| ΑΚΓΜ κύκλους τινὰς τῶν ἐν τῇ σφαίρᾳ τοὺς ΑΒΓΔ , ΒΚΔ διὰ τῶν πόλων τέμνει , δίχα τε αὐτοὺς τεμεῖ | ||
| , ὀρθὴ δὲ πάντοτε ἡ ὑπὸ ΑΒΕ , δίδοται τὰ ΒΚΔ καὶ ΒΛΕ ὀρθογώνια καὶ λόγος τῆς ΖΒ πρὸς τὰς |
| κύκλου πρὸς τὸν ΑΒΓΔ κύκλον κλίσις ἐλάσσων ἐστὶ τῆς τοῦ ΖΛΘ κύκλου πρὸς τὸν ΕΖΗΘ κύκλον κλίσεως . ὁ ΒΚΔ | ||
| ΕΖΗΘ κύκλου ἐπίπεδον . λέγω , ὅτι οἱ ΒΚΔ , ΖΛΘ κύκλοι πρὸς τοὺς ΑΒΓΔ , ΕΖΗΘ ὁμοίως εἰσὶ κεκλιμένοι |
| πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
| ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
| [ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
| ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
| ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
| ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
| ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
| ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
| ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
| τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
| τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ | ||
| ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ |
| τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
| τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
| ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
| ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
| . Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς | ||
| ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ . |
| ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
| εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
| ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
| ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
| διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
| πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
| ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
| ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
| τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
| λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
| σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
| ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
| ] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
| ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
| ἐπίπεδον , ἔσται τρίγωνον ἐν τῷ κώνῳ : γεγονέτω τὸ ΑΖΘ . ἐπεὶ οὖν τρίγωνόν ἐστιν ἐν κώνῳ τὸ ΑΖΘ | ||
| Ἐπεζεύχθωσαν γὰρ αἱ ΑΖ ΖΓ : ἴση ἄρα ἡ ὑπὸ ΑΖΘ γωνία τῇ ὑπὸ ΘΖΓ . ἔστιν δὲ καὶ ἡ |
| ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
| τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
| σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
| θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
| τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ , | ||
| καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ |
| ἡ ΗΒ ἐλάττων τῆς ἐκ τοῦ κέντρου , τὸ ἄρα ΗΓΔ οὐκ ἔσται μέγιστον τῶν παραλλήλους αὐτῷ βάσεις ἐχόντων : | ||
| καὶ τὸ ΑΓΔ τοῦ ΑΕΖ , εἰ δὲ μεῖζον τὸ ΗΓΔ τοῦ ΗΕΖ , μεῖζον καὶ τὸ ΑΓΔ τοῦ ΑΕΖ |
| τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
| πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
| διεκβεβλήσθω τὸ διὰ τῶν ΘΚ , ΗΑ ἐπίπεδον ποιοῦν τὸ ΑΘΚ τρίγωνον . λέγω , ὅτι τὸ ΑΘΚ τρίγωνον ἴσον | ||
| , τὸ ΑΕΚ τρίγωνον μετὰ τοῦ ΚΗΓ ἴσον ἐστὶ τῷ ΑΘΚ τριγώνῳ μετὰ τοῦ ΚΖΓ : ἔστι δὲ καὶ ὅλον |
| δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
| ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
| , καὶ φιμώσας ἐκτρόχιζε ὕελον λευκόν . ΧΡΥΣΟΠΟΙΙΑΣ ΖΩΜΟΙ . ΧΡΥΣΟΥ ΜΑΛΑΞΙΣ ΩΣΤΕ ΕΝ ΑΥΤῼ ΣΦΡΑΓΙΖΕΙΝ . Λαβὼν νίτρου πυρροῦ | ||
| ἐμβαῖνον κρόκου ὠμοῦ ὄξος τετιμημένον , οὕτως ποίει . ΚΑΤΑΒΑΦΗ ΧΡΥΣΟΥ . Λαβὼν μίσιος μεταλλικοῦ μέρη δʹ , ἐλυδρίου ῥίζης |
| τὸ ὑπὸ ΔΒΕ , τὸ ἀπὸ ΗΘ πρὸς τὸ ὑπὸ ΓΒΘ . ἐναλλάξ , ὡς τὸ ἀπὸ ΔΒ πρὸς τὸ | ||
| ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ τῷ ΓΒΘ [ |
| ἐπίπεδον . λέγω οὖν , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΚΞΑ γωνία τῇ ὑπὸ ΛΟΕ γωνίᾳ . ἐπεὶ γὰρ αἱ | ||
| ἐν τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ , ἡ ἄρα ὑπὸ ΚΞΑ γωνία ἡ κλίσις ἐστίν , ἐν ᾗ κέκλιται τὸ |
| ' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ , | ||
| ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ |
| καὶ εἰς μερίμνας ἐμβάλλεσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙ ΜΕΜΙΞΕΤΑΙ . Τοῦτο δέ φησι , πρὸς τὸ μὴ | ||
| ἤτοι ἐν τοῖς κοιλώμασι τῶν στελεχῶν , μελίσσας . . ΤΟΙΣΙ ΦΕΡΕΙ ΜΕΝ . Τούτοις τοῖς κατὰ δίκην ζῶσιν , |
| ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν | ||
| ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ |
| οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ | ||
| . . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ |
| ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
| Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
| , ἔστω δὲ μείζων ἡ ὑπὸ ΑΗΓ γωνία τῆς ὑπὸ ΔΘΖ : λέγω ὅτι , ἐὰν μὲν ᾖ μείζων ἡ | ||
| ἔγγιον αὐτῆς τῆς ἀπώτερον μείζων ] . συνεστάτω τῇ ὑπὸ ΔΘΖ γωνίᾳ ἴση ἡ ὑπὸ ΓΗΜ : μείζων ἄρα ἐστὶν |
| τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν | ||
| , ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ |
| ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
| ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
| ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
| ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
| τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
| τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
| ΘΗ , ΖΗ πρὸς τὴν ΗΑ . ἔστω τῷ ὑπὸ ΘΗΖ ἴσον τὸ ὑπὸ ΗΑ , Κ . καὶ ἐπεί | ||
| τῇ ὑπὸ τῶν ΘΖΓ ἐστὶν ἴση : καὶ ἡ ὑπὸ ΘΗΖ ἄρα τῇ ὑπὸ ΘΖΗ ἐστὶν ἴση . καὶ κάθετος |
| ΕΘ λοιπῇ τῇ ΕΞ ἴση , γενήσονται δὲ καὶ δύο τριπλεύρων ὁμοίων τῶν ΕΗΘ καὶ ΕΚΞ αἱ δύο μὲν πλευραὶ | ||
| τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων : ὥστε καὶ ἑκατέρα τῶν ΓΔ , ΡΔ δοθεῖσά |
| . ὅτι μείζων ἐστὶν ἡ ὑπὸ ΑΓΕ γωνία τῆς ὑπὸ ΕΓΖ . Ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΕΒ τῆς ΖΗ | ||
| εἶναι τὴν ΑΔ τῇ ΑΕ , καὶ ἐπεζεύχθωσαν αἱ ΒΔ ΕΓΖ , καὶ ἀπὸ τοῦ Ζ κάθετος ἐπὶ τὴν ΓΒ |
| τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
| . ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
| . διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς | ||
| δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ |
| ὑποτείνουσα ν λγ . καὶ οἵων ἐστὶν ἄρα ρκ ἡ ΝΗ , τοιούτων καὶ ἡ μὲν ΝΧ ἔσται ιθ μβ | ||
| , τμημάτων ρθ με ιβ . ἡ δὲ διπλῆ τῆς ΝΗ μοιρῶν ρπ : καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα |
| ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
| πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
| γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ | ||
| οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν |
| τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
| τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
| ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
| ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
| ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
| καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
| καὶ ἄλλα αὐτοῖς ἴσα τῷ πλήθει στερεὰ πρίσματα τρία τὰ ΑΒΓΔΕΜ , ΑΔΕΜ , ΖΗΘΝ σύνδυο λαμβανόμενα καὶ ἐν τῷ | ||
| ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν , οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘΝ πυραμίδα . ἀλλὰ μὴν καὶ |
| ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
| μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
| ὡς ἄρα τὸ ΑΒΕ πρὸς τὸ ΖΗΛ , οὕτως τὸ ΒΕΓ πρὸς τὸ ΗΛΘ καὶ τὸ ΕΓΔ πρὸς τὸ ΛΘΚ | ||
| ὑπὸ τῶν ΑΕΔ τῷ ὑπὸ τῶν ΑΓΔ καὶ τῷ ὑπὸ ΒΕΓ . Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ζ σημεῖον |
| ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον , οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . | ||
| τοῦ καθ ' ἑαυτὸ παραλληλογράμμου . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ . , ] ἰσουψεῖς γάρ εἰσιν . ἀλλ ' |
| καὶ ἡ ΠΧ . καὶ ἐπεὶ ἑξαγώνου μέν ἐστιν ἡ ΠΧ , δεκαγώνου δὲ ἡ ΧΩ , καὶ ὀρθή ἐστιν | ||
| κάθετοι αἱ ΚΞ , ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν |
| . τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν | ||
| ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί |
| τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
| τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
| , ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ | ||
| , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ |
| ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον | ||
| ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν |
| δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
| κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
| Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
| δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
| αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ ΔΒΓ τομεὺς πρὸς τὸν ΕΒΘ , οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ | ||
| ἐπεὶ οὖν μείζονα λόγον ἔχει τὸ ΕΒΖ τρίγραμμον πρὸς τὸ ΕΒΘ τρίγραμμον ἤπερ πρὸς τὸν ΕΑΒ τομέα , καὶ συνθέντι |
| ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν | ||
| καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας |
| ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ | ||
| . καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ |
| ΠΡΩΤΟΣ Ο ΔΙΑ ΤΟΥ ΑΡΣΕΝΙΚΟΥ Ο ΒΑΠΤΩΝ ΤΟΝ ΧΑΛΚΟΝ , ΩΣ ΕΝ ΤΟΥΤΟΙΣ . Ἀρσένικον ὅ ἐστι θεῖον καὶ ταχέως | ||
| χρυσοῦν , χαλκοῦς χαλκοῦν , εὔνους εὔνουν . Τὰ εἰς ΩΣ λήγοντα ἔχοντα οὐδετέρου παρασχηματισμὸν ὁμοτονοῦσιν : ἀξιόχρεως ἀξιόχρεων , |
| τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
| ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
| τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
| τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
| ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς | ||
| περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν . |
| τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
| Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
| τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ | ||
| τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ |
| πρὸς τὸ ἀπὸ ΔΕ διὰ τὴν ὁμοιότητα τῶν ΒΚΔ , ΕΓΔ , ΝΑΔ τριγώνων , ὡς δὲ τὸ ὑπὸ ΜΒ | ||
| . ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΕΔΓ τῇ ὑπὸ ΕΓΔ , τουτέστιν τῇ ὑπὸ ΔΖΓ , καὶ κοινὴ ἡ |
| ἀπὸ ΞΑ πρὸς τὸ ἀπὸ ΑΥ , ὡς δὲ τὸ ΜΔΝ πρὸς τὸ ΠΔΟ , τὸ ἀπὸ ΜΝ πρὸς τὸ | ||
| ἴση , γωνία ἄρα ἡ ὑπὸ ΘΑΚ γωνίᾳ τῇ ὑπὸ ΜΔΝ ἐστιν ἴση . Ἐὰν ἄρα ὦσι δύο γωνίαι ἐπίπεδοι |
| ὑπὸ ΚΘΟ , συνεστάτω τῇ ὑπὸ ΚΘΟ ἴση ἡ ὑπὸ ΠΛΡ . ἡ ἄρα ΠΛ κάθετός ἐστιν ἰσοπλεύρου τριγώνου , | ||
| Λ σημείων παράλληλοι κύκλοι γεγράφθωσαν οἱ ΜΘΝ , ΞΚΟ , ΠΛΡ . λέγω , ὅτι μείζων ἐστὶν ἡ ΠΞ περιφέρεια |
| δὴ πάλιν μὴ τεμνέτω ὁ ΒΑΓΔ κύκλος τοὺς ΑΗΒ , ΓΚΔ κύκλους διὰ τῶν πόλων , καὶ εἰλήφθω ὁ πόλος | ||
| Β σημεῖα . Καὶ ἐπεὶ δοθεῖσά ἐστιν ἑκατέρα τῶν ὑπὸ ΓΚΔ , ΕΚΖ γωνιῶν , καὶ ὀρθαί εἰσιν αἱ πρὸς |
| δεδειγμένα ἄρα ἐν τῷ μγʹ θεωρήματι ἴσον ἐστὶ τὸ μὲν ΘΝΖ τρίγωνον τῷ ΛΒΖΞ τετραπλεύρῳ , τὸ δὲ ΗΘΚ τρίγωνον | ||
| πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ |
| τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
| ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
| μέσου ἡμέρας ὁ τοῦ ἡλίου κύκλος θέσιν ἕξει ὡς τὴν ΦΨ . Γεγράφθω διὰ τοῦ Φ μέγιστος κύκλος ὁ ↑ | ||
| περιφέρεια εἰς ἄνισα κατὰ τὸ Φ σημεῖον , καὶ ἡ ΦΨ ἐλάσσων ἐστὶν ἢ ἡμίσεια τοῦ ἐφεστῶτος τμήματος : ἡ |
| ἀκόρεστοι . ἀτρύμονες ] πολυπαθεῖς . ἀτρύμονες ] ἀδάμαστοι . ἀτρύμονες ] συμβουλευόμενοι τὰ λῷστα . Ξ μέλεοι : ἄθλιοι | ||
| . Ξ κακῶν ἀτρύμονες ] ἐν κακοῖς ἀκμῆτες . κακῶν ἀτρύμονες : οἱ ἀκαταπόνητοι ὑπὸ τῶν κακῶν , ἵν ' |
| ΚΘ περιφερειῶν τοιούτων ἐστὶν Ϙ , οἵων ὁ περὶ τὸ ΒΘΚ ὀρθογώνιον κύκλος τξ . καὶ τῶν ὑπ ' αὐτὰς | ||
| τῷ ἀπὸ τῆς ΑΜ . διὰ γὰρ τὴν ὁμοιότητα τῶν ΒΘΚ ΖΛΓ τριγώνων ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΘ , |
| μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
| ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
| βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ | ||
| τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς |
| τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς | ||
| ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου , |
| . ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΑΥΤΗΙ ΚΑΙ Ο [ ΙΑΜΒΟΣ ] δακτυλ | ||
| ΑΝ ΚΑΔΜΟΣ ΕΓΕΝΝΑΣΕ ΠΟΤ ΕΝ ΤΑΙΣ ΠΟΛΥΟΛΒιΟΙΣΙΝ 〚 〛 ΘΗΒΑΙΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΚΑΙ Ο ΙΑΜΒΟΣ ΤΗΙ ΑΥΤΗΙ ΤΑΥΤΗΙ ΛΕΞΕΙ |
| καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
| δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
| τῇ Θ , ἰσογώνιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΒΑ πρὸς τὴν | ||
| ἄρα ἐστὶν καὶ ἡ ὑπὸ ΑΚΓ , τουτέστιν ἡ ὑπὸ ΔΕΘ , τῇ ὑπὸ ΑΒΓ . ἀλλὰ καὶ ἡ ὑπὸ |
| ΟΥΡΑΝΟΘΕΝ ΔΕ . Ἐκ τῆς τῶν ἀστέρων κινήσεως . . ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ . Ἐπὶ τούτοις , ἤγουν κατὰ | ||
| τοὺς ὕστερον μέλλοντας γενέσθαι . . ΑΛΛ ' ΕΜΠΗΣ ΚΑΙ ΤΟΙΣΙΝ . Ἀλλ ' ὅμως καὶ ἐπὶ τούτοις μεμιγμένα ἔσται |
| δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ | ||
| καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν |
| ' ὅμως τιμὴ ἀκολουθεῖ καὶ τούτοις . . ΤΡΙΤΟΝ ΑΛΛΟ ΓΕΝΟΣ . Τοῦτο τὸ γένος εἰκότως τρίτον , οὔτε νωθρὸν | ||
| τιμὴν βασιλικὴν , ἤγουν βασιλεῦσι πρέπουσαν . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ . Ὁ μὲν Ὀρφεὺς τοῦ ἀργυροῦ γένους βασιλεύειν φησὶ |
| κατὰ γῆς ἐρριζωμένον , ἢ τὸν ὁρμητικὸν πρὸς ὕψος : εὐαυξὴς γάρ ἐστι καὶ καυλὸν ἔχει μακρόν . ὄρδειλος δὲ | ||
| . Μονογενὴς δὲ καὶ ἡ μίλος , ὀρθοφυὴς δὲ καὶ εὐαυξὴς καὶ ὁμοία τῇ ἐλάτῃ , πλὴν οὐχ ὑψηλὸν οὕτω |
| ἐμπύρῳ κόπρῳ βοῶν νυχθήμερον , καὶ ἔχε ὑδράργυρον παγεῖσαν . ΟΙΚΟΝΟΜΙΑ ΥΔΡΑΡΓΥΡΟΥ . Λαβὼν ὑδράργυρον , ζέσον ἐλαίῳ ῥεφανίνῳ : | ||
| ἑπτάκις , καὶ ξηράνας ἐν ἡλίῳ , οὕτως χρῶ . ΟΙΚΟΝΟΜΙΑ ΠΥΡΙΤΟΥ . Λαβὼν πυρίτην τὸν χρυσίζοντα : χρυσίζοντα τοῦτον |
| ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ ΣΝΡ ἴσον ἐστὶ τῷ ὑπὸ ΞΝΖ . τὸ δὲ ἀπὸ | ||
| ὡς ἄρα τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως ἡ ΘΖ πρὸς ΖΛ , τουτέστιν ἡ |
| δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ | ||
| ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν |
| , Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
| ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
| ἔστιν ἄρα ὡς ἡ ΞΑ πρὸς ΑΜ , οὕτως ἡ ΟΔ πρὸς ΔΝ . ἐπεὶ δέ ἐστιν ὡς τὸ ὑπὸ | ||
| τῇ ΔΩ παράλληλος ἤχθω ἡ ͵αΤϠ , καὶ ἐκβεβλήσθω ἡ ΟΔ κατὰ τὸ ͵α , καὶ συμπεπληρώσθω τὰ ΩΨ , |
| δυσὶ ταῖς ὑπὸ ΖΒΓ , ΖΓΒ , τουτέστι τῇ ὑπὸ ΔΖΒ . Ὡς ἄρα συναμφότερος ἡ ΑΓΒ . , ] | ||
| αὐτοῖς , μείζονά ἐστιν . Ἔστω ὅμοια ἰσοσκελῆ τρίγωνα τὰ ΔΖΒ ΒΑΓ , καὶ ἐπὶ τῶν αὐτῶν βάσεων ἄλλα ἰσοσκελῆ |
| ἐφαπτομένη παράλληλός ἐστι τῇ ΑΓ . ἔστω οὖν ἐφαπτομένη ἡ ΘΒΚ : συμπεσεῖται δὴ ταῖς ΕΔ , ΔΖ . ἐπεὶ | ||
| καθέτου διάμετρος ἡ ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ , |
| , ΝΔ : λέγω , ὅτι ἴση ἐστὶν ἡ ὑπὸ ΗΑΛ γωνία τῇ ὑπὸ ΜΔΝ γωνίᾳ . Κείσθω τῇ ΔΜ | ||
| καὶ ἡ ΛΓ . ἐπεὶ οὖν ὀρθή ἐστιν ἡ ὑπὸ ΗΑΛ ἐν ἡμικυκλίῳ καὶ κάθετος ἡ ΑΜ , ἔστιν ἄρα |
| πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ | ||
| : ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ |
| : δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
| τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
| καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ | ||
| πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν |
| ἡ δὲ ΝΧ τῆς ΔΦ διπλῆ , καὶ λοιπὴν τὴν ΧΓ ἕξομεν τοιούτων νε λδ , οἵων ἐστὶν ἡ ΝΧ | ||
| ἐπεὶ δύο αἱ ΒΥ , ΥΦ δυσὶ ταῖς ΒΧ , ΧΓ ἴσαι εἰσίν , καὶ βάσις ἡ ΒΦ βάσει τῇ |