ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν
8123816 τριγωνα
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου
7913378 ἰσοπλευρα
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν
7879524 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
7539520 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
7470342 παραλληλογραμμα
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν
7465807 ὀρθογωνια
πρὸς ΑΗ : ὅμοια γὰρ τὰ ΒΗΚ , ΒΗΑ τρίγωνα ὀρθογώνια : καὶ τὸ ἄρα ΓΑΔ τρίγωνον πρὸς ΘΑΚ ἐστιν
τοῦ ῥόμβου , τοῦ ῥομβοειδοῦς , εἰ μὲν κατὰ τὰ ὀρθογώνια γίνεται ἡ διαίρεσις , ἐξ ἀνάγκης καὶ τὰ χωρία
7452019 ἰσογωνια
τοῦ τριγώνου . διὰ τὸ ἰσογώνιον γίνεσθαι . , ] ἰσογώνια γίνονται τὰ τρίγωνα διὰ τὸ Ϛʹ τοῦ Ϛʹ .
: ἴση ἄρα : ὅπερ ἔδει δεῖξαι . ] Τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν
7412762 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
7401017 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
7351156 τριπλευρον
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ
7279773 ἰσοπλευρων
γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων
ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον ,
7235631 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
7211788 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
7160067 ἀπεναντιον
διάμετρος δίχα τέμνουσιν ἀλλήλας . Κύβου γὰρ τοῦ ΑΖ τῶν ἀπεναντίον ἐπιπέδων τῶν ΓΖ , ΑΘ αἱ πλευραὶ δίχα τετμήσθωσαν
. Ἐὰν στερεὸν παραλληλεπίπεδον ἐπιπέδῳ τμηθῇ κατὰ τὰς διαγωνίους τῶν ἀπεναντίον ἐπιπέδων , δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου
7071696 τραπεζια
ὡς Εὐκλείδης φησί : τὰ δὲ περὶ ταῦτα πάντα τετράπλευρα τραπέζια καλείσθω . Ἄλλως . Ἐπὶ τὴν ἀνατολὴν πρὸς τῷ
, ἐξ οὗ καὶ τὰ ἀγάλματα καὶ τὰ κλινία καὶ τραπέζια καὶ τἆλλα τὰ τοιαῦτα ποιοῦσιν . Ἡ δὲ βάλανος
7059529 ΑΒΓΔΕΖ
, κορυφὴν δὲ τὸ Β σημεῖον . διῄρηται ἄρα τὸ ΑΒΓΔΕΖ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις , ὧν βάσεις
πυραμίδας ἴσας ἀλλήλαις τριγώνους βάσεις ἐχούσας . ἔστω πρίσμα τὸ ΑΒΓΔΕΖ τρίγωνον ἔχον βάσιν τὴν ΓΖΔ . λέγω , ὅτι
7026036 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6986120 τμηθεντι
ΑΕΖ , καὶ ἴσον ὁμοίως . Ἐὰν ἐν σκαληνῷ κώνῳ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις ἐπὶ παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα
αἰσχύνομαι εἰς ὄψιν ἐλθεῖν τοῦ ἰατροῦ . Σχολαστικῷ τὴν σταφυλὴν τμηθέντι παρήγγειλεν ὁ ἰατρὸς μὴ λαλεῖν . ὁ δὲ τῷ
6983637 σκαληνῳ
ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον ,
ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων
6978376 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6947815 ἰσοσκελες
, οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ βάσει γωνίας . τούτων
. Καὶ μηδενὸς δὲ δεηθέντες καὶ ἡμεῖς ἄλλως συστήσομεν τρίγωνον ἰσοσκελὲς ὁμοίως μείζονα ἢ ἐλάττονα ἔχον τὴν βάσιν , εἰ
6939509 ΔΖΒ
δυσὶ ταῖς ὑπὸ ΖΒΓ , ΖΓΒ , τουτέστι τῇ ὑπὸ ΔΖΒ . Ὡς ἄρα συναμφότερος ἡ ΑΓΒ . , ]
αὐτοῖς , μείζονά ἐστιν . Ἔστω ὅμοια ἰσοσκελῆ τρίγωνα τὰ ΔΖΒ ΒΑΓ , καὶ ἐπὶ τῶν αὐτῶν βάσεων ἄλλα ἰσοσκελῆ
6938650 τμηματα
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ
6901219 βασεων
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν
6889219 ἐπιπεδα
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ
6864664 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
6851624 ὀκταεδρον
. Ἡ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ ὀκτάεδρον ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου κάθετος δυνάμει τρίτον μέρος
ἀριθμητικὴν συνεπιφέρεσθαι : ἅμα γὰρ ταύτῃ τρίγωνον ἢ τετράγωνον ἢ ὀκτάεδρον ἢ εἰκοσάεδρον ἢ διπλάσιον ἢ ὀκταπλάσιον ἢ ἡμιόλιον ἢ
6851472 παραλληλογραμμῳ
δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις
ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ
6826095 ΑΗΓ
ἢ τοῦ αὐτοῦ ἐφάπτονται τῶν παραλλήλων . ἤτοι γὰρ ὁ ΑΗΓ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων ἢ οὔ
πολυγώνου περιμέτρου , τὸ αὐτὸ μέρος ἐστὶν καὶ ἡ ὑπὸ ΑΗΓ γωνία τεσσάρων ὀρθῶν , ὁμοίως δὲ καί , ὃ
6810802 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6808278 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6797070 ΑΝΘΡΩΠΟΙΣΙΝ
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς
6781065 συναμφοτεραι
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ
6779634 πενταγωνοις
τις πρόληψίς ἐστιν εἰς ἐγγραφὴν καὶ περιγραφὴν πενταγώνων καὶ ἐν πενταγώνοις τῷ στοιχειωτῇ συμβαλλόμενον . ἐδείχθη τῆς μὲν ὑπὸ ΖΚΓ
τῆς ΚΛ . καὶ ὑπόκειται κʹ τρίγωνα τὰ ΔΕΖ ιβʹ πενταγώνοις τοῖς ΑΒΓ ἴσα : μεῖζον ἄρα τὸ εἰκοσάεδρον τοῦ
6779567 ΞΓ
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ
6732076 λεπισι
ἤτοι : οὗ ἡ μὲν ὀσμὴ παραπλησία ταῖς τῶν ἰχθύων λεπίσι , καὶ τῷ ἀποπλύματι αὐτῶν ἔοικεν , ἡ δὲ
Σὺν τῷ κάμακι οἱ πρῶτοι καὶ μέσοι καὶ ἔσχατοι βαθμοὶ λεπίσι σιδηραῖς περιειληθέντες προσηλούσθωσαν . Συντεθήσονται δὲ οὕτως . Ἵσταται
6721727 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
6710660 περιεχομενα
ἅμα τῷ κλύσματι τὰ ἐν τῇ γαστρὶ καὶ τοῖς ἐντέροις περιεχόμενα πάντα , ὥστε θαυμάσαι , εἴτε κόπρος εἴτε ὑγρὸν
[ ἀπὸ ] τοῦ κέντρου [ καὶ τῆς ΑΒ ] περιεχόμενα . Μέση ἀνάλογον . , ] ὥστε τὸ ὑπὸ
6709555 στερεα
καὶ τὰ φύλλα ὅμοια ἔχει μυρσίνῃ , μείζω δὲ καὶ στερεά , ἐπ ' ἄκρου δ ' ὀξέα καὶ ἀκανθώδη
ΓΦ στερεόν : ἰσοϋψῆ γάρ ἐστι τὰ ΑΒ , ΓΦ στερεά : ὡς δὲ ἡ ΓΜ πρὸς τὴν ΓΤ ,
6705332 πυραμις
πυραμίς , τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἕκτον μέρος ἡ ΔΕΖΘ πυραμίς : ἴση ἄρα ἡ ΑΒΓΗ πυραμὶς τῇ ΔΕΖΘ πυραμίδι
γραμμή , τὰ δὲ γ τρίγωνον , τὰ δὲ δ πυραμίς : ταῦτα δὲ πάντα ἐστὶ πρῶτα καὶ ἀρχαὶ τῶν
6697149 στερεοι
αὐτῷ , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί : τὸ μὲν γὰρ ἓν στιγμή , τὰ δὲ
. ἀντὶ τοῦ : μὴ παρείσαγε ἡμῖν θηλυδριώδη λόγον : στερεοί : νικητήριον : ἢ μὴ γενοίμαν : εἰς τῶν
6694461 ἐναλλαξ
τῆς ἐνστάσεως ἢ τῆς ἀντιπαραστάσεως πρώτης τιθεμένης , ἀλλ ' ἐναλλὰξ τοῦτο πασχούσης ἑκάστης , ὃν τρόπον φαμὲν δεῖν ἀνασκοπεῖν
τὴν ΑΓ , οὕτως ἡ ΒΔ πρὸς τὴν ΔΓ , ἐναλλὰξ ὡς ἡ ΑΒ πρὸς τὴν ΒΔ , οὕτως ἡ
6694153 πολυγωνον
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον
6673816 ΘΟΕΠΖΡΗΣ
σημεῖον , πρὸς τὴν πυραμίδα , ἧς βάσις μὲν τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον . καὶ
στερεοῦ , λοιπὴ ἄρα ἡ πυραμίς , ἧς βάσις τὸ ΘΟΕΠΖΡΗΣ πολύγωνον , ὕψος δὲ τὸ αὐτὸ τῷ κώνῳ ,
6671049 ΛΘΚ
ΝΒΜ , τὸ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ ὑπὸ ΛΘΚ . τὸ δὲ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ
πρὸς τὸ ΛΗΘ , καὶ ἔτι τὸ ΕΓΔ πρὸς τὸ ΛΘΚ , καὶ ὡς ἄρα ἓν τῶν ἡγουμένων πρὸς ἓν
6668210 ΚΛΜ
ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Δ Ε Ζ τὸ ΚΛΜ , ἐκ τριῶν δὲ τῶν ἐπιζευγνυουσῶν τὰ Ε Ζ
μὲν ΚΜ ἔσται # μϚ , ἡ δ ' ὑπὸ ΚΛΜ γωνία τοιούτων # μδ , οἵων εἰσὶν αἱ β
6667963 ΗΕΖ
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν
6666243 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
6664932 τετραπλευρα
μὲν τρισὶ περιεχόμενα πλευραῖς τρίπλευρα καλεῖται , τὰ δὲ τέτταρσι τετράπλευρα , τὰ δὲ πλείοσι πολύγωνα . τῶν δὲ τετραπλεύρων
οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον : τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω . Παράλληλοί εἰσιν εὐθεῖαι , αἵτινες ἐν
6664035 ΕΖΗ
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ
6633553 ὁμοταγη
, καὶ τὸ ὂν σὺν τῷ ἑνί , καὶ ἢ ὁμοταγῆ , ἢ διεστήξεται ἀπ ' ἀλλήλων , καὶ ἔσονται
γὰρ ὡς ἐπὶ τῆς προκειμένης τὰ ΖΑΗ , ΘΑΚ τρίγωνα ὁμοταγῆ . λέγω , ὅτι ἴσα τε καὶ ὅμοιά ἐστιν
6620642 ΡΕ
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ ,
6617878 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
6617507 τριγωνον
τὸ χωρίον πρὸς τὸ τρίγωνον λόγον ἕξει δεδομένον . ἔστω τρίγωνον ὀξυγώνιον τὸ ΑΒΓ , ὀξεῖαν ἔχον γωνίαν δεδομένην τὴν
μαθημάτων : καὶ γὰρ ὁ γεωμέτρης διὰ τί μὲν τὸ τρίγωνον ἔχει τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας ζητεῖ ,
6614948 ΑΜΒ
καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ
πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν
6601462 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
6599044 ἑτερομηκη
τοίνυν αὕτη διαφορά , δευτέρα δὲ ἐκείνη . λαβὲ πρῶτον ἑτερομήκη καὶ δεύτερον τετράγωνον καὶ τρίτον τετράγωνον καὶ δεύτερον ἑτερομήκη
ἕτερον ἐπὶ δυοῖν λέγει : ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες .
6597479 ΔΕΒ
ἐκβεβλήσθω ἐπὶ τὸ Ε . ἐπεὶ οὖν ἐστιν ὡς ἡ ΔΕΒ περιφέρεια πρὸς τὴν ΒΓ εὐθεῖαν , οὕτως ἡ ΒΓ
περιφερειῶν τὸ ὅμοιον ὑπακουέσθω : καὶ ἐπεζεύχθωσαν αἱ ΑΓ καὶ ΔΕΒ . λέγω , ὅτι ἐστίν , ὡς ἡ ὑπὸ
6593651 δοκιδες
λαμπάδες . ὁπότε δὲ ἐπίμηκες ἔχουσι τὸ φῶς , καλοῦνται δοκίδες . ὁπότε δὲ ἰκματῶδες φῶς ὁρᾶται , καλεῖται ἶρις
κρεμάστραν ἐν ταῖς Νεφέλαις . σὺν δὲ τούτοις λεγέσθωσαν δοκοί δοκίδες , ἰκρία , στρωτῆρες , καλυμμάτια . καὶ μετὰ
6588052 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
6580551 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
6552216 τριγραμμον
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν
6551343 ΞΑ
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί
6551217 συναμφω
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ
6550308 τονιαια
ΖΔ , τὴν δὲ τῶν ΒΗ τῇ τῶν ΑΖ , τονιαία μὲν ἔσται καὶ ἑκατέρα τῶν ΔΒ καὶ ΖΔ ,
λοιπῶν , ἕως ἂν περιτραπῶσιν ἐπὶ τὸ λέγειν οἵων ἡ τονιαία δύο . ἔπειτα οὐδ ' οὕτως τὰς ὑπεροχὰς ὁρίζουσι
6547971 ΞΜΕ
κοινοῦ ὕψους λαμβανομένης οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ
ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΞΜΕ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ
6546767 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
6543893 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
6541626 ἀποληγοντα
κατ ' ἰνίον ἐναλλαγεῖσαι ὑπεράνω ὤτων φέρονται καὶ κατὰ τὰ ἀπολήγοντα τοῦ βρέγματος πρὸς ἀλλήλας ἁμματίζονται . τούτῳ δὲ μάλιστα
τῇ ὑπερκειμένῃ φλιᾷ , καὶ τότε τῷ μηρῷ κατὰ τὰ ἀπολήγοντα μέρη τὰ πρὸς τῷ γόνατι καρχή - σιος βρόχος
6535023 πολυπλευρα
ὀξεῖα . Διὰ τί μὴ καὶ τὸ τρίπλευρον καὶ τετράπλευρον πολύπλευρα ὠνόμασε ; πολλὰ γὰρ τὰ τρία καὶ τέτταρα .
καὶ τοιαῦτα , οἷα ἐπίπεδα ἡ γεωμετρία θεωρεῖ , μήτε πολύπλευρα οὕτω ποικίλα οἷα ἡ στερεομετρία ἐπισκέπτεται , ἢ γωνιῶν
6525853 ῥομβοειδες
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας
6524623 ἀξονι
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος .
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως :
6514279 τεμνονται
ἱρῷ , ὅτι Γάλλοι Ἥρῃ μὲν οὐδαμά , Ῥέῃ δὲ τέμνονται καὶ Ἄττεα μιμέονται . Τὰ δέ μοι εὐπρεπέα μὲν
ἀλλήλων διαφέρουσι τῇ φύσει τῆς διαιρέσεως : τοῖς γὰρ αὐτοῖς τέμνονται κεφαλαίοις : πλὴν τοῦ ὁμωνύμου αὐτῇ τῇ στάσει :
6501459 τετραπλευρων
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα ,
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ
6490103 τρημασιν
ἄκρα αὐτοῦ στρογγύλα ποιήσαντες ἐναρμόζουσιν εἴς τινα διαπήγματα ἐν στρογγύλοις τρήμασιν , ὥστε εὐκόπως αὐτὸν στρέφεσθαι , ὑπὲρ δὲ τὸν
τροπουμένων ] τὰς κώπας ἁρμοζόντων ἵνα ἴδωσιν εἰ συντρέχουσι τοῖς τρήμασιν . Γ νιγλάρων : ὁ νίγλαρος κροῦμά ἐστι καὶ
6483575 ἐγγεγραφθωσαν
τῶν περιφερειῶν αὐτῶν χωρίον , ὃ δὴ καλοῦσιν ἄρβηλον , ἐγγεγράφθωσαν κύκλοι ἐφαπτόμενοι τῶν τε ἡμικυκλίων καὶ ἀλλήλων ὁσοιδηποτοῦν ,
, προγραφέντος τοῦδε : Ἔστω κύκλος ὁ ΑΒΓ , καὶ ἐγγεγράφθωσαν εἰς τὸν ΑΒΓ κύκλον πενταγώνου ἰσοπλεύρου πλευραὶ αἱ ΑΒ
6482589 στρογγυλοις
τὰ ἄκρα αὐτοῦ στρογγύλα ποιήσαντες ἐναρμόζουσιν εἴς τινα διαπήγματα ἐν στρογγύλοις τρήμασιν , ὥστε εὐκόπως αὐτὸν στρέφεσθαι , ὑπὲρ δὲ
ἐνεργεῖ τὸ ὄργανον . ἐν δὲ μέσοις τοῖς πλευροῖς ἐκκεκομμένοις στρογγύλοις καὶ διανταίοις τρήμασιν ἄξων ἐστὶν ἔκθετος μέσον ἔχων τύλον
6468695 ΖΗΘΚΛ
τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ
. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς
6467550 πλινθιδες
τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν
, ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί
6458297 συμπεπληρωσθω
τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ
ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ ,
6440061 γωνιαις
τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς αἱ ἴσαι πλευραὶ
ἐπεὶ γὰρ τριγώνου τοῦ ΓΒΝ αἱ γ γωνίαι ταῖς τρισὶν γωνίαις τριγώνου τοῦ ΒΝΚ ἴσαι , ἐξ ὧν αἱ δύο
6424746 ἀπονευει
δὲ ἀσφαλῶς ἔχει ἅμα τὴν περὶ αὐτῶν ποιεῖσθαι διδασκαλίαν : ἀπονεύει γάρ πως πρὸς ἄλληλα καὶ κατὰ συζυγίαν προάγεται ,
παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα συστῇ , ἀφ ' οὗ μέρους ἀπονεύει ὁ ἄξων , τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τῶν
6421594 ΟΜ
ἴση τῇ ὑπὸ ΟΝΜ , βάσις ἡ ΕΘ βάσει τῇ ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ
τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ . ὀρθογώνια
6417028 παλαιστιαια
δὲ ἐπ ' ἐδάφους ἔρεισις τοῦ ποδὸς ἄνθρακος λίθου πάντοθεν παλαιστιαία , κρηπῖδος ἔχουσα τάξιν κατὰ τὴν πρόσοψιν , ὀκτὼ
προτεθείσῃ ῥητῇ εὐθείᾳ , εἴτε πηχυαία ἐστὶν εἴτε ποδιαία εἴτε παλαιστιαία ἢ δακτυλιαία , ἄπειροι σύμμετροι μήκει καὶ ῥηταὶ καὶ
6407971 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
6406775 παραλληλογραμμον
ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι
δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου
6402568 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6398848 ὀκταεδρου
σφαίρας τοῦ ἀπὸ τῆς ΖΘ καθέτου ἐπὶ τὸ ἐπίπεδον τοῦ ὀκταέδρου . τριπλάσιόν ἐστιν . μζʹ . Ἔστω τρίγωνον ἰσόπλευρον
πέντε ἡ τοῦ εἰκοσαέδρου , ὑπὸ δὲ τεσσάρων ἡ τοῦ ὀκταέδρου , ὑπὸ δὲ τριῶν ἡ τῆς πυραμίδος . δῆλον
6396539 ΝΠ
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ
6392528 γωνιαι
τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς
6390551 εἰκοσαεδρου
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ
6383752 ἐκκεντροι
μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος
δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ
6383641 παρακεισθω
ῥηθέντων τινῶν αὐτοῖς καὶ μὴ ἀποβάντων οὕτως ἐξηπατῆσθαι νομίζουσι , παρακείσθω σοι καὶ οὗτος ὁ λόγος , ὡς ἄρα οἱ
ἐνόπτρου θεωρεῖται τὸ ΕΔ ἐν γωνίᾳ τῇ ὑπὸ ΑΒΓ . παρακείσθω δὴ ἔνοπτρον ἐπίπεδον τὸ ΑΓ ἁπτόμενον τῶν ὄψεων κατὰ
6380686 τριγωνῳ
τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν
' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας :
6379921 ΘΚΛ
ἐπὶ τῶν ΑΒ ΓΔ , καὶ ἤχθωσαν κάθετοι αἱ ΕΖΗ ΘΚΛ , ἔστω δὲ ὡς ἡ ΕΗ πρὸς ΗΖ ,
δύο ὀρθῶν καὶ αὐταὶ κἀκεῖναι ] : ἔσται δὴ τὸ ΘΚΛ ἐπίπεδον κεκλιμένον πρὸς τὸ ΑΒΓΔ ἐν τῇ ὑπὸ ΘΓΑ
6373748 ΡΦΖ
ἑκάτερον τῶν ΟΜΝ , ΣΤΥ τριγώνων ἑκατέρῳ τῶν ΛΞΓ , ΡΦΖ . καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρὸς τὴν
Λῆμμα Ὅτι δέ ἐστιν ὡς τὸ ΛΞΓ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον , οὕτως τὸ πρίσμα , οὗ βάσις τὸ
6369077 περιτιθεσθωσαν
ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς ἄξοσιν , περιτιθέσθωσαν δὲ τῇ ῥάχει ἤτοι ἰσότονοι βρόχοι δύο , εἷς
τῷ τύλῳ τοῦ ἄξονος , ἢ ἔξωθεν ἔσω , καὶ περιτιθέσθωσαν ταῖς σκυτάλαις τοῦ ἄξονος , ἵνα συνεπιστρεφομένου τοῦ ἄξονος
6365510 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
6357607 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
6357537 εἰκοσαεδρον
, ἐὰν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφῇ δωδεκάεδρόν τε καὶ εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον
, ἐάν τις ἐρεῖ ἡμῖν : πόσας πλευρὰς ἔχει τὸ εἰκοσάεδρον ; φήσομεν οὕτως : φανερόν , ὅτι ὑπὸ εἴκοσι

Back