ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος
ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ
8737869 τριγραμμον
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν
7939749 ΑΒΗ
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση ,
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ
7918420 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
7890854 ΔΘΖ
, ἔστω δὲ μείζων ἡ ὑπὸ ΑΗΓ γωνία τῆς ὑπὸ ΔΘΖ : λέγω ὅτι , ἐὰν μὲν ᾖ μείζων ἡ
ἔγγιον αὐτῆς τῆς ἀπώτερον μείζων ] . συνεστάτω τῇ ὑπὸ ΔΘΖ γωνίᾳ ἴση ἡ ὑπὸ ΓΗΜ : μείζων ἄρα ἐστὶν
7799612 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
7779433 ΔΠ
ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ :
7777021 ΓΗΖ
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ
7757400 ΟΠ
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση :
7754667 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
7736567 ΤΜ
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς
7733218 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
7728322 ΝΡ
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα
7719592 ΡΓ
ἡ δὲ ΡΒ ὁμοίως μοιρῶν ζ μ . ἡ δὲ ΡΓ μοιρῶν θ λ . ἡ δὲ ΡΔ ὁμοίως μοιρῶν
, ΘΠ , ἐν ἴσῳ δὲ ἡ μὲν ΑΞ τῇ ΡΓ , ἡ δὲ ΞΟ τῇ ΠΡ , ἡ δὲ
7697320 ΘΟ
ἡ ΚΛ τῆς ὅλης περιφερείας , τὸ αὐτὸ καὶ ἡ ΘΟ τῆς ΘΟΛ . καὶ ἔστιν ἴση ἡ ΘΟΛ τῇ
ΜΒ τῇ ΒΝ καὶ ἡ ΚΟ τῇ ΟΛ καὶ ἡ ΘΟ τῇ ΟΞ καὶ ἡ ΚΘ τῇ ΞΛ . ἐπεὶ
7684877 ΑΗΒ
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ
7683369 ΡΘ
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ
7683166 ΒΠ
ΕΠ δυνάμεων νδ : περιέχεται γὰρ ὑπὸ τῶν ΕΒ , ΒΠ οὔσης τῆς ΕΒ θ , τῆς δὲ ΒΠ Ϛ
ἡ μὲν ΒΛ τῇ ΛΔ ἐστιν ἴση , ἡ δὲ ΒΠ τῇ ΠΔ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΑΕΚ
7675989 συζυγους
διῃρημέναι , λέγω δὲ τὴν ἐμέο καὶ ἡμέων καὶ τὰς συζύγους : οὐ γὰρ φύσει βαρυτονοῦνται , ἀπὸ δὲ περισπωμένων
ὅλος εἶναι πόλεμον . ἐπώρορεν : διήγειρεν . εὐνητῆρας : συζύγους . Γαμήλιος ἐνυώ : ἡ περὶ τοῦ γάμου μάχη
7673110 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
7671018 ΕΠΕΙ
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων ,
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν
7666680 ΧΞ
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς
7632173 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
7627925 ΔΑΒ
ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ
αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς
7625781 ΤΞ
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον
7619328 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
7593084 ΟΥΚ
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις .
7587470 Ϡοθ
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως
7574509 ΣΘ
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ
7570420 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
7567461 ΕΣΤΙ
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ
7566321 ΛΤ
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ
7556854 ΒΕΖ
βάσιν . λέγω , ὅτι τὸ ΑΓΔ τρίγωνον πρὸς τὸ ΒΕΖ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΓΔ
τὴν ΕΖ , οὕτως τὸ ΚΓΔ τρίγωνον , τουτέστι τὸ ΒΕΖ τρίγωνον , πρὸς τὸ ΑΓΔ τρίγωνον : καὶ ὡς
7550877 ΑΕΖ
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν
7550734 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
7538755 ΖΡ
καὶ ἡ ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους
ΡΥ , ΥΔ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΡ , καὶ ἔτι αἱ ΕΟ , ΟΣ , ΣΒ
7537563 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
7534031 ΤΦ
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν
7517309 ΟΤ
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ
7515414 ΩΨ
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ .
7511964 ΑΤ
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ
7507526 ΤΟΙ
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ
7505675 ΣΑ
ΣΑ , τῆς δὲ ΒΗ ἡμίσεια ἡ ΒΤ . αἱ ΣΑ , ΒΤ ἄρα ἴσαι τε καὶ παράλληλοί εἰσι :
αἱ ἄρα ὑπὸ τῶν ΓΣ , ΣΝ , ΝΣ , ΣΑ ταῖς ὑπὸ τῶν ΛΣ , ΣΑ , ΑΣ ,
7502178 ΒΧ
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ ,
7497941 ΓΔΘ
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον
7497326 ΞΓ
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ
7493064 ΤΙ
. Ὑπὸ γὰρ τοῦ ν ἀμεταβόλου ἐκτείνεται . . ΟΥΔΕ ΤΙ ΔΕΙΛΟΝ ΓΗΡΑΣ . Οὐδὲ κατά τι δειλὸν ὑπῆρχεν αὐτοῖς
ΔΡΕ , ὡς δὲ τὸ ἀπὸ ΛΤ πρὸς τὸ ἀπὸ ΤΙ , τὸ ὑπὸ ΟΡΓ πρὸς τὸ ὑπὸ ΔΡΕ .
7492070 ΜΞ
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ ,
7486657 ΡΣ
, Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν
λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς
7483131 ΛΗ
ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ
ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς
7477581 συναμφοτεραι
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ
7468860 ΡΟ
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω
7461303 ΝΥ
Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ
τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον
7457208 ΑΛΛ
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν
7454715 ΝΔ
' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ ,
ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ
7450613 ΒΔΖ
δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ
τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ
7448342 ΑΗΔ
τῇ ΑΗ , καὶ ἡ ὑπὸ ΑΒΔ γωνία τῇ ὑπὸ ΑΗΔ . ἡ δὲ ὑπὸ ΑΗΔ διπλασία τῆς ὑπὸ ΑΕΔ
ἀλλὰ τὸ ΔΘΛ τῷ ΒΔΖ ἐστιν ἴσον : καὶ τὸ ΑΗΔ ἄρα τῷ ΒΔΖ ἐστιν ἴσον . ὥστε καὶ τὸ
7439052 ΤΗ
σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ
Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη
7431580 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
7430784 ΓΒΘ
τὸ ὑπὸ ΔΒΕ , τὸ ἀπὸ ΗΘ πρὸς τὸ ὑπὸ ΓΒΘ . ἐναλλάξ , ὡς τὸ ἀπὸ ΔΒ πρὸς τὸ
ΔΒΕ τρίγωνον πρὸς τὸ ΗΘΙ , τὸ ΔΒΕ πρὸς τὸ ΓΒΘ . ἴσον ἄρα ἐστὶ τὸ ΗΘΙ τῷ ΓΒΘ [
7424251 ΗΞ
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ
7423618 ΨΣ
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ
7420549 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
7420465 ΟΞ
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ
7417307 ΤΨ
ΟΤ . Κοινὴ ἀφῃρήσθω ἡ ΓΤ : λοιπὴ ἄρα ἡ ΤΨ τῇ ΟΓ ἴση ἐστίν . Διπλῆ δὲ ἡ ΓΟ
δὲ ἡ ΓΟ τῆς ΤΣ : διπλῆ ἄρα καὶ ἡ ΤΨ τῆς ΤΣ : ἴση ἄρα ἡ ΨΣ τῇ ΣΤ
7412158 ΝΣ
ΜΡ μείζων ἐστὶν ἢ διπλῆ , ἡ δὲ ΞΝ τῆς ΝΣ ἐλάσσων ἐστὶν ἢ διπλῆ , ἐλάσσων ἄρα ἐστὶν ἡ
μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ ΘΚ ἄρα τῆς ΝΣ μείζων ἐστὶν ἢ ὁμοία . καὶ εἰσὶ τοῦ αὐτοῦ
7409634 ΘΕ
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει
7404216 ΓΝ
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι
7403445 ΝΩ
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ
7397580 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
7384909 ΓΣ
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς
7382812 ΟΥΔΕ
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία
7382582 ΡΥ
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν
7381262 ΑΗΖ
αὐτὰ δὲ καὶ τὴν ΖΔ περιφέρειαν εὑρήσομεν καὶ τὴν ὑπὸ ΑΗΖ γωνίαν , ἀπὸ τῆς ΖΒ δοθείσης καὶ τῆς ΒΛ
ΔΓΑ : καὶ κοινὴ τῶν δύο τριγώνων τῶν ΑΔΓ , ΑΗΖ ἡ ὑπὸ ΔΑΓ γωνία : ἰσογώνιον ἄρα ἐστὶ τὸ
7376984 ΚΡΛ
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ
7375920 ΒΗΘ
ΒΗΘ : αἱ ἄρα ὑπὸ ΑΗΘ , ΒΗΘ τῶν ὑπὸ ΒΗΘ , ΗΘΔ μείζονές εἰσιν . ἀλλὰ αἱ ὑπὸ ΑΗΘ
τῇ ὑπὸ ΗΘΔ ἐστιν ἴση . κοινὴ προσκείσθω ἡ ὑπὸ ΒΗΘ : αἱ ἄρα ὑπὸ ΕΗΒ , ΒΗΘ ταῖς ὑπὸ
7375477 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
7372649 ΤΠ
, ἴση δὲ ἡ ΒΓ τῇ ΓΑ , τουτέστι τῇ ΤΠ , καὶ ἡ ΓΠ τῇ ΤΑ , ἴσον ἄρα
μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ ἀπὸ ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ
7356415 ΑΗΘ
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν
7355534 ΝΖ
δείξομεν οὕτως : ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΒΝ τῆς ΝΖ , τὸ ἄρα ὑπὸ τῶν ΖΒΝ μεῖζόν ἐστι τοῦ
ΤΛ πρὸς τὴν ΛΒ , οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ . τῶν ΛΤΒ , ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν
7355106 ΕΠΙ
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι
7353286 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
7339666 ΡΛ
τὰ κέντρα τὰ Ρ , Σ , καὶ ἐπεζεύχθωσαν αἱ ΡΛ , ΡΜ , ΡΚ , ΡΝ , ΣΚ ,
καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , καὶ ἡ ΟΚ πρὸς ΛΞ , τῶν ΑΓ
7326487 ΠΟΛΥ
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ?
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν
7323380 ΑΞ
ΟΔ , ὡς δὲ τὸ ἀπὸ ΛΑ πρὸς τὸ ἀπὸ ΑΞ , τὸ ἀπὸ ΖΕ πρὸς τὸ ἀπὸ ΕΔ :
ὡς ἄρα ἡ ΚΑ πρὸς ΑΔ , ἡ ΗΑ πρὸς ΑΞ . ἔστι δὲ καί , ὡς ἡ ΓΑ πρὸς
7321355 ΑΠΟ
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ
7288612 ΑΛΒ
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα
7284728 ΜΓ
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι
7273784 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
7273594 ΩΣ
ΠΡΩΤΟΣ Ο ΔΙΑ ΤΟΥ ΑΡΣΕΝΙΚΟΥ Ο ΒΑΠΤΩΝ ΤΟΝ ΧΑΛΚΟΝ , ΩΣ ΕΝ ΤΟΥΤΟΙΣ . Ἀρσένικον ὅ ἐστι θεῖον καὶ ταχέως
χρυσοῦν , χαλκοῦς χαλκοῦν , εὔνους εὔνουν . Τὰ εἰς ΩΣ λήγοντα ἔχοντα οὐδετέρου παρασχηματισμὸν ὁμοτονοῦσιν : ἀξιόχρεως ἀξιόχρεων ,
7273196 ΜΕ
πρὸς τὴν ΓΔ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΜΕ πρὸς τὸ ΝΗ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ
τὴν ΖΕ , συνθέντι καὶ ἐναλλάξ ἐστιν , ὡς ἡ ΜΕ πρὸς τὴν ΕΗ , οὕτως ἡ ΘΕ πρὸς τὴν
7267262 ΔΛ
ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ
ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς
7258434 ΜΔ
ἀπὸ ΔΗ , διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ : ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ
ΜΔ : ἡ ἄρα ΑΔ ἴση ἐστὶ ταῖς ΕΜ , ΜΔ . ἀλλ ' αἱ ΕΜ , ΜΔ τῆς ΕΔ
7252160 ΓΟ
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ
7243989 ΨΟ
διπλάσιον ; καὶ δεικτέον οὕτως : ἐπεὶ γὰρ ἐπιζευγνυμένων τῶν ΨΟ , ΨΣ αἱ ὑπὸ ΚΨΒ , ΚΨΣ , ΣΨΟ
τὸ ἀπὸ τῆς ΑΨ . λοιπὸν ἄρα τὸ ἀπὸ τῆς ΨΟ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΨΣ . ἴσον δὲ
7240497 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
7230722 ΦΖ
, Ζ μέρη , ὁμοία ἐστὶν ἡ ΠΩ περιφέρεια τῇ ΦΖ περιφερείᾳ . ἀλλὰ ἡ ΠΩ τῇ ΨΣ ἐστιν ὁμοία
αἱ ΕΚ , ΜΛ , ἐκβληθεισῶν δὲ τῶν ΥΖ , ΦΖ ἐπὶ τὰ Ψ , Χ , κείσθω ἑκατέρα τῶν
7229772 ΘΧ
Ψ͵Δ . καὶ ἐπεὶ αἱ ΖΤ ΤΥ ΥΗ ΗΦ ΦΘ ΘΧ ΧΨ ΨΚ περιφέρειαι ἴσαι ἀλλήλαις εἰσίν , αἱ ἄρα
πλευρά . ἐπεὶ οὖν , ὡς ἡ ΘΗ πρὸς τὴν ΘΧ , οὕτως τὸ ὑπὸ τῶν ΗΦ , ΦΘ πρὸς
7228479 ΗΚ
τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν
ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ
7223323 ΚΑΤΑ
. . ΚΑΤΑΦΡΑΖΕΣΘΕ . Βουλεύεσθε , νοεῖτε . Παρολκὴ ἡ ΚΑΤΑ , τουτέστι περιττεύει . . ΤΡΙΒΟΥΣΙ . Κατατρίβουσι ,
. Καὶ τῇ ἐκκλησίᾳ δὲ τῇ παροικούσῃ ΑΜΑΣΤΡΙΝ ἉΜΑ ΤΑΙΣ ΚΑΤΑ ΠΟΝΤΟΝ ἐπιστείλας , Βακχυλίδου μὲν καὶ Ἐλπίστου , ὡς
7216622 ΧΡΗΣΑΙΤΟ
. ΜΕΝ ΟΥΝ ΕΙΣΙΝ ΟΙ ΡΥΘΜΟΙ ΟΥΤΟΙ ΤΗΣ ΤΟΙΑΥΤΗΣ ΛΕΞΕΩΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΑΥΤΗΙ ΚΑΙ Ο [ ΙΑΜΒΟΣ ] δακτυλ
ΑΝ ΚΑΔΜΟΣ ΕΓΕΝΝΑΣΕ ΠΟΤ ΕΝ ΤΑΙΣ ΠΟΛΥΟΛΒιΟΙΣΙΝ 〚 〛 ΘΗΒΑΙΣ ΧΡΗΣΑΙΤΟ Δ ΑΝ ΚΑΙ Ο ΙΑΜΒΟΣ ΤΗΙ ΑΥΤΗΙ ΤΑΥΤΗΙ ΛΕΞΕΙ

Back