| ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
| αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
| ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε , Η μέρη ἐκβαλλόμεναι συμπεσοῦνται . αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί | ||
| ἀγομένη ΗΘ ἴσην ἀποτέμνει τῇ ζητουμένῃ τὴν ΘΒ . [ συμπεσοῦνται γὰρ αἱ ΓΔ ΒΖ ὡς ἐπὶ τὸ Η ἠγμέναι |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
| , καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
| ' οὐ πανταχοῦ , ἡ δύναμις δὲ ἁπανταχοῦ καὶ αἱ ἀκτῖνες , καὶ ἐν γῇ καὶ ἐν θαλάττῃ καὶ ἐν | ||
| τοῦ ἡλίου ὑφίστηται νέφος ὑφ ' οὗ ἐὰν σχίζωνται αἱ ἀκτῖνες χειμερινὸν τὸ σημεῖον . Καὶ ὅταν καυματίας δύηται καὶ |
| ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα | ||
| πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ |
| ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
| τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
| τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
| ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| : ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
| ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
| ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
| εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
| γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
| καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
| δὴ παράλληλοι αἱ ΑΒ , ΔΕ , ἀλλ ' ἐκβαλλόμεναι συμπιπτέτωσαν κατὰ τὸ Π , καὶ ἡ ΓΟ ἤχθω παρὰ | ||
| μὴ ἔστωσαν δὴ παράλληλοι αἱ ΑΚ , ΕΖ , ἀλλὰ συμπιπτέτωσαν κατὰ τὸ Κ , καὶ ἡ ΓΔ παρὰ τὴν |
| Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
| ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| , καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
| διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
| δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
| μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
| δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
| τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
| μέσην πάροδον τοῦ ἡλίου κατὰ μιᾶς καὶ τῆς αὐτῆς εὐθείας συμπίπτουσιν ἀμφό - τεραι , ἐπὶ δὲ τῶν ἄλλων πασῶν | ||
| . προσήκει μέντοι μηδὲ τοῦτ ' ἀγνοεῖν , ὅτι καιροὶ συμπίπτουσιν ἀβούλητοι πολλάκις , ἐν οἷς ἀνδροφονεῖ τις οὐκ ἐπὶ |
| κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
| τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
| οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
| ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
| συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ ἐκτὸς τῆς τομῆς . κατήχθωσαν γὰρ ἀπὸ τῶν Ε , Ζ τεταγμένως ἐπὶ μὲν | ||
| ὅτι ἡ ΕΖ συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ . κατήχθωσαν ἀπὸ τοῦ Η ἐπὶ τὰς ΑΒ , ΓΔ τεταγμένως |
| τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν | ||
| τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ , |
| ΒΓ : αἱ ἄρα ΑΓ , ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προκείμενα : λέγω , ὅτι τῇ ΑΒ ἑτέρα | ||
| Κεχαρίσθω δὲ εἶπεν ἐπειδὴ αἱ Χάριτές εἰσιν αἱ πάντα ἐράσμια ποιοῦσαι . Δύναται δὲ καί τις καὶ τὸ μακρότερα οὕτως |
| . χρησιμώτεραι δ ' εἰσὶ κινήσεις αἱ ἐξ ἡμῶν αὐτῶν γινόμεναι , τὴν ὁρμὴν ἐκ βάθους ἔχουσαι καὶ ἐνέργειαι ἡμέτεραι | ||
| αἱρετάς , οἷον τὰς καλάς . αὗται δέ εἰσιν αἱ γινόμεναι , ὅταν ἡ ψυχὴ ἐνεργῇ περὶ τὴν τῶν καλλίστων |
| σὴν ὑπόστασιν ἐξ ἀιδίου καὶ τὴν τούτου σύμβασιν . Εἴτε ἄτομοι εἴτε φύσις , πρῶτον κείσθω ὅτι μέρος εἰμὶ τοῦ | ||
| ὅλον [ ] ἰσοταχεῖς [ εἰσιν ] [ ] αἱ ἄτομοι λέγειν [ ] δ ' [ ἔστιν ] ε |
| . ἐπεὶ ἴση ἡ ΑΜ τῇ ΔΖ , καὶ αἱ ἡμίσειαι ἄρα ἴσαι εἰσίν . ὥστε καὶ τὸ ἀπὸ τῆς | ||
| δὲ αὐτῶν ἴσαι περιφέρειαι ἀποληφθῶσι πρὸς τοῖς πέρασιν ἐλάττους ἢ ἡμίσειαι οὖσαι τῶν ὅλων τμημάτων , ἀπὸ δὲ τῶν κύκλων |
| τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς | ||
| ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς |
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω | ||
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν |
| ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν | ||
| ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν |
| τρεῖς εὐθείας τὰς ΒΝ , ΒΓ , ΒΖ δύο εὐθεῖαι διηγμέναι εἰσὶν αἱ ΔΕ , ΔΝ , ἔστιν , ὡς | ||
| δοθεῖσα τῇ θέσει καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ |
| κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
| ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
| τοῦ ἄρα δʹ ἄστρου ἐστὶν ἡ ἑῴα ἀληθινὴ ἐπιτολή : ὕστεραι δέ εἰσιν αἱ φαινόμεναι τῶν ἀληθινῶν . Ἔστω δὴ | ||
| τῷ τὴν ἐαρινὴν ἰσημερίαν περιέχοντι τῶν εἰρημένων ἡμισφαιρίων ἀπολαμβανομένων αἱ ὕστεραι κατὰ πλάτος πρὸς τὸν ἰσημερινὸν σχέσεις βορειότεραι πᾶσαι τῶν |
| Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
| ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
| δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν | ||
| Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους |
| ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
| τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
| ἡ δευτέρα διάμετρος ἡ αὐτὴ οὖσα καὶ πᾶσαι αἱ τεταγμένως ἀγόμεναι . τέτμηται ἄρα καὶ ὁ κῶνος τῇ αὐτῇ ἐλλείψει | ||
| κέντρου τῆς σφαίρας : πᾶσαι γὰρ αἱ ἀπὸ τοῦ Σ ἀγόμεναι ἐπὶ τὰς πλευρὰς κάθετοι , ὡς αἱ ΣΜ , |
| , δῆλον , ὅτι τὰς ἀπεναντίον ἀπέφηνε παραλλήλους καὶ τὰς ἐπιζευγνυούσας καὶ τὰς ἐπιζευγνυμένας . τὸ δὲ ὑπὸ παραλλήλων περιεχόμενον | ||
| τῶν ἀνταιρόντων μερῶν τῆς οἰκουμένης ποιήσουσί τι παραλληλόγραμμον πρὸς τὰς ἐπιζευγνυούσας διὰ τῶν ἄκρων αὐτάς . ὅτι μὲν οὖν ἐν |
| τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
| τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
| , τὸ δὲ ὑπὸ ΑΔ ΓΒ τῷ ἀπὸ ΕΗ . Ἐπεζεύχθωσαν γὰρ αἱ ΗΓ ΗΔ ΑΖ ΖΒ . ἐπεὶ οὖν | ||
| σφαίρας διάμετρος δυνάμει τριπλασία ἐστὶ τῆς πλευρᾶς τοῦ κύβου . Ἐπεζεύχθωσαν γὰρ αἱ ΚΗ , ΕΗ . καὶ ἐπεὶ ὀρθή |
| εἴποιμεν , ὡς αἱ ἀπὸ τοῦ ὄμματος πρὸς τὸ ΚΛ προσπίπτουσαι ὄψεις διὰ τῶν Γ , Δ σημείων ἐλεύσονται . | ||
| σφαίρας . καὶ αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται |
| τὴν κόμην , ὅπως ὀρθοφυῆ τ ' ᾖ καὶ αἱ ῥάβδοι μὴ ἀπαρτῶνται . μετὰ δὲ ταῦτα περιτέμνουσιν , ὁπόταν | ||
| λαγαραί * στίλβουσι : λάμπουσι * διαυγέες : καθαραί * ῥάβδοι : γραμμαί ἀίδηλον ἤτοι δήξαντος ἀπροσδοκήτως φρίκη ἔδραμεν ἐπὶ |
| . Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
| μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
| , ὅπερ ἂν ἕλωνται : καὶ παρακολουθήσουσιν αὐτοῖς αἱ ἔμπροσθεν εἰρημέναι ἀπορίαι . εἰ δὲ ταῖς αἰσθήσεσι τὰς αἰσθήσεις καὶ | ||
| τοῦ μηροῦ ἐς τὴν ἀρχαίην φύσιν . Αὗται πᾶσαι αἱ εἰρημέναι ἀνάγκαι ἰσχυραὶ , καὶ πᾶσαι κρέσσους τῆς ξυμφορῆς , |
| ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
| μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
| . τέτταρα γοῦν ἐνταῦθα πάντα ἔστιν ἀγγεῖα , δύο μὲν ἀρτηρίαι , δύο δὲ φλέβες , μέσον ἑαυτῶν περιλαμβάνουσαι τὸν | ||
| ταύτης δευτέρας διαθέσεις ἐσήμαινον . οὐ γὰρ ἄν μεταβληθεῖεν αἱ ἀρτηρίαι , μὴ πρότερον τῆς καρδίας μεταβληθείσης : οὕτω δὴ |
| ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
| ͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
| τῶν Κ , Λ ταῖς ΒΘ , ΒΗ πρὸς ὀρθὰς ἀχθεῖσαι αἱ ΚΓ , ΛΜ διήχθωσαν ἐπὶ τὰ Α , | ||
| συζυγεῖς δὲ διάμετροι καλείσθωσαν , αἵτινες ἀπὸ τῆς γραμμῆς τεταγμένως ἀχθεῖσαι ἐπὶ τὰς συζυγεῖς διαμέτρους ὁμοίως αὐτὰς τέμνουσι . τοιούτων |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| τῶν πόνων παύσασθαι οὔτε τῶν πυρετῶν . Καὶ οἷσι μὲν ὀξύτητες προσίστανται δριμεῖαί τε καὶ ἰώδεες , οἷαι λύσσαι , | ||
| τὸν κίονα πλάτους , ὅπως αἱ μὲν περὶ τὰς γωνίας ὀξύτητες τέμνωσι τὴν καταφορὰν τοῦ ῥεύματος , αἱ δὲ περιφέρειαι |
| καὶ πρὸ τῆς ψυχῆς , δῆλον ὅτι αἱ τῆς ψυχῆς στιγμαὶ ἐν τῷ αὐτῷ ἔσονται τόπῳ ταῖς ἐν τῷ σώματι | ||
| τῷ μεγέθει πηχυαῖα , ἐκ πάχους ἐπὶ λεπτὸν ἠγμένη : στιγμαὶ δὲ καθ ' ὅλον τὸ σῶμα εἰσὶ κιρραὶ καὶ |
| ἢ ἐννεακαιδεκάτῳ . ὁ τόνος διαι - ρεῖται εἰς ἡμιτόνια ἄνισα δύο , εἴς τε μεῖζον καὶ ἔλαττον , ὧν | ||
| συνεχές , καὶ διῄρηται ἡ τοῦ ἐφεστῶτος τμήματος περιφέρεια εἰς ἄνισα κατὰ τὸ Χ , καὶ ἡ ΨΧ περιφέρεια ἐλάσσων |
| δὲ ἐπὶ πλειόνων καὶ γνοὺς ὅτι οὐ μόνον ἐπὶ πλειόνων διήκουσιν αἱ ἰδιότητες τοῦ κοινοῦ , λέγω δὲ τοῦ ἁπλῶς | ||
| ∠ ʹʹδʹʹ νʹ ∠ ʹʹδʹʹ Ὑπὸ δὲ τοὺς εἰρημένους πάντας διήκουσιν ἀπὸ τοῦ Λίγειρος ποταμοῦ ἐπὶ τὸν Σηκοάναν Αὐλίρκιοι οἱ |
| , τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ | ||
| . κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| μέσους δρόμους ὦσιν , ὅπου μείζους εἰσὶν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον , | ||
| λϚ , τετραπλάσιος τοῦ θ , ἀπλανῶν . Αἱ δὲ ὑπεροχαί : λϚ ὑπερέχει δ , λβ η , κδ |
| δέον μὴ ἀνάλωσεν . Εἰρῆσθαι δέ φησι πρότερον , ὅτι ὑπερβολαὶ καὶ ἐλλείψεις εἰσὶν ἡ ἀσωτία καὶ ἡ ἀνελευθερία : | ||
| γὰρ τῷ πλεονάζειν τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . |
| τέμνουσι τὸ Ν τοὺς πόλους ἔχοντες ἐπ ' αὐτοῦ , ἐφάψονται ἄρα ἀλλήλων : ὁ ΓΝΞ ἄρα τοῦ ΑΒ κύκλου | ||
| ἀντικειμένων , καὶ αἱ ἁπὸ τῶν συμπτώσεων ἐπὶ τὸ Δ ἐφάψονται τῶν ἀντικειμένων . ἤχθωσαν ἐφαπτόμεναι αἱ ΔΕ , ΔΖ |
| ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
| τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
| ἐκ τοῦ ὀδυνωμένου μέρουϲ . λύουϲι δὲ αἱ ἐκ ῥινῶν αἱμορραγίαι πολλάκιϲ καὶ φρενῖτιν , οὐ μέντοι λήθαργον ἢ περιπνευμονίαν | ||
| ϲτομάχῳ ἐϲτὶν ἡ ῥῆξιϲ : εἰ ὦν ἀπορραγῇ κοτε , αἱμορραγίαι οὐ κάρτα μεγάλαι , ὁκοῖαι ἀπὸ θώρηκοϲ : ἰϲχνὰ |
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . : Νικόλαος δ | ||
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . Τιρυνθίους δέ φησι |
| ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
| . ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
| . πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ | ||
| οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ |
| κήδετο λίην : πρὸς τὸ τοιοῦτο οὖν εὐτρεπίζοιντο αἵ τε ὀρθοτονούμεναι εἰς τὸ ἀμετάβατον τοῦ προσώπου , λέγω εἰς τὸ | ||
| αἱ μὲν οὖν ἐγκλινόμεναι τῶν ἀντωνυμιῶν αὗταί εἰσιν , αἵτινες ὀρθοτονούμεναι μὲν ἀντιδιαστολὴν ἔχουσιν ἑτέρου προσώπου : ἐμοῦ ἤκουσας , |
| σμικραὶ σφαῖραι καὶ σκληραὶ , οἷαι ἐκ τῶν πολλῶν σκυτέων ῥάπτονται : ἢν γὰρ μή τι τοιοῦτον ἐγκέηται , οὐ | ||
| εἰς τὸ ἴρινον ἢ κύπρινον καθήσομεν , ἢ δακτυλήθρας : ῥάπτονται δ ' αἱ δακτυλῆθραι ἐκ δέρματος Καρχη - δονίου |
| ΛΜ , ΝΞ διαμέτρους αἱ ΔΟ , ΕΠ τεταγμένως καὶ προσεκβεβλήσθωσαν ἐπὶ θάτερον μέρος τῆς ἐπιφανείας κατὰ τὸ Ρ καὶ | ||
| περιγεγράφθω περὶ τὸ ΑΕΔ τρίγωνον κύκλος ὁ ΑΕΔ . καὶ προσεκβεβλήσθωσαν ταῖς ΕΒ , ΕΓ εὐθείαις εὐθεῖαι αἱ ΒΖ , |
| ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου δειχθήσονται , οἱ δὲ καὶ διὰ τῆς ἀντιστροφῆς : καὶ | ||
| ζʹ : ὁ γὰρ τῶν ΒΓ καὶ ΓΔ μετὰ ταῦτα δειχθήσονται . εὑρεθήσονται τοίνυν μεῖζον τόνου ποιοῦντες μέγεθος ἑκάτεροι οἵ |
| ἀρχομένων ὑπ ' αὐτῶν ἤτοι τῶν σχολῶν , ἐν αἷς ἀναφέρονται . εἰ δὲ συμβῇ τινας αὐτῶν μαχομένους γενέσθαι πληγάτους | ||
| τεκνοποιοῦνται . Τὸ δὲ τοῦ Τοξότου δωδεκατημόριον , εἰς ὃ ἀναφέρονται οἱ μηροί , οἶκος τοῦ Διός , δίσωμον , |
| γνώσεων αἱ μὲν πρακτικαὶ αἱ δὲ θεωρητικαί , ἄμφω δὲ πεπερασμέναι . αἵ τε γὰρ πρακτικαί , ἐπεὶ πᾶσαι ἑτέρων | ||
| ἀριθμὸν δὲ οὔ , ἢ καὶ κατ ' ἀριθμόν εἰσι πεπερασμέναι , ὡς εἶναι ἓν κατ ' ἀριθμὸν τὸ ποιητικὸν |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| καταλαβεῖν . ἔπειτα παρὰ φύσιν οὐ φαίνεται , καὶ αἱ κοινότητες παρὰ φύσιν εἰσὶν , δηλονότι οὐ φαίνονται . ἄξιον | ||
| εἴπερ ἡ κοινότης ταὐτότης ἐστὶν ἐν πλείοσι , καὶ αἱ κοινότητες , καθ ' ὃ κοινότητές εἰσιν , ἐνεδείκνυντο : |
| Τὸ δ ' ὅλον , αἱ μὲν αἰσθήσεις καὶ αἱ φαντασίαι καθαπερεὶ κάτοπτρα καὶ εἰκόνες ἐοίκασι τῶν πραγμάτων εἶναι : | ||
| ? [ σκέψιν ποιεῖσθαι ] . αἱ μὲν [ γὰρ φαντασίαι ] τῶν ? ἀπόντων [ ἀπὸ τῆς ὄψεως ] |
| ἔσται ἅπαντα κατὰ τὰ αὐτά . Κείσθωσαν τῇ ΕΗ περιφερείᾳ ἴσαι περιφέρειαι αἱ ΗΘ , ΘΚ , ΚΛ , ἡ | ||
| , ΗΘ , ΘΚ ἐπὶ τῆς τοῦ λοξοῦ κύκλου περιφερείας ἴσαι ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων |
| εἰσι μὲν εὔρωστοι σφόδρα , ὀλιγάκις δὲ καὶ οὐκ ἀκινδύνως διαιροῦνται διὰ τὴν γειτνίασιν τῶν μυῶν καὶ διὰ τὴν ἐπιπλοκὴν | ||
| ἀδιαίρετοι , ἀλήθεια γοργότης δεινότης κάλλος , αἱ δὲ τρεῖς διαιροῦνται εἰς ἑτέρας δώδεκα , ὡς εἶναι τὰς πάσας ἑκκαίδεκα |
| Καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ , ΒΗ , ΗΘ ἀλλήλαις , ἴσα ἐστὶ καὶ τὰ ΑΘΗ , ΑΗΒ , | ||
| , ἀνδρειοτέρας ἡγῇ τὰς γυναῖκας , ὅτι ἐγγύτατα μάχονται ἐπιπεσοῦσαι ἀλλήλαις ; ὁ δὲ Ἀχιλλεὺς ταῦτα ἀκούων ἅμα θυμοῦ καὶ |
| κτίσμα ἐν τῷ τόπῳ ἱδρυμένον τούτῳ , ὃς καλεῖται Ἐννέα ὁδοί : εἶτα Γαληψὸς καὶ Ἀπολλωνία , κατεσκαμμέναι ὑπὸ Φιλίππου | ||
| , ἐσχισμέναι πέτραι , κεχαραγμένοι τόποι , φωλεαὶ ἢ διεσχισμέναι ὁδοί . Ῥωγάδες : διεσχισμέναι , ἐκ παραλλήλου , ἐσχισμένοι |
| τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ | ||
| δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον |
| καὶ [ Γαλλίαν ] Ναρβωνησίαν . Ἀλλ ' αἱ μὲν προειρημέναι τρεῖς ἐπαρχίαι προσοικοῦσι τῷ ὠκεανῷ πρὸς τὰς ἄρκτους ἐστραμμέναι | ||
| παρ ' ἑκάτερα δὲ τοῦ ποταμοῦ αἱ διατριβαί εἰσιν αἱ προειρημέναι καὶ αἱ ἀνάπαυλαι . διὰ μέσων δὲ τῶν Τεμπῶν |
| μήτε προάγειν , | ὃ ποιοῦσιν αἱ προπετεῖς τε καὶ φερόμεναι τῶν αἰσθήσεων , μήθ ' ὑστερίζειν , ὃ ποιοῦσιν | ||
| καθαρῷ γὰρ καὶ πάντοθεν ἀναπεπταμένῳ ἀέρι λεπταὶ καὶ θυμηδεῖς ἀναθυμιάσεις φερόμεναι περιτήκουσι τῶν σωμάτων τὰ νοσερὰ μετὰ τοῦ τὴν λοιπὴν |
| χρὴ καὶ τὸν τῆς φύσεως λόγον καὶ τὸν τοῦ ἀνθρώπου βεβηκέναι πάντῃ καὶ κατὰ μηδ ' ὁτιοῦν κραδαίνεσθαι . παρὸ | ||
| , τὰς δὲ συνθέσεις αὐτοφυῶς συγκεῖσθαι , καὶ τὰς ἀναπαύσεις βεβηκέναι ἐπί τινων ὀνοματικῶν ἢ ἄλλως μακροτέρων ἢ τοῖς χρόνοις |
| πρὸς τὰς ἐκ μεταθέσεως παραβάλλοις , ταῖς μὲν ἀποφάσεσι τὰς καταφάσεις ἑπομένας εὑρήσεις , οὐκέτι μέντοι τὰς ἀποφάσεις ταῖς καταφάσεσιν | ||
| ὅτι ὁ μὴ ἀξιῶν τὰ μέρη τοῦ λόγου θεωρεῖν ὡς καταφάσεις , ἀλλ ' ὡς ἁπλᾶς φωνάς , πολλῷ δήπου |
| περιφέρειαι ἐν ἴσοις χρόνοις ἀνατέλλουσιν . ἔστω ὁρίζων κύκλος ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ἔστω ὁ ΑΓ , | ||
| τῶν ΔΓΖ ἐστιν ἴση , ἐπειδήπερ ἐν κύκλῳ ἐστὶ τὸ ΑΒΔΓ τετράπλευρον : βάσις ἄρα ἡ ΑΔ βάσει τῇ ΔΖ |
| κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
| Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
| ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος | ||
| μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν |
| γὰρ μεγίστων ἀποστάσεων τηρήσεις , ἐφ ' ὧν αἱ ἑῷοι πάροδοι ταῖς ἑσπερίοις ἴσον ἀπὸ τῆς ἡλιακῆς μέσης παρόδου , | ||
| . θʹ . πῶς ἀπὸ τῶν περιοδικῶν κινήσεων αἱ ἀκριβεῖς πάροδοι γραμμικῶς λαμβάνονται . ιʹ . πραγματεία τῆς τῶν ἀνωμαλιῶν |
| διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
| , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
| ἄλογοί εἰσι καὶ ῥηταί : ᾗ μὲν γὰρ μήκει εἰσὶν ἀσύμμετροι , ἄλογοι , ᾗ δὲ δυνάμει σύμμετροι , ῥηταί | ||
| , ΔΒ ῥητόν ἐστιν . Εὕρηνται ἄρα δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΔ , ΔΒ ποιοῦσαι τὸ [ μὲν ] |
| ἡ μεσότης αὐτοῦ προστίθεται τῷ ἰνίῳ , ἔπειτα ἀπάγονται δύο λοξαὶ ὑπὸ λοβοὺς ὤτων κατὰ τῶν ὀφθαλμῶν ὡς ἐπὶ τὸ | ||
| ὑπ ' ἀνθερεῶνα , εἶτα παρειαὶ καὶ ἐπὶ βρέγμα , λοξαὶ ἐπὶ ἰνίον , εἶτα γενειὰς καὶ μετωπιαίας . Κεφ |
| ἐν οἴνῳ διεὶς κεκρημένῳ , πίνειν διδόναι . Ἢν αἱ μῆτραι μὴ κατέχωσι τὴν γονὴν , μόλυβδον καὶ λί - | ||
| δέονται καὶ κλυσμῶν καὶ θυμιημάτων . Ἢν δὲ λειανθέωσιν αἱ μῆτραι , τὰ ἐπιμήνια πλείω γίνεται καὶ κακίω καὶ ὑγρότερα |
| τε καὶ ἐκ βέμβικες ὄρειαι γλεῦκος ἅλις δαίνυνται ἐπὶ ῥαγέεσσι πεσοῦσαι , πιοτέρην ὅτε βότρυν ἐσίνατο κηκὰς ἀλώπηξ . Καί | ||
| φάος ὄσσων . ἔνθα δ ' ἐν εὐρωποῖσιν ἁλὸς λαγόνεσσι πεσοῦσαι αὔτως δηθύνουσιν , ἀεξόμεναι δὲ μένουσι λαρὸν ἔαρ : |
| πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν | ||
| τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία |
| δαρόν , ἔνθα λάβρος Ἲς γείτων θ ' ὁ Λᾶρις ἐξερεύγονται ποτά . Λίγεια δ ' εἰς Τέριναν ἐκναυσθλώσεται , | ||
| : μετὰ δὲ ταῦτα τὴν Βαβυλωνίαν διελθόντες εἰς τὴν Ἐρυθρὰν ἐξερεύγονται θάλατταν . μεγάλοι δ ' ὄντες καὶ συχνὴν χώραν |
| Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
| τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
| γινόμενον ἐν ἑνί . εἰσὶ γὰρ ὀργιλότητος πλείους διαφοραὶ καὶ ἐναντίαι , ἃς ἅμα οὐχ οἷόν τε ἐν τῷ αὐτῷ | ||
| τοῖς οἰκοδεσπόταις , μέτριαι δὲ καὶ ἄδοξοι καὶ καθαιρετικαὶ καὶ ἐναντίαι αἱ γινόμεναι ἔκ τε Κρόνου καὶ Ἄρεος . βέλτιον |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
| τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
| μαλάγματα . διαφοραὶ δὲ τῶν ἀκόπων τρεῖς , θερμαντικαί , μαλακτικαί , ἀμυκτικαί . τοῖς μὲν οὖν θερμαίνουσι χρώμεθα ἐν | ||
| μήκους πληρώσει τὸν κάλαμον . Αἱ δὲ κολόκυνται γαστρός εἰσι μαλακτικαί . θεραπεύουσιν ὤτων ὀδύνας , τοῦ χυλοῦ αὐτῶν ἐμβαλλομένου |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |