τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς
8193731 ἰσαι
ἔσται ἅπαντα κατὰ τὰ αὐτά . Κείσθωσαν τῇ ΕΗ περιφερείᾳ ἴσαι περιφέρειαι αἱ ΗΘ , ΘΚ , ΚΛ , ἡ
, ΗΘ , ΘΚ ἐπὶ τῆς τοῦ λοξοῦ κύκλου περιφερείας ἴσαι ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων
7234145 γωνια
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ
7189132 ὀρθαις
διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς τέτρασιν ὀρθαῖς ἴσας γωνίας διανέμεται . Τὰς ἐφεξῆς γωνίας τῶν κατὰ
ΔΕΖ . Εἰ γὰρ παντὸς τριγώνου αἱ γ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν , ὡς ἐν τῷ λβʹ θεωρήματι τοῦ
7156119 πλευραι
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ ,
7039074 ἀπεναντιον
διάμετρος δίχα τέμνουσιν ἀλλήλας . Κύβου γὰρ τοῦ ΑΖ τῶν ἀπεναντίον ἐπιπέδων τῶν ΓΖ , ΑΘ αἱ πλευραὶ δίχα τετμήσθωσαν
. Ἐὰν στερεὸν παραλληλεπίπεδον ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους τῶν ἀπεναντίον ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου
6801383 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ
6760356 ΓΒΑ
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΒ , ΓΒΑ , ΓΑΒ ἄρα δυσίν ὀρθαῖς ἴσαι εἰσίν . Παντὸς
τῶν ΔΗΕ , περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ τῶν ΓΒΑ , ΕΔΗ τὰς πλευρὰς ἀνάλογον , τῶν δὲ λοιπῶν
6759859 ὀρθαι
, τοιούτων δ μ , οἵων δ ' αἱ δ ὀρθαὶ τξ , τοιούτων β κ , ἃ καὶ παραθήσομεν
ἡ ὑπὸ ΞΘΖ γωνία , οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων με ιγ , οἵων δ '
6757326 παραλληλοι
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ
6724535 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
6653858 τριγωνου
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ
6635681 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
6618661 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
6582847 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
6582370 ἐπιπεδοις
διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ
ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν
6577502 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
6569084 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
6540352 γραμμαι
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ
6531503 ΔΗΘ
ΔΘ μείζων ἐστὶν τῆς ΑΛ . καὶ ἔστιν ὅμοια τὰ ΔΗΘ ΑΚΛ τρίγωνα : ὡς ἄρα ἡ ΔΘ πρὸς ΘΗ
αὑτή ἐστιν τῇ ὑπὸ ΔΗΘ . δοθεῖσα οὖν ἡ ὑπὸ ΔΗΘ . ἀλλὰ καὶ ὀρθὴ ἡ πρὸς τῷ Θ .
6521460 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
6509014 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6501744 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
6494892 δεδομεναι
πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι εἰσὶν αἱ ΚΕ , ΕΖ , ὁ πρὸς ἀλλήλας
: ὅμοιον γάρ ἐστι τῷ ΑΒ : τοῦ ΑΗ ἄρα δεδομέναι εἰσὶν αἱ πλευραί : δοθεῖσα ἄρα ἐστὶν ἑκατέρα τῶν
6489056 γωνιᾳ
ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ
περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς
6481610 ἰσας
τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ , ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν : ἐπ ' εὐθείας ἄρα ἐστὶν ἡ ΒΓ
εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ , ἴσας γωνίας περιέξουσιν . Δύο γὰρ εὐθεῖαι αἱ ΑΒ ,
6474968 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
6471856 βασεις
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα |
6470994 ΓΑΔ
ΓΒΑ , ΑΓΒ , ΒΑΓ , ΑΓΔ , ΓΔΑ , ΓΑΔ , ΑΔΒ , ΔΒΑ , ΒΑΔ ἓξ ὀρθαῖς ἴσαι
καὶ ἀπὸ τοῦ Α τῇ ΑΒ πρὸς ὀρθὰς ἤχθω ἡ ΓΑΔ : τεταρτημορίου ἄρα ἐστὶν ἡ ΒΔ περιφέρεια . λέγω
6424543 ἐκβαλλομεναι
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ .
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ
6409058 διαμετροι
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν
6399301 συναμφοτεραι
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ
6397635 τριγωνα
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου
6392528 ἰσοσκελη
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν
6392316 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
6370739 τυλοις
τότε περιειλουμένων τοῖς ἄνω τροχίλοις , εἶτ ' ἀποδιδομένων τοῖς τύλοις τοῦ ἄξονος , γίνεται ἡ κατ ' ἀντιμετάληψιν κατάτασις
τῶν κάτω τροχίλων , εἶτ ' ἀνάγονται καὶ ἀποδίδονται τοῖς τύλοις , ἵνα τῇ τοῦ ἄξονος κινήσει ἡ δεδηλωμένη τάσις
6368241 ΕΔΖ
ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα , περὶ δὲ τὰς ἴσας γωνίας τὰς
γωνίας , ἴσον δὲ ἔστω τὸ ὑπὸ ΒΑΓ τῷ ὑπὸ ΕΔΖ : ὅτι καὶ τὸ τρίγωνον τῷ τριγώνῳ ἐστὶν ἴσον
6365097 τομαι
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ ,
6327184 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6313247 ΑΒΕ
ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν , καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν , καὶ αἱ
πρὸς ὅλην καὶ ἀναστρέψαντι καὶ χωρίον χωρίῳ τὸ ἄρα ὑπὸ ΑΒΕ ἴσον ἐστὶν τῷ ὑπὸ ΓΒΔ . Φανερὸν δὲ ὅτι
6298171 ἰσοσκελων
τῶν μεταξὺ τῶν Β , Γ σημείων τὰς βάσεις ἐχόντων ἰσοσκελῶν . Ἐὰν ἐπὶ τῆς αὐτῆς βάσεως δύο τρίγωνα συστῇ
. Ἰστέον , ὡς τὸ θεώρημα τοῦτο ἐπὶ μὲν τῶν ἰσοσκελῶν καὶ ἰσοπλεύρων τριγώνων σῴζει τὸ οἰκεῖον , ἐπὶ δὲ
6288200 γωνιαις
τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς αἱ ἴσαι πλευραὶ
ἐπεὶ γὰρ τριγώνου τοῦ ΓΒΝ αἱ γ γωνίαι ταῖς τρισὶν γωνίαις τριγώνου τοῦ ΒΝΚ ἴσαι , ἐξ ὧν αἱ δύο
6262758 κυκλοις
γωνία τῇ πρὸς τῷ Δ . Ἐν ἄρα τοῖς ἴσοις κύκλοις αἱ ἐπὶ ἴσων περιφερειῶν βεβηκυῖαι γωνίαι ἴσαι ἀλλήλαις εἰσίν
ὦ παῖ : δεῖ γὰρ κλέπτεσθαι τοὺς ὀφθαλμοὺς τοῖς ἐπιτηδείοις κύκλοις συναπιόντας . οὐδὲ αἱ Θῆβαι ἀμάντευτοι : λόγιον γάρ
6250297 ΖΑΒ
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ
6249666 περιεχονται
εὑρέσεις , αἱ δὲ εὑρέσεις οὐ περιέχουσι τὰ κεφάλαια ἀλλὰ περιέχονται . Καὶ τὸ πάντων μέγιστον , ὅτι τὰ μὲν
εἰ ἀσώματοί εἰσι μόνως οἱ θεοί ; ὅτι δὴ οὐ περιέχονται ὑπὸ τῶν σωμάτων , φαμὲν ἡμεῖς , ἀλλὰ ταῖς
6245233 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
6244231 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6225142 ΔΑΒ
ἄρα πρὸς τὴν ὑπὸ ΒΑΓ μείζονα λόγον ἔχει ἢ τὸ ΔΑΒ τρίγραμμον πρὸς τὸ ΒΑΓ τρίγωνον . καὶ ἀνάπαλιν τὸ
αἱ ἄρα ὑπὸ ΔΑΒ ΒΑΓ ΓΑΕ , τουτέστιν αἱ ὑπὸ ΔΑΒ ΒΑΕ , τουτέστιν αἱ δύο ὀρθαὶ ἴσαι εἰσὶ ταῖς
6200809 ΑΓΒ
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΕ , ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν . πρὸς δή τινι
: ἡ ἄρα ὑπὸ ΒΓΔ μετὰ τῶν ὑπὸ ΓΒΔ , ΑΓΒ οὐ μείζονές εἰσι δυεῖν ὀρθῶν , ὅ ἐστιν αἱ
6161631 ΕΘΖ
τῇ ΕΓΜΔΖ περιφερείᾳ ἐστὶν ἴση : μέγιστοι γάρ εἰσιν οἱ ΕΘΖ , ΑΒΓΔ [ ] : ὧν συναμφότερος ἡ ΑΕ
χειμερινὸν δὲ τὸ ΚΖ , ζῳδιακοῦ θέσις ὁτὲ μὲν ἡ ΕΘΖ , ὁτὲ δὲ ἡ ΗΘΚ , ἀνατολικῶν ὄντων μερῶν
6158219 ΑΒΓ
ὁρίζοντές εἰσιν οἱ ΕΜΖ ΑΒΓ τούτῳ μόνον διαφέροντες τῷ τὸν ΑΒΓ πρὸς ἀνατολὰς μᾶλλον τετάχθαι ἤπερ τὸν ΕΜΖ , τὰ
: καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου . διὰ
6146966 ἐπιφανειαι
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται .
6145388 ►των
σμζ : ἅπερ προέκειτο δεῖξαι . ►αἱ ἐπίπεδοι γωνίαι περιέχονται ►τῶν τριπλεύρων ἰσόπλευρον ἰσοσκελές σκαληνόν◄ ► τῶν τριγώνων ἀμβλυγώνιον ὀρθογώνιον
, οὐχ ὁ ἐρωτῶν . ἐάν σε ἔρωμαι κτλ . ►τῶν ἐρωτήσεων αἱ μὲν πευστικαὶ πλείονος λόγου δέονται αἱ δὲ
6140469 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6135631 ἀντικειμεναι
ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ ,
μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ
6129762 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
6085690 περιτιθεσθωσαν
ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς ἄξοσιν , περιτιθέσθωσαν δὲ τῇ ῥάχει ἤτοι ἰσότονοι βρόχοι δύο , εἷς
τῷ τύλῳ τοῦ ἄξονος , ἢ ἔξωθεν ἔσω , καὶ περιτιθέσθωσαν ταῖς σκυτάλαις τοῦ ἄξονος , ἵνα συνεπιστρεφομένου τοῦ ἄξονος
6076299 βασεων
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν
6069245 περασιν
εἰ μὴ τὴν ἀλεξίκακον τῷ κρυμῷ θάλψιν ἐκ ῥιζῶν τοῖς πέρασιν ἐσπᾶτο καὶ ἠρύετο ; πόθεν δὲ καὶ τὰ φυλλορροοῦντα
ἐπιζευχθείσης ὁμοίως τῆς ὑπὸ δύο πλευρὰς ὑποτεινούσης εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς
6059899 περιφερειαι
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ ,
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις
6059275 βεβηκυιαι
δεῖξαι . Ἐν τοῖς ἴσοις κύκλοις αἱ ἐπὶ ἴσων περιφερειῶν βεβηκυῖαι γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐάν τε πρὸς τοῖς
τοῖς γεωμέτραις . Ὁπόταν γὰρ περιφέρειαι ἐπὶ ἴσων γωνιῶν ὦσι βεβηκυῖαι , ἂν μία ἡτισοῦν αὐτῶν δέκατον ᾖ μέρος τοῦ
6035783 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
6021401 ΑΗΘ
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν
6016326 ὁμοιαι
δ ? ' ἐξέχυτ ? ' : οὐ γὰρ [ ὁμοῖαι ] [ ἀθάναται ] θνηταῖσι βολαὶ [ κατὰ ]
, ἐπ ' ἀλλήλῃσι δὲ πᾶσαι σκιρτεῦσιν μὲν πρῶτα χοροιτυπέουσιν ὁμοῖαι , εἶτα δέμας βαρύθουσι , προσώπατα δ ' ἐς
6002822 ΓΔΚ
ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ κῶνον καὶ ὁ ΕΒ κύλινδρος πρὸς τὸν ΖΔ κύλινδρον
καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον , οὕτως ὁ ΓΔΘ κῶνος ἢ
5998799 ἀνισοι
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ
5988862 ἐλασσονες
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ
5983278 ὀρθων
μείζους , αἱ λοιπαὶ αἱ ὑπὸ ΒΖΗ , ΔΗΖ δύο ὀρθῶν ἐλάσσους . ἀλλὰ καὶ δύο ὀρθῶν μείζους αἱ αὐταί
ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ , ἐκβαλλομένας τὰς δύο εὐθείας ἐπ '
5981974 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
5981573 τριγραμμον
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν
5981126 ἀσυμπτωτοι
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων
5972989 ἰσοπλευρων
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον ,
5969902 ἑξαγωνου
, ἡ ΟΕ ἄρα δεκαγώνου ἐστὶ πλευρά . καὶ ἐπεὶ ἑξαγώνου . , ] ἴση γὰρ ὑπόκειται τῇ ἐκ τοῦ
ἐπὶ τὰ ἕτερα μέρη ὡς ἡ ΦΨ , καὶ ἀφῃρήσθω ἑξαγώνου μὲν ἡ ΦΧ , δεκαγώνου δὲ ἑκατέρα τῶν ΦΨ
5966895 τριγωνον
τὸ χωρίον πρὸς τὸ τρίγωνον λόγον ἕξει δεδομένον . ἔστω τρίγωνον ὀξυγώνιον τὸ ΑΒΓ , ὀξεῖαν ἔχον γωνίαν δεδομένην τὴν
μαθημάτων : καὶ γὰρ ὁ γεωμέτρης διὰ τί μὲν τὸ τρίγωνον ἔχει τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας ζητεῖ ,
5960306 ἐλλειψεις
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν
5943550 ΛΘΚ
ΝΒΜ , τὸ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ ὑπὸ ΛΘΚ . τὸ δὲ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ
πρὸς τὸ ΛΗΘ , καὶ ἔτι τὸ ΕΓΔ πρὸς τὸ ΛΘΚ , καὶ ὡς ἄρα ἓν τῶν ἡγουμένων πρὸς ἓν
5942160 ΑΗΓ
ἢ τοῦ αὐτοῦ ἐφάπτονται τῶν παραλλήλων . ἤτοι γὰρ ὁ ΑΗΓ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων ἢ οὔ
πολυγώνου περιμέτρου , τὸ αὐτὸ μέρος ἐστὶν καὶ ἡ ὑπὸ ΑΗΓ γωνία τεσσάρων ὀρθῶν , ὁμοίως δὲ καί , ὃ
5939438 εἰρημεναι
, ὅπερ ἂν ἕλωνται : καὶ παρακολουθήσουσιν αὐτοῖς αἱ ἔμπροσθεν εἰρημέναι ἀπορίαι . εἰ δὲ ταῖς αἰσθήσεσι τὰς αἰσθήσεις καὶ
τοῦ μηροῦ ἐς τὴν ἀρχαίην φύσιν . Αὗται πᾶσαι αἱ εἰρημέναι ἀνάγκαι ἰσχυραὶ , καὶ πᾶσαι κρέσσους τῆς ξυμφορῆς ,
5934433 ΔΖΕ
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ
5933050 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
5931130 ΓΝ
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι
5903214 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
5897463 ΒΕΓ
ὡς ἄρα τὸ ΑΒΕ πρὸς τὸ ΖΗΛ , οὕτως τὸ ΒΕΓ πρὸς τὸ ΗΛΘ καὶ τὸ ΕΓΔ πρὸς τὸ ΛΘΚ
ὑπὸ τῶν ΑΕΔ τῷ ὑπὸ τῶν ΑΓΔ καὶ τῷ ὑπὸ ΒΕΓ . Τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ζ σημεῖον
5888849 τεμνονται
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει :
5868631 συναμφοτερῳ
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ
5868497 εὐθυγραμμοις
ἀκριβοῦς σελήνης . δίδοται γὰρ διὰ τὸ ἀδιάφορον ὡς ἐν εὐθυγράμμοις τὰ ΑΔΒ , ΑΒΕ τρίπλευρα τῷ εἴδει καὶ τῷ
καὶ ἀνισότης τῶν πλευρῶν ἔστι δήπου καὶ ἐν τοῖς μὴ εὐθυγράμμοις . δοκεῖ δέ μοι καὶ πρὸς ἐκεῖνο ἀπιδὼν ὁ
5864443 ΑΔΕ
τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ
τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον
5858500 περιεχουσι
: ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν
Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ
5856863 ΗΙ
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ
5852132 ἐφαπτονται
κύκλος ὁ ΛΕΝ . Ἐπεὶ οὖν ἐν σφαίρᾳ δύο κύκλοι ἐφάπτονται ἀλλήλων ὅ τε ΑΕΒ καὶ ὁ ΓΕΔ , διὰ
τὸ Ζ , ἀλλὰ κατὰ τὸ Η . ἐπεὶ οὖν ἐφάπτονται αἱ ΒΔ , ΔΑ , καὶ ἐπὶ τὰς ἁφάς
5840016 ἀξονος
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν .
5838822 ἀριθμητικοις
μετάστασίν τε καὶ μεταγωγὴν διαφόρως συντελούμεναι , οὕτως καὶ ἐν ἀριθμητικοῖς δυσὶν ὅροις , εἴτε περισσοῖς ἀμφοτέροις εἴτε καὶ ἀρτίοις
τούτους ὑμνοῦντες : τὸν δὲ ἄλλον χρόνον πρὸς θεωρήμασιν ἦσαν ἀριθμητικοῖς τε καὶ γεωμετρικοῖς , ἐκπονοῦντες ἀεί τι , καὶ
5836939 ἐλαττονες
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων .
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ
5835194 ΓΔΑ
τῇ ΓΔ ἐστιν ἴση : ὥστε καὶ γωνία ἡ ὑπὸ ΓΔΑ γωνίᾳ τῇ ὑπὸ ΔΑΓ ἐστιν ἴση : αἱ ἄρα
δυσὶ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ . ἀλλὰ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ ἴση ἐστὶν ἡ ἐκτὸς ἡ ὑπὸ ΒΓΔ
5834724 ΑΗΒ
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ
5811953 ΓΛ
ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ
τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν
5804806 ἐπιζευγνυμεναι
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ
5799194 ἰσογωνιον
ἴσον ἐστὶ τὸ ΓΘ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , τῶν ΓΘ , ΕΗ ἄρα ἀντιπεπόνθασιν αἱ πλευραὶ
μονὰς κορυφή , ἀλλ ' ἐπίπεδον αὐτῇ τὸ πέρας γίνεται ἰσογώνιον τῇ βάσει : ἐὰν δὲ πρὸς τῷ μὴ εἰς
5798568 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
5797064 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
5794119 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .

Back