ΑΓ , ΓΒ μέσα ἐστίν . μέσον ἄρα ἐστὶ τὸ ΔΛ . καὶ παρὰ ῥητὴν τὴν ΔΕ παραβέβληται : ῥητὴ
ἡ μὲν ΑΚ τῇ ΛΒ , ἡ δὲ ΓΚ τῇ ΔΛ , δύο δὴ αἱ ΑΚ , ΚΓ δύο ταῖς
9238137 ΗΚ
τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν
ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ
9192224 ΒΚ
ΔΜ , πέμπτον δὲ τὸ ΓΛ , ἕκτον δὲ τὸ ΒΚ , ἕβδομον δὲ τὸ ΑΘ , μόνα δὲ καὶ
ταῦτα γὰρ ἡμῖν πάντα προαποδέδεικται : τοιούτων καὶ ἑκατέρα τῶν ΒΚ καὶ ΚΘ ἔσται ιε νε . πάλιν , ἐπεὶ
9187643 ΒΞ
τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ .
ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς
9169741 ΖΛ
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν
9140177 ΖΚ
καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ , ΖΑ τὸ ΖΚ : ἴση γὰρ ἡ ΑΖ τῇ ΖΗ : τὸ
ἄρα ἐστὶν ταῖς ΑΔ ΒΕ , καὶ ἴση ἐστὶν ἡ ΖΚ τῇ ΚΗ . ἐπεὶ δὲ τρεῖς εἰσιν παράλληλοι αἱ
9110443 ΒΗ
, ΖΗ καὶ ἐν ταῖς αὐταῖς παραλλήλοις ταῖς ΑΘ , ΒΗ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον
ἴσῳ τριγώνῳ τῇ ΒΖ , γίνεται ὡς συναμφότερος ἡ ΖΒ ΒΗ πρὸς τὴν ΖΗ , οὕτως τὸ ἀπὸ ΑΖ τετράγωνον
9067169 ΑΜ
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ
9037017 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
9027987 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
9004133 ΔΚ
τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν
ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή
9003199 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
8991369 ΚΘ
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς
8970155 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
8955802 ΘΗ
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε
8941821 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
8924699 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
8916222 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
8903245 ΗΖ
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ
8893021 ΘΕ
ἐστιν ὡς ἡ ΑΗ πρὸς τὴν ΗΒ , οὕτως ἡ ΘΕ πρὸς τὴν ΕΒ , ὡς δὲ ἡ ΘΕ πρὸς
ΖΕ συνῆπται λόγος ἔκ τε τοῦ , ὃν ἔχει ἡ ΘΕ πρὸς τὴν ΕΖ , καὶ τοῦ , ὃν ἔχει
8881073 ΜΝ
ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ
καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος
8873702 ΛΚ
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ
8869157 ΑΛ
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ
8863960 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
8840990 ΚΜ
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς
8834766 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
8831243 ΑΗ
τὸ Ζ : δι ' ἴσου ἄρα ἐστὶν ὡς τὸ ΑΗ πρὸς τὸ Γ , οὕτως τὸ ΔΘ πρὸς τὸ
ἐστὶ τῷ ΓΕ , λοιπὸν ἄρα τὸ δὶς ὑπὸ τῶν ΑΗ , ΗΒ ἴσον ἐστὶ τῷ ΖΛ . ῥητὸν δὲ
8829605 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
8826139 ΜΛ
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι
8819039 ΛΜ
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ .
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη
8816319 ΕΜ
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ
8804209 ΛΒ
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι
8801127 ΚΓ
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ
8796232 ΚΔ
, οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ :
ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ
8793538 ΓΗ
τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν .
τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ ,
8775305 ΓΛ
ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ
τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν
8774871 ΠΘ
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα
8774514 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
8768747 ΘΑ
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ
8766450 ΚΒ
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ
8763544 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
8759842 ΗΜ
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ
8734460 ΒΖ
τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς
' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς
8732915 ΒΜ
, καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ
: διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ
8726920 ΛΕ
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα
8725290 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
8722079 ΝΞ
, διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι
τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ
8719761 ΖΝ
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου ,
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ
8711276 ΗΑ
καὶ ὡς ἡ ΔΑ πρὸς τὴν ΑΒ , οὕτως ἡ ΗΑ πρὸς τὴν ΑΕ : καὶ ὡς ἄρα ἡ ΗΑ
δειχθέντα ἡ ΖΗ πρὸς ΖΒ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΗΑ πρὸς ΑΒ . ἐπεὶ οὖν ἡ ΖΒ ἴση οὖσα
8711046 ΛΗ
ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ
ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς
8705987 ΕΗ
εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ
τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε
8704049 ΕΘ
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν
8698380 ΗΔ
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ
8694650 ΘΛ
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν
8678866 ΔΘ
ΒΓ ΕΖ τοῖς Η Θ , καὶ ἐπεζεύχθωσαν αἱ ΑΗ ΔΘ , καὶ ἔστωσαν ἴσαι , καὶ μηδετέρα τῶν ΑΗ
ΓΘ τῇ Ε : τὸ ἄρα ΒΗ ἴσον ἐστὶ τῷ ΔΘ . καί ἐστιν ἰσογώνια . τῶν δὲ ἴσων καὶ
8672045 ΗΓ
ΚΗ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ λοιπῇ τῇ ΗΓ ἐστὶν ἴση , ὅπερ : ∼ Φανερὸν δὴ ὅτι
, ΗΖ . Ἐπεὶ οὖν ἡ ΑΓ μείζων ἐστὶν τῆς ΗΓ [ ηʹ τοῦ τρίτου ] , ἡ δὲ ΓΕ
8671688 ΘΖ
ἐπεὶ ἡ ὑπὸ τῶν ΑΒ , ΒΓ τῇ ὑπὸ τῶν ΘΖ , ΖΗ , ὁμόλογος δὲ ἔστω ἡ ΒΓ τῇ
καὶ λοιπὴ ἡ ΝΛ πρὸς ΖΑ . ὁ ἄρα τῆς ΘΖ πρὸς ΖΑ λόγος σύγκειται ἐκ τοῦ τῆς ΜΛ πρὸς
8653996 ΓΚ
. ἐκβεβλήσθω γὰρ ἐπ ' εὐθείας τῆς ΓΘ εὐθεῖα ἡ ΓΚ , καὶ πεποιήσθω ὡς ἡ ΓΔ πρὸς τὴν ΕΖ
, ὧν ὁ ΔΓ ἐστὶ δυάς , λοιπὸς ἄρα ὁ ΓΚ μείζων δυάδος τοῦ ΓΔ : ἡ ἄρα διχοτομία τοῦ
8652753 ΒΕ
ἀπὸ τῶν ΕΖ , ΖΒ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΕ , τοῖς δὲ ἀπὸ τῶν ΕΖ , ΖΛ ἴσον
ΓΔ : τὸ ἄρα ὑπὸ ΑΕ ΕΔ μετὰ τοῦ ὑπὸ ΒΕ ΕΓ ἴσον ἐστὶν τῷ ὑπὸ ΑΓΔ . ιθʹ .
8642340 ΟΠ
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση :
8642306 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
8637553 ΛΑ
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου
8626884 ΗΒ
ἄρα ἡ ΕΗ πρὸς ΗΒ , οὕτως ἡ ΑΒ πρὸς ΗΒ : ἴση ἄρα ἡ ΑΒ τῇ ΕΗ . ἐλάττων
τὸ Η , καὶ ἐπεζεύχθωσαν αἱ ΗΑ , ΗΔ , ΗΒ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΔ τῇ ΔΒ
8624995 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
8622870 ΟΛ
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ
8618935 ΓΠ
ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς
δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν
8616961 ΗΕ
ἀπὸ ΖΔ , οὕτως τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ ΒΖΑ πρὸς
: λοιπὸν ἄρα τὸ ἀπὸ ΘΖ ἔλασσόν ἐστιν τοῦ ἀπὸ ΗΕ : ἐλάσσων ἄρα ἐστὶν ἡ ΘΖ τῆς ΗΕ .
8614939 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
8608986 ΔΗ
ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ
παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ
8598818 ΚΛ
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι
8592936 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
8591797 ΜΡ
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ
8591733 ΘΓ
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται :
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ
8590837 ΜΘ
τῆς ΜΗ μείζων ἐστί . πάλιν ἐπεὶ ἡ ΚΘ τῆς ΜΘ ἐλάττων ἐστίν , ἡ δὲ ΜΘ τῆς ΜΗ ἐλάττων
: φανερὸν ὅτι ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΛΜ τῆς ΜΘ , ὡς προεδείχθη . Τῷ δὲ αὐτῷ τρόπῳ ἐφωδεύσαμεν
8586062 ΟΘ
ὡς ἡ ΒΞ πρὸς ΞΗ , οὕτως ἡ ΕΟ πρὸς ΟΘ . ἀλλὰ καὶ ὡς ἡ ΗΞ πρὸς ΞΚ ,
κύκλων ἐπιπέδῳ οὖσα , καὶ ἤχθω διὰ τῶν ΟΠ , ΟΘ εὐθειῶν ἐπίπεδον : ποιήσει δὴ τομὴν ἐν τῷ κώνῳ
8582408 ΒΘ
ἡ ΓΔ πρὸς τὴν ΗΛ , ὁ δὲ τοῦ ὑπὸ ΒΘ ΓΔ πρὸς τὸ ὑπὸ ΒΔ ΓΘ συνῆπται λόγος ἔκ
ἄρα , ὡς ἡ ΓΔ πρὸς ΕΖ , οὕτως ἡ ΒΘ πρὸς ΚΗ . ἐδείχθη δέ , ὡς ἡ ΓΔ
8572466 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
8570661 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
8559583 ΕΔ
τὸ ΓΕ ἄρα τοῦ ΕΔ ταπεινότερον φαίνεται , τὸ δὲ ΕΔ τοῦ ΔΒ . Τῶν εἰς τοὔμπροσθεν μῆκος ἐχόντων τὰ
ὀρθή ἐστιν ἡ ὑπὸ ΔΗΕ . τὸ ἄρα ἀπὸ τῆς ΕΔ μοιρῶν ἐστιν ͵δοβ νε . ὧν πλευρὰ μοιρῶν ξγ
8557248 ΝΛ
. πέντε δὲ τὰ ἀπὸ ΒΔ ιεʹ ἐστιν τὰ ἀπὸ ΝΛ , ὡς ἔστιν ἐν τῷ ιγʹ τῶν στοιχείων :
ὅτι οὐδὲ ἐλάσσων : μείζων ἄρα ἐστὶν ἡ ΡΟ τῆς ΝΛ . ιʹ . Πάλιν ἐπὶ μεγίστου κύκλου περιφερείας ὁ
8550854 ΒΛ
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα
8548333 ΖΒ
τμημάτων ριζ λα , καὶ πάλιν ἡ μὲν διπλῆ τῆς ΖΒ μοιρῶν ξ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ξ
τῇ Ν . καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΚΖ τῇ ΖΒ , καὶ συνθέντι σύμμετρός ἐστιν ἡ ΚΒ τῇ ΖΒ
8548084 ΛΟ
διήχθω γὰρ λόγου χάριν ἡ ΛΚ , καὶ κάθετος ἡ ΛΟ , καὶ ἐκβεβλήσθω ἐπὶ τὸ Ρ , καὶ ἐπεζεύχθωσαν
ΧΕΤ . καὶ ἐπεὶ ζητῶ τίς ἡ ΖΘ περιφέρεια τῇ ΛΟ , τουτέστιν ἡ ΕΗ τῇ ΚΦ , ζητήσω ἄρα
8545500 ΑΖ
ὀρθὰς ἤχθωσαν αἱ ΓΕ , ΔΖ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΖΒ , ΕΒ . καὶ ἐπεὶ διπλῆ ἐστιν
ὡς δὲ ἡ ΑΓ πρὸς τὴν ΓΒ , οὕτως ἡ ΑΖ πρὸς τὴν ΖΕ , δι ' ἴσου ἄρα ἐστὶν
8544535 ΕΡ
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς
8542245 ΜΖ
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ
8535268 ΓΝ
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι
8519708 ΕΟ
τὸ ΠΝ , καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδῳ τῷ ΤΥΣ παραλλήλῳ τοῖς τῶν ΕΖΗΘ ,
ΟΣ , ΣΒ μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΕΟ . καὶ ἐπεὶ αἱ ΓΝ , ΝΚ , ΚΗ
8518913 ΛΝ
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ
8517014 ΘΜ
αἱ ΗΘ ΛΜ ΔΕ : ἴση ἄρα ἐστὶν καὶ ἡ ΘΜ τῇ ΜΕ . ὧν ἡ ΒΜ τῇ ΜΚ ἐστὶν
ΑΚ , ΚΛ , τῇ δὲ ΕΘ ἴσαι ὁσαιδηποτοῦν αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ
8507129 ΛΓ
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα
8506236 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
8502715 ΛΘ
ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη
ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία
8500672 ΕΑ
περιφέρειαι αἱ ΑΒ , ΒΓ , ΓΔ , ΔΕ , ΕΑ ἴσαι ἀλλήλαις εἰσίν . ὑπὸ δὲ τὰς ἴσας περιφερείας
ΓΒ , τουτέστιν ὡς τὸ ὑπὸ ΕΑΓ πρὸς τὸ ὑπὸ ΕΑ ΓΒ , οὕτως τὸ ὑπὸ ΓΑΕ πρὸς τὸ ὑπὸ
8499191 ΖΕ
τῷ τοῦ ΑΒΓΔ κύκλου ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας : ἡ ΖΕ ἄρα ὀρθή ἐστι πρὸς ἑκάστην τῶν ΑΕ , ΒΕ
ΓΒ , οὕτως τὸ ΔΖ πρὸς μεῖζόν τι μέγεθος τοῦ ΖΕ . καὶ τὰ λοιπὰ φανερά . ζʹ . Ἐχέτω
8493786 ΗΝ
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ .
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ :
8492240 ΠΔ
ἄρα ἔγγιόν ἐστι τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΠΔ . ὡσαύτως δὲ καὶ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ αἱ
Π τὴν ΠΓ διελθὸν ἐπὶ τὸ Γ παραγίγνεται , ἡ ΠΔ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : ἐν πλείονι ἄρα χρόνῳ
8488531 ΚΕ
, Δ γωνίαι , καὶ ἴση ἐστὶν ἡ ΓΚ τῇ ΚΕ , δοθέν ἐστιν ἑκάτερον τῶν ΓΔΚ , ΕΖΚ τριπλεύρων
, ὡς ἡ ΖΚ πρὸς τὴν ΓΔ , οὕτως ἡ ΚΕ πρὸς τὴν ΔΒ . ῥητὴ δὲ ἡ ΚΕ καὶ
8485256 ΘΒ
, μείζων ἡ ΘΗ τῆς ΘΒ . ἴση δὲ ἡ ΘΒ τῇ ΘΔ : ὑπόκειται γάρ : μείζων ἄρα ἐστὶν
. ἔθηκα τῷ ΗΒ ἴσον τὸν ΗΘ , ὥστε ὁ ΘΒ πρὸς τὸν ΗΒ συμφωνήσει διὰ πασῶν , ὡς εἶναι
8484755 ΚΝ
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν .
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ
8480374 ΘΔ
, Ζ ἴσα εἰσίν . ὡσαύτως καὶ τὰ ΗΒ , ΘΔ ἴσα τοῖς Ε , Ζ . ὅσα ἄρα ἐστὶν
πλῆθος τῶν ΑΗ , ΗΒ τῷ πλήθει τῶν ΓΘ , ΘΔ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ μὲν ΑΗ τῷ

Back