ||
| ζῶον οὐσία : συμπέρασμα δὲ ὁ ἄνθρωπος ἄρα οὐσία . ΠΡΩΤΟΝ ἙΝΗ ΤΕΤΡΑΣ ΤΕ ΚΑΙ ἙΒΔΟΜΗ ἹΕΡΟΝ ΗΜΑΡ . Ἄλλο |
| καὶ εἰς μερίμνας ἐμβάλλεσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙ ΜΕΜΙΞΕΤΑΙ . Τοῦτο δέ φησι , πρὸς τὸ μὴ | ||
| ἤτοι ἐν τοῖς κοιλώμασι τῶν στελεχῶν , μελίσσας . . ΤΟΙΣΙ ΦΕΡΕΙ ΜΕΝ . Τούτοις τοῖς κατὰ δίκην ζῶσιν , |
| ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος | ||
| ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ |
| ξηρὸν ἀχάριϲτον πρὸϲ τοὺϲ βεβρωμένουϲ κανθοὺϲ καὶ ψωρώδειϲ διαθέϲειϲ καὶ ϲκληροφθαλμίαϲ . καδμίαϲ ⋖ β χαλκίτεωϲ ὠμῆϲ ⋖ α ἀλόηϲ | ||
| οζ Περὶ ξηροφθαλμίαϲ οη Περὶ ψωροφθαλμίαϲ οθ Ἐπιμέλεια ξηροφθαλμίαϲ καὶ ϲκληροφθαλμίαϲ καὶ ψωροφθαλμίαϲ π Πρὸϲ μαδάρωϲιν βλεφάρων πτίλωϲιν μίλφωϲιν πα |
| Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ . | ||
| τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ |
| τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
| τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
| τῷ στρατηγῷ ἁρμοζόντων . Βʹ . Γνωμικά . ΠΕΡΙ ΕΦΟΔΩΝ ΚΕΦΑΛΑΙΑ ΤΟΥ ΕΝΝΑΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐφόδων ἀδοκήτων . | ||
| τάσσεσθαι τοὺς εἰς ἐνέδραν καὶ ἐφόδους πεμπομένους . ΠΕΡΙ ΤΟΥΛΔΟΥ ΚΕΦΑΛΑΙΑ ΤΟΥ ΠΕΜΠΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ τοῦ μὴ ἐπάγεσθαι |
| ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
| ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
| Ῥώμηϲ μοι κομιϲθέντι ϲφόδρα ἐπαινουμένην ἐπὶ μαινομένων μελαγχολικῶν ἰϲχιαδικῶν παραλυτικῶν ϲκοτωματικῶν ἐπιληπτικῶν κεφαλαλγικῶν ἀλωπεκιῶν . οὐκ εἶχε δὲ πάνακα οὐδὲ | ||
| χρέεϲθαι , τῇ ἐϲχάτῃ καὶ δυνατωτάτῃ πάντων ἀγωγῇ . Θεραπεία ϲκοτωματικῶν . Καὶ ἐκ διαδέξιοϲ μὲν κεφαλαίηϲ γίγνεται ϲκοτοδινίη : |
| πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
| : ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
| ρμαʹ . Ῥοδομήλου σκευασία ρμβʹ . Μουστακίων σκευασία ρμγʹ . Γάρου νηστικοῦ σκευασία ρμδʹ . Θυμιάματος μοσχάτου σκευασία ρμεʹ . | ||
| ϲήϲαϲ δίδου κοχλιάριον α ϲὺν ὀξυκράτῳ : καθαίρει ἀδιαϲτρόφωϲ . Γάρου καθαρτικοῦ ϲκευαϲία . Ϲκαμμωνίαϲ ⋖ δ πεπέρεωϲ κόκκοι ν |
| Περὶ διπλῶν βάνδων . ΠΕΡΙ ΣΤΑΣΕΩΣ ΤΑΓΜΑΤΟΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΡΙΤΟΥ ΛΟΓΟΥ Αʹ . Γνῶσις σημείων δηλούντων τινὶ τοῦ τάγματος στάσιν | ||
| τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας καὶ ἀπάτης κατ ' ἐχθρῶν |
| λε καὶ εἶχον τῶν γ τὸ μέγιστον κοινὸν μέτρον . Καθολικὴ μέθοδος , ὅτι τριῶν ἀριθμῶν ἐκκειμένων τὸ μέγιστον αὐτῶν | ||
| , παγχρύσεός εἰμι κολοσσός : ἐξώλης εἴη Κυψελιδῶν γενεά . Καθολικὴ προσωιδία , . . . . . . . |
| ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
| καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
| , Ζ μέρη , ὁμοία ἐστὶν ἡ ΠΩ περιφέρεια τῇ ΦΖ περιφερείᾳ . ἀλλὰ ἡ ΠΩ τῇ ΨΣ ἐστιν ὁμοία | ||
| αἱ ΕΚ , ΜΛ , ἐκβληθεισῶν δὲ τῶν ΥΖ , ΦΖ ἐπὶ τὰ Ψ , Χ , κείσθω ἑκατέρα τῶν |
| καὶ ὡρῶν ἰσημερινῶν ιγ ∠ ʹ δʹ , μοιρῶν δὲ ρογ λειπουσῶν τὸ ὄγδοον μέρος μιᾶς μοίρας . τὴν δὲ | ||
| μζ λϚ , ἡ δὲ ἐπ ' αὐτῆς περιφέρεια τοιούτων ρογ ιζ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΔΚΝ |
| , περὶ τὰς θεὰς ἐξαμαρτήσας καὶ τὰ μυστήρια . ΠΡΟΟΙΜΙΟΝ ΔΕΥΤΕΡΟΝ . Ἐγὼ μὲν οὖν καὶ νῦν ἀπὸ τῶν ἱερῶν | ||
| ἠδίκησαν , καὶ ἀποστερήσαντες τῆς τιμῆς καὶ φόνου γραφόμενοι . ΔΕΥΤΕΡΟΝ ΠΡΟΟΙΜΙΟΝ : Θαυμάζωμεν οὖν καὶ τοὺς πεπεισμένους τότε τῶν |
| ΑΚΓΜ κύκλους τινὰς τῶν ἐν τῇ σφαίρᾳ τοὺς ΑΒΓΔ , ΒΚΔ διὰ τῶν πόλων τέμνει , δίχα τε αὐτοὺς τεμεῖ | ||
| , ὀρθὴ δὲ πάντοτε ἡ ὑπὸ ΑΒΕ , δίδοται τὰ ΒΚΔ καὶ ΒΛΕ ὀρθογώνια καὶ λόγος τῆς ΖΒ πρὸς τὰς |
| δὲ καὶ καθ ' αὑτὴν ἡ λεπίς . Ἄλλο . Ἀσβέστου , λεπίδος χαλκῆς , μάννης ἴσα . ποιεῖ τοῦτο | ||
| . Χαλκίτεως , μίσυος , λεπίδος , κηκῖδος ἴσα . Ἀσβέστου # α , φέκλης ⋖ α , νίτρου # |
| καὶ ἡ ΠΧ . καὶ ἐπεὶ ἑξαγώνου μέν ἐστιν ἡ ΠΧ , δεκαγώνου δὲ ἡ ΧΩ , καὶ ὀρθή ἐστιν | ||
| κάθετοι αἱ ΚΞ , ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν |
| αἱμάτων ; τάλαιν ' ἐγὼ τάλαινα , πότερον ἄρα νέκυν ὀλόμενον ἀχήσω ; φεῦ δᾶ φεῦ δᾶ , δίδυμοι θῆρες | ||
| ἄστυ καὶ καλλίβωλον Ἴδας ὄρος ἱερόν , ὥς ς ' ὀλόμενον στένω [ ἁρμάτειον ἁρμάτειον μέλος ] βαρβάρωι βοᾶι † |
| αἱ πλάται . ] Πόθεν οὖν γένοιντ ' ἄν μοι πλάται ; [ Πόθεν ; πόθεν ; ] Τί δ | ||
| , αἳ ἐπὶ τοῖς ὤμοις αἰεὶ πεφύκασιν . Αἱ δὲ πλάται πρὸς τὰ γυῖα ἤρθρωνται , ἐπιβάλλουσαι ἐπὶ τὸ ὀστέον |
| δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
| κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
| ἀναρραφῆϲ καὶ καταρραφῆϲ βλεφάρων οβ Περὶ καταρραφῆϲ ογ Περὶ ἐκτροπίου Δημοϲθένουϲ οδ Χειρουργία ἐκτροπίου Ἀντύλου οε Περὶ λαγωφθάλμων Δημοϲθένουϲ οϚ | ||
| χαλῶϲαν καὶ λιπαίνουϲαν ἀγωγὴν ἐπὶ τούτων παραλαμβάνειν . Περὶ ϲκληροφθαλμίαϲ Δημοϲθένουϲ . ϲκληροφθαλμία ἐϲτίν , ὅταν ϲυμβῇ τὰ βλέφαρα ϲκληρὰ |
| ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
| Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
| σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
| ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
| οὖν ὡς ἐγχωρίαν θεὸν ἐπικαλεῖται αὐτὴν ὁ εὐνοῦχος : ὀβρίμα ὀβρίμα : ὀβρίμαν αὐτήν φησιν , ἐπεὶ λέουσιν ὀχεῖται : | ||
| τοὐπὶ τῶιδε συμφορᾶς ἐγίγνετο ; Ἰδαία μᾶτερ μᾶτερ , ὀβρίμα ὀβρίμα Ἀνταία , φονίων παθέων ἀνόμων τε κακῶν ἅπερ ἔδρακον |
| ταῦτα , ὡϲ εἶναι ϲύνθετον τὸ πάθοϲ ἐκ μαδαρώϲεωϲ καὶ ξηροφθαλμίαϲ , ὥϲτε καὶ τὰ τούτων βοηθήματα παραπλήϲια ἔϲτω τοῖϲ | ||
| οε Περὶ λαγωφθάλμων Δημοϲθένουϲ οϚ Περὶ ϲκληροφθαλμίαϲ Δημοϲθένουϲ οζ Περὶ ξηροφθαλμίαϲ οη Περὶ ψωροφθαλμίαϲ οθ Ἐπιμέλεια ξηροφθαλμίαϲ καὶ ϲκληροφθαλμίαϲ καὶ |
| ἀκόρεστοι . ἀτρύμονες ] πολυπαθεῖς . ἀτρύμονες ] ἀδάμαστοι . ἀτρύμονες ] συμβουλευόμενοι τὰ λῷστα . Ξ μέλεοι : ἄθλιοι | ||
| . Ξ κακῶν ἀτρύμονες ] ἐν κακοῖς ἀκμῆτες . κακῶν ἀτρύμονες : οἱ ἀκαταπόνητοι ὑπὸ τῶν κακῶν , ἵν ' |
| ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ | ||
| αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς |
| τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
| τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
| παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν | ||
| πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα |
| , Ε σημείοις γωνίαι ἴσαι . καὶ αἱ ὑπὸ τῶν ΔΕΑ , ΗΕΘ ἴσαι . λαμβανέσθωσαν γωνίαι διάφοροι : λοιπαὶ | ||
| . ἀλλ ' ὡς μὲν τὸ ΔΕΖ τρίγωνον πρὸς τὸ ΔΕΑ τρίγωνον , οὕτως ἡ ΕΖ εὐθεῖα πρὸς τὴν ΕΑ |
| α , ἐλαίου # ιε , ὄξουϲ τὸ ἀρκοῦν . Χαλκίτεωϲ # δ , λεπίδοϲ χαλκοῦ # β ∠ ʹ | ||
| # δ : τινὲϲ δὲ καὶ ἀμύλου # δ . Χαλκίτεωϲ , λεπίδοϲ χαλκοῦ , κηκῖδοϲ , βαλαυϲτίων , ἀριϲτολοχίαϲ |
| Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
| δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
| ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
| εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
| πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
| . τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |
| ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
| . καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
| ! μισθοφορία ! ! ! | ! ! ! ! τλ ? ! ? ! ! ! ! ! | | ||
| . . . καὶ τὰ ἑξῆς . Ταῖς γὰρ ἡμέραις τλ μοῖραί εἰσιν ἡλίου τκε ιε λδ μγ , καὶ |
| πόλις Λιβύης καὶ Κίνυψ ποταμὸς Λιβύης πλησίον Αὐσίγδης . * Αὐσίγδα πόλις Λιβύης ἣν παραρρεῖ ὁ Κίνυφος ποταμός . * | ||
| δ ' ἀνεστήλωσαν ; περὶ τὴν Αὐσίγδα πόλιν Λιβύης ἥντινα Αὐσίγδα παραρρεῖ ὁ Κίννυφος ποταμός . Τιταιρώνειον : ὁ Μόψος |
| βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ | ||
| τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς |
| εὐρύτερον , τοῦ κοχλιάξονος ἐντὸς κατὰ τὰ πώματα ὑπὸ τῶν ψαλίδων συνεσχημένου . τὸ μὲν οὖν κάτω πῶμα ἀνεμποδίστως κλείεται | ||
| χρήσιμον δὲ τοῦτο καὶ ἐν ταῖς πυργοποιίαις , ἀντὶ τῶν ψαλίδων ἐάν τις βούληται οὕτως κατασκευάζειν τὰς πυλίδας . τοὺς |
| καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
| δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
| τῶν ἐσχάτων τόν τε τῶν ρβ ιβ καὶ τὸν τῶν σνζ μη , πάλιν τὴν αὐξομείωσιν αὐτῶν ποιησόμεθα τοῖς ἐπιβάλλουσι | ||
| , ἀνωμαλίας δ ' ἀπὸ τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σνζ μζ , πρὸς αἷς πάλιν ἔγγιστα γίνεται τὸ πλεῖστον |
| , Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
| ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
| ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
| ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |