ῥηθέντων τινῶν αὐτοῖς καὶ μὴ ἀποβάντων οὕτως ἐξηπατῆσθαι νομίζουσι , παρακείσθω σοι καὶ οὗτος ὁ λόγος , ὡς ἄρα οἱ | ||
ἐνόπτρου θεωρεῖται τὸ ΕΔ ἐν γωνίᾳ τῇ ὑπὸ ΑΒΓ . παρακείσθω δὴ ἔνοπτρον ἐπίπεδον τὸ ΑΓ ἁπτόμενον τῶν ὄψεων κατὰ |
ἐντεθῇ εἰς τὴν μασχάλην , βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , καὶ αἱ τοῦ βρόχου ἀρχαὶ | ||
[ καὶ ] πάλιν τοῦ πάσχοντος ὑπτίου ἐσχηματισμένου , βρόχος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ |
εἰς τὴν μασχάλην . βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀγέσθωσαν πρὸς τὰς | ||
καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , τῷ δὲ βραχίονι περιτιθέσθω βρόχος ἰσότονος , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς |
μηροῦ κωλύῃ κατατείνεσθαι τὸ κῶλον . τούτου δὲ γενομένου , καρχήσιος βρόχος ἢ ἄλλος ἰσότονος περιτίθεται τῷ μηρῷ κατὰ τὰ | ||
. τοῦ δὲ σφηνοειδοῦς ἐντεθέντος εἰς τὴν μασχάλην , ὁ καρχήσιος βρόχος τῷ βραχίονι περιτίθεται , οὗ αἱ ἀρχαὶ ἄγονται |
τῶν κάλων τοῦ ὀργάνου . βρόχος δ ' ὁ καρχήσιος περιτίθεται τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἄγονται κάτω καὶ | ||
πρὸς ἀπότασιν σφυροῦ καταρτιζομένου : ἡ μὲν γὰρ μία ἀγκύλη περιτίθεται τῷ πλατεῖ νεύρῳ ὄπισθεν τοῦ σφυροῦ , ἡ δ |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ ἄξονος , εἶτα | ||
αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν καὶ ὑπὲρ κεφαλῆς ἀναφερέσθωσαν καὶ ἀποδιδόσθωσαν κρατήματι . ἄλλος δὲ βρόχος ἰσότονος ὡς καρχήσιος τῷ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
κλιμακίου τῆς αὐτῆς οὔσης , οὐκέτι τὸ σφηνοειδὲς ἐπηρτισμένον τῷ κλιμακίῳ πρὸς αὐτὸ ἀσφαλίζεται , ἀλλ ' αὐτὸ μόνον ἐπιτίθεται | ||
τοῦ καρποῦ , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , ἵνα μείνῃ ἐν τῇ τάσει ἀσφαλῶς |
τοῦ βρόχου ] περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ | ||
ἀγκύλαι ἢ διπλῶν καιριῶν μεσότητες περιτιθέσθωσαν , ὧν αἱ ἀρχαὶ ἀγέσθωσαν ἔμπροσθεν ὡς ἐπὶ τὸ τόνιον . τῷ δὲ πήχει |
ἵνα αἱ τῶν βρόχων ἀρχαὶ κατάλληλοι γίνοιντο τοῖς ἄξοσιν , περιτιθέσθωσαν δὲ τῇ ῥάχει ἤτοι ἰσότονοι βρόχοι δύο , εἷς | ||
τῷ τύλῳ τοῦ ἄξονος , ἢ ἔξωθεν ἔσω , καὶ περιτιθέσθωσαν ταῖς σκυτάλαις τοῦ ἄξονος , ἵνα συνεπιστρεφομένου τοῦ ἄξονος |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
γὰρ τὸ πάθος , βαρυτόνως δὲ τὸ σχοινίον καὶ ὁ βρόχος . Γ ἀγχονὴ τὸ πάθος , ἀγχόνη τὸ σχοινίον | ||
τοῖς τῆς τάσεως αἰτίοις . εὐθετεῖ δ ' οὗτος ὁ βρόχος πρὸς ἀπότασιν σφυροῦ καταρτιζομένου . Ὁ βρόχος ὁ καλούμενος |
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα | ||
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ |
σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
, θλιαὶ , καὶ μεταθέσει τοῦ θ εἰς φ , φλιαί . Φρούριον . οὐκ ἀπὸ τοῦ φρουρός : ἦν | ||
: οὕτω φησὶ καλεῖσθαι Ἐπικλῆς τὸ στίμι καὶ Νίγρος . φλιαί : τὰ ἑκατέρωθεν τοῦ βάθρου ὄρθια ξύλα , ἐν |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
πλεῖστον μέρος ἄχρι τῶν στενῶν τοῦ αὐτοῦ Περσικοῦ κόλπου . Ἀντίκειται δὲ ὁ Περσικὸς κόλπος τῇ Κασπίᾳ θαλάσσῃ τῇ καὶ | ||
σοι μηδὲν τῶν ὄντων αὐτὸ ἑαυτῷ ἀντικεῖσθαι ; δοκεῖ . Ἀντίκειται δὲ τῷ πυρὶ τὸ ὕδωρ ; ἀντικεῖσθαί μοι φαίνεται |
ἄτομοι γραμμαὶ οὐκ εἰσίν , εἴπερ πλευρὰν τὴν ἐκκειμένην δυνατὸν διχοτομεῖν . Καὶ τὸ ἑνδέκατον πρόβλημά ἐστιν : ποιεῖ γὰρ | ||
βραδύτερον . ἔστι δὲ καὶ οὗτος ὁ αὐτὸς λόγος τῶι διχοτομεῖν , διαφέρει δ ' ἐν τῶι διαιρεῖν μὴ δίχα |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
καὶ γοητεύουσαν ταῖς ἡδυπαθείαις . . ΕΝ ΔΕ ΘΕΜΕΝ ΚΥΝΕΟΝ ΤΕ ΝΟΟΝ . Ἐπένευσεν ἡ Εἱμαρμένη καὶ τὸν προφορικὸν λόγον | ||
δ ' ἀμφοτέρων ἐπίσης ἀπέχει ἡ σωφροσύνη . . ἙΝΔΕΚΑΤΗ ΤΕ ΔΥΩΔΕΚΑΤΗ Τ ' . Ἡ ἑνδεκὰς ἐτιμᾶτο μὲν καὶ |
ὑπολειπόμενος τοῦ μεσημβρινοῦ : ἔσχατος δὲ μεσουρανεῖ τοῦ ἐν τῷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων λαμπρῶν , καὶ ὁ | ||
μέσος τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ |
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ | ||
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι |
πρίσμα πρὸς τὸ ΡΦΖΣΤΥ πρίσμα . ὡς δὲ τὸ ΛΞΓΜΝΟ πρίσμα πρὸς τὸ ΡΦΖΣΤΥ πρίσμα , οὕτως ἐδείχθη ἡ ΛΞΓ | ||
παραλληλόγραμμον , ἀπεναντίον δὲ ἡ ΟΜ εὐθεῖα , πρὸς τὸ πρίσμα , οὗ βάσις μὲν τὸ ΠΕΦΡ παραλληλόγραμμον , ἀπεναντίον |
περιτιθέσθω τῷ πήχει πλησίον τοῦ καρποῦ , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , ἵνα μείνῃ | ||
περιειλημένη τῷ περινέῳ προστιθέσθω : αἱ δὲ τοῦ κάλου ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς . ἐπὶ μὲν οὖν τῆς ἔξω καὶ |
αἰτιατικὴ : ἔλαβέν αὐτον . ἐγκλίνεται δὲ ἀεὶ καὶ ἡ ΜΙΝ : καί μιν φωνήσας , καὶ ἡ ΕΘΕΝ παραλόγως | ||
, τιμὴ τιμήεις , αἴγλη αἰγλήεις . . ΩΜΟΙΣΙΝ ΔΕ ΜΙΝ . Οὕτω συντάσσεται : ἀμφιέκειτο δέ μιν , ἤγουν |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
ἴση τῇ ὑπὸ ΟΝΜ , βάσις ἡ ΕΘ βάσει τῇ ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ | ||
τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ . ὀρθογώνια |
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
σύνηθες καὶ παρὰ τῷ πεζῷ λόγῳ . . ΝΥΝ ΔΕ ΕΓΩ ΜΗΤ ' ΑΥΤΟΣ . Τὸ μὲν λεγόμενον , φανερόν | ||
ἀνθαμίλλου Ὁμήρου , καὶ νικητοῦ ποιητοῦ . . ΝΥΝ ΔΕ ΕΓΩ . Ἀρξάμενος ἀφ ' ἑαυτοῦ , εἶτα ὥσπερ μεταμεληθεὶς |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
Ἀετὸς ἐν τρίτῳ μέρει ὥρας . Τοῦ δὲ Δελφῖνος δύνοντος συγκαταδύνει μὲν ὁ ζῳδιακὸς ἀπὸ [ τοῦ ] Ὑδροχόου μοίρας | ||
ὥρᾳ μιᾷ καὶ τρίτῳ μέρει . Τοῦ δὲ Κόρακος δύνοντος συγκαταδύνει μὲν αὐτῷ ὁ ζῳδιακὸς ἀπὸ Λέοντος * * * |
, ὅτι καὶ οὕτως ἰσογώνιόν ἐστι τὸ ΑΒΓΔΕ πεντάγωνον . Ἐπεζεύχθω γὰρ ἡ ΒΔ . καὶ ἐπεὶ δύο αἱ ΒΑ | ||
ὁ αὐτὸς κύκλος περιλαμβάνει τὸ πεντάγωνον καὶ τὸ τρίγωνον . Ἐπεζεύχθω ἡ ΕΓ : κύβου ἄρα τοῦ ὑπὸ τὴν αὐτὴν |
οἶδεν , οἷόν τε μὴ εἰδέναι . καὶ τούτων πότερα αἱρῇ ; Ἄπορον αἵρεσιν προτίθης , ὦ Σώκρατες . Ἀλλὰ | ||
μάλα δὴ οὕτως ἔχει , ὦ Σώκρατες . Πότερον οὖν αἱρῇ , ὦ Σιμμία ; ἐπισταμένους ἡμᾶς γεγονέναι , ἢ |
Ψ , Ω , Ι σημεῖα , καὶ ἐπεζεύχθωσαν αἱ ΞΤ , ΞΥ , ΥΦ , ΤΦ , ΧΨ , | ||
. ἀλλ ' ὡς ἡ ΑΥ πρὸς ΥΗ , ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ |
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον | ||
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ |
, τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
ἐν ᾧ ὁ ἥλιος τὴν ΖΘ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ζ : συνδύνει ἄρα τῷ Θ : ὥστε | ||
φησιν ἀνατέλλειν . . . . . . , Βορρόθεν συνανατέλλει τὰ λειπόμενα τῆς Ἀνδρομέδας καὶ τὰ λοιπὰ τοῦ Περσέως |
ἀπὸ Καρκίνου μοίρας ηʹ μέσης ἕως Λέοντος ιθʹ μέσης : μεσουρανεῖ δὲ ἀπὸ Ἰχθύων κʹ ἕως Ταύρου ιβʹ μέσης . | ||
Κριοῦ μοίρας ζʹ καὶ κʹ μέσης ἕως Ταύρου ιδʹ : μεσουρανεῖ δὲ ἀπὸ Καρκίνου μοίρας λʹ ἕως Λέοντος μοίρας αʹ |
ἔργων πλουτήσαντα , σπεύδει καὶ αὐτὸς πλουτῆσαι . . ΕΙΣ ἙΤΕΡΟΝ ΓΑΡ . Τίς γὰρ χρῄζων ἔργου , ἰδὼν εἰς | ||
τῆς ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ |
στερεόν . ποιῶ οὕτως : κυβίζω τὰ ζ , γίνονται τμγ : ταῦτα δίς , γίνονται χπϚ : ταῦτα ἑνδεκάκις | ||
Μο γ : αὐτοὶ δὲ οἱ κύβοι ὁ μὲν αος τμγ , ὁ δὲ βος κζ . β . Εὑρεῖν |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ξου εἰς δεύτερα ξξα , ὧν δύο τὰ ΑΡ , ΡΨ , ἐὰν μὲν πρῶτα ἐπὶ δεύτερα , οἷον τὸ | ||
ΩϘ , τῷ ΨΥ στερεῷ , οὗ βάσις μὲν τὸ ΡΨ παραλληλόγραμμον , ἀπεναντίον δὲ τὸ ΥΦ : ἐπί τε |
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
ἄνθρωπον καλεῖ . Πολυεύκτου δ ' Ἀναξανδρίδης λέγων : ὄρνις κεκλήσῃ . διὰ τί , πρὸς τῆς Ἑστίας ; πότερον | ||
φαῦλος . κεκλήσῃ ] κληθήσῃ . κεκλήσῃ ] ὀνομασθήσῃ . κεκλήσῃ ] κληθῇς . βίον εὖ κυρήσας ] τὴν ζωὴν |
ὑφαίνεται , ἤως συμπλέκεται , ἀφωμοίωται , ἢ ὑποκρύπτεται , κολλᾶται . ἡ δή : μύραινα . ἄγχι : γράφεται | ||
ᾗ ἐπιτίθεται ἡ ματέρια , καὶ ἐν τῷ ζυμοῦσθαι οὐ κολλᾶται τῇ καρδόπῳ . ἐπειδὰν δὲ βληθῇ εἰς τὸν φοῦρνον |
ἑκάτερον τῶν ΟΜΝ , ΣΤΥ τριγώνων ἑκατέρῳ τῶν ΛΞΓ , ΡΦΖ . καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρὸς τὴν | ||
Λῆμμα Ὅτι δέ ἐστιν ὡς τὸ ΛΞΓ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον , οὕτως τὸ πρίσμα , οὗ βάσις τὸ |
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ | ||
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ |
ἀπέχει ἡ σελήνη ἀπὸ τῆς γῆς μεῖζον μέν ἐστιν ἢ ὀκτωκαιδεκαπλάσιον , ἔλασσον δὲ ἢ εἰκοσαπλάσιον . Ἔστω γὰρ ἡλίου | ||
ἀπὸ τῆς γῆς τοῦ τῆς σελήνης ἀποστήματος μεῖζον μὲν ἢ ὀκτωκαιδεκαπλάσιον , ἔλασσον δὲ ἢ εἰκοσαπλάσιον , διὰ τῆς περὶ |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
ἀποτομή . Ἐκβεβλήσθω γὰρ ἡ ΨΟ , καὶ ἔστω ἡ ΨΩ : συμβάλλει ἄρα ἡ ΟΩ τῇ τοῦ κύβου διαμέτρῳ | ||
ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
οἷον τὸ σκυτέως ὄργανόν ἐστιν σμίλη : οὐ γὰρ ἡ σμίλη συμπληρωτική ἐστιν τῆς οὐσίας αὐτοῦ , οὐδὲ ταύτης ἀφανισθείσης | ||
λέγεται τὸ ἐπικαττύεσθαι καὶ ἐπικαττύειν . τὰ δὲ ἐργαλεῖα αὐτῶν σμίλη , ἀφ ' ἧς καὶ τὰ σμιλεύματα ἐν Βατράχοις |
καὶ εἰς πολλὰ λυσιτελήσει ὁ περὶ αἰτίας οὔρων λόγος . Ἔσται γε μὴν ἐπὶ τούτῳ τὸ περὶ τῆς ἐκ τῶν | ||
αἱ ΔΖ , ΖΒΘ , ΗΚ , ΒΔ εὐθεῖαι . Ἔσται ἄρα ἡ ΚΔ περιφέρεια εἰς τὸν ὑποκείμενον τῆς ἐκλείψεως |
δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
αὐτοῖς τινος ὀργάνου διακρίνοντος αὐτοῖς τὰ τοιαῦτα , ἵνα ὥσπερ γνώμονί τινι καὶ κανόνι χρώμενοι τὰ μὴ ἐφαρμόζοντα ἀπωθῶνται : | ||
τὸ ΞΣ : ὅλον ἄρα τὸ ΤΣ ὅλῳ τῷ ΦΧΥ γνώμονί ἐστιν ἴσον . ἀλλ ' ὁ ΦΧΥ γνώμων τῷ |
ἡ περιφέρεια τῇ περιφερείᾳ ἴση , καὶ ὁ τομεὺς τῷ τομεῖ ἴσος . λέγω δή , ὅτι καί , ἐὰν | ||
ΕΘΝ τομεῖ . ἀλλὰ ὁ ΕΘΝ ἴσος ὑπετέθη τῷ ΒΗΛ τομεῖ . ὥστε καὶ ὁ ΒΗΛ τομεὺς ἴσος τῷ ΒΗΚ |
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
, καὶ λοιπὴ ἄρα ἡ ὑπὸ ΕΔΓ λοιπῇ τῇ ὑπὸ ΗΖΓ ἴση ἐστίν . ἀλλὰ καὶ ἡ ὑπὸ ΔΕΓ τῇ | ||
ΒΖ τῇ ΖΓ , διπλάσιόν ἐστι τὸ ΕΒΖΗ παραλληλόγραμμον τοῦ ΗΖΓ τριγώνου . καὶ ἐπεί , ἐὰν ᾖ δύο πρίσματα |
ἐστὶ τῷ ΣΤΥ γνώμονι καὶ τῷ ΞΘ . ἀλλὰ ὁ ΣΤΥ γνώμων καὶ τὸ ΞΘ ὅλον ἐστὶ τὸ ΑΕΖΔ τετράγωνον | ||
ἄρα τετράκις ὑπὸ τῶν ΑΒ , ΒΔ ἴσον ἐστὶ τῷ ΣΤΥ γνώμονι . κοινὸν προσκείσθω τὸ ΞΘ , ὅ ἐστιν |
τῶν δύο διαφορῶν μοιρῶν η μ : καὶ λοιπὴν τὴν ΒΡ διάστασιν ρλϚ νβ , ἐλάσσονα τῶν τῆς μέσης ρμε | ||
ὡς ἡ ΑΔ πρὸς ΑΒ , οὕτως ἡ ΔΠ πρὸς ΒΡ . ἐλάττων δὲ ἡ ΑΔ τῆς ΑΒ : ἐλάττων |
ἐρρῆχθαι τὸ ἀπόστημα . εἰ δὲ σκληρία πολυχρόνιος καὶ ὄγκος ὑποπίπτοι καὶ δοκοίη αὐτοῖς ὥσπερ τι βάρος ἐξηρτῆσθαι τοῦ διαφράγματος | ||
καθάπερ ἐπὶ τῶν κλυζομένων τὴν κοιλίαν , εἰ μὲν ἐπιπολῆϲ ὑποπίπτοι τὸ πέραϲ τῆϲ ϲύριγγοϲ , ὑποβαλόντεϲ κοπάριον ἢ μηλωτίδα |
καὶ διὰ τοῦ π , καὶ ὁ αὐτὸς ἔσται τῷ εζηκ ἐπικύκλῳ . γεγράφθω οὖν ὁ πρχ : ἐπεὶ οὖν | ||
ἐπὶ τὰ αὐτὰ τούτῳ φερόμενος ὁμοίως τεταρτημοριαίαν ἐνηνέχθω περιφέρειαν τοῦ εζηκ τὴν εζ : ἔσται οὖν ἐπὶ τοῦ π , |
τοὺς στίχους ὡς κεῖνται . Τὸ δὲ ΤΟΙΣΙΝ Δ ' ΟΥΡΑΝΟΘΕΝ , οὐ σολοικόν ἐστιν , ἀλλὰ περιληπτικὸν , ἤγουν | ||
Ἡρακλεῖ . . ΚΑΔ ' Δ ' ΑΡ ΑΠ ' ΟΥΡΑΝΟΘΕΝ . Ὅμηρος μὲν ἐπὶ Σαρπηδόνος μέλλοντος τελευτᾷν , εὐλόγως |
προφορικός . λόγος καὶ ὁ ἐνδιάθετος , ὅ ἐστιν ὁ διακριτικός : ὅθεν ἄρα κατὰ μετάληψιν γαρύειν τὸ διακρίνειν . | ||
γὰρ τὸ λευκὸν διακριτικόν ἐστιν ὄψεως , καὶ ὁ ἄνθρωπος διακριτικός ἐστιν ὄψεως . πάλιν τὸν δεύτερον παραλογισμὸν προάγουσι τοῦτον |
τοῦ ἄξονος παραλληλόγραμμον τὸ ΘΛ , ἔσται καὶ ἐν τῷ κυλίνδρῳ τομή , ἧς διάμετρός ἐστιν ἡ ΖΕ . ὁμοίως | ||
ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος τῷ ΓΔΘ κώνῳ ἢ κυλίνδρῳ : ὅπερ ἔδει δεῖξαι . Δύο κύκλων περὶ τὸ |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
, συνθλίβομαι ) . ⌈ στράγξ ἐστιν . . . σταλαγμός , ⌈ καὶ κλίνεται στραγγός : ἀφ ' οὗ | ||
λέγειν μέλλοντος ἄρχεται εἶπεν λέξεων μὲν ποταμός , νοῦ δὲ σταλαγμός . . π . ποιημ . [ . . |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
μέγιστον καὶ τὸ πλάτος τῷ πλάτει . τὸ μὲν δὴ χλαμυδοειδὲς σχῆμα οἰκουμένη ἐστί : τὸ δὲ πλάτος ὁρίζεσθαι ἔφαμεν | ||
, ὥστε κάλλιστα τοῦ θέρους Ἀλεξανδρεῖς διάγουσιν . Ἔστι δὲ χλαμυδοειδὲς τὸ σχῆμα τοῦ ἐδάφους τῆς πόλεως , οὗ τὰ |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |
ἐν κύκλῳ εὐθειῶν κανόνιον τὰ παρακείμενα αὐτῷ τε καὶ τῷ λείποντι εἰς τὰς τῶν δύο ὀρθῶν μοίρας ρπ χωρὶς πολυπλασιάσαντες | ||
καὶ τοῦτο ἐξίχνευσεν , πάντως ἂν καὶ τὴν κανονοποιίαν τῷ λείποντι μορίῳ προσηρμόκει . ἐπειράθην μὲν οὖν καὶ αὐτὸς κανόνα |
: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
εἶτα Παρθένῳ νʹ , εἶτα Ζυγῷ κʹ : γίνονται ἡμέραι σλʹ : λοιπαὶ ἡμέραι κεʹ . ταύτας Ἄρης ἕξει ἐν | ||
τὴν ἀρχὴν ποιησάμενος . Ἀδὰμ ἕως οὗ ἐτέκνωσεν ἔζησεν ἔτη σλʹ , υἱὸς δὲ τούτου Σὴθ ἔτη σεʹ , υἱὸς |
θεοῦ καὶ βασιλέως καὶ μαντικῆς καὶ χρηματιστικῆς , ἀδελφῶν δὲ γαμοστόλος καὶ γονέων περὶ σίνους καὶ πάθους καὶ κακωτικῆς αἰτίας | ||
, ἐπὶ θυγατρὶ ψο - γισθήσεται . ἐὰν δὲ ὁ γαμοστόλος γένηται πρὸς Κρόνον καὶ αὐτὸς κυριεύσῃ τοῦ δαίμονος ἢ |
ἐν πέμπτῳ ζῴων μορίων . ἐν δὲ τῷ περὶ ἰχθύων ῥαφίδα αὐτὴν ὀνομάσας ἀνόδουν φησὶν αὐτὴν εἶναι . ῥίνη . | ||
καὶ ῥαφίδος , ἣν Ἕρμιππος καὶ Ἄρχιππος ἐν Πλούτῳ ὠνόμασεν ῥαφίδα καὶ λίνον λαβὼν τὰ ῥήγματα σύρραψον . καὶ βελόνης |
ἐν τῷ Καρκίνῳ , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ βορείᾳ χηλῇ τοῦ Καρκίνου . Μεσουρανοῦσι δὲ τῶν ἄλλων ἀστέρων | ||
ἡμιπήχιον , καὶ τοῦ Κήτους ὁ προηγούμενος τῶν ἐν τῇ βορείᾳ σιαγόνι . Δύνει δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
, ἑκατοντάρχης δὲ ὁ ἑκατὸν ἀνδρῶν ἄρχων , ὥσπερ καὶ δεκάρχης ὁ τῶν δέκα πρῶτος , καὶ πεντάρχης ὁ πρῶτος | ||
τὴν κάππαν βαστάζων ΡΧ ὁ ἑκατοντάρχης ἢ ἰλάρχης ΙΧ ὁ δεκάρχης , κοντὸν μετὰ σκούτου ΚΧ ὁ πεντάρχης , κοντὸν |
θῶκοι καὶ ὡς Σώφρων φησὶ σύνθωκοι . τὸ δὲ καλούμενον ὡρολόγιον ἦ που πόλον ἄν τις εἴποι , φήσαντος Ἀριστοφάνους | ||
ὡς οὐδέπω τετάρτην ὥραν ἀπηγγέλη , ἀπιστῶν πρὸς ἑαυτὸν τὸ ὡρολόγιον ἐκέλευσε κομισθῆναι . Σχολαστικῷ εἰς τὸ Σαραπεῖον ἀνελθόντι θαλλὸν |
ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν | ||
περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ |
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν | ||
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν |
θανάσιμον πρὸς Ἀίδαν , ὦ τάλας , ἀπολέμωι δὲ χειρὶ λείψεις βίον . ὤμοι , τυφλοῦμαι φέγγος ὀμμάτων τάλας . | ||
μου βαρύνεται . ἀπωλόμην ἄρ ' , εἴ με δὴ λείψεις , γύναι . ὡς οὐκέτ ' οὖσαν οὐδὲν ἂν |
τὸ μὲν ΑΒ τῷ ΕΗ , τὸ δὲ ΓΔ τῷ ΘΙ , ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ΕΗ τῷ ΘΙ | ||
πλάτος ποιοῦν τὴν ΕΘ , τῷ δὲ ΓΔ ἴσον τὸ ΘΙ πλάτος ποιοῦν τὴν ΘΚ . καὶ ἐπεὶ μέσον ἐστὶν |
, καὶ φιμώσας ἐκτρόχιζε ὕελον λευκόν . ΧΡΥΣΟΠΟΙΙΑΣ ΖΩΜΟΙ . ΧΡΥΣΟΥ ΜΑΛΑΞΙΣ ΩΣΤΕ ΕΝ ΑΥΤῼ ΣΦΡΑΓΙΖΕΙΝ . Λαβὼν νίτρου πυρροῦ | ||
ἐμβαῖνον κρόκου ὠμοῦ ὄξος τετιμημένον , οὕτως ποίει . ΚΑΤΑΒΑΦΗ ΧΡΥΣΟΥ . Λαβὼν μίσιος μεταλλικοῦ μέρη δʹ , ἐλυδρίου ῥίζης |
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
τρίγωνον πρὸς τὸ ΔΕΖ [ τρίγωνον ] , οὕτως τὸ ΛΞΓ [ τρίγωνον ] πρὸς τὸ ΡΦΖ τρίγωνον . ἀλλ | ||
ἀπεναντίον δὲ ἡ ΟΜ , καὶ οὗ βάσις μὲν τὸ ΛΞΓ , ἀπεναντίον δὲ τὸ ΟΜΝ , πρὸς τὰ πρίσματα |
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ | ||
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ |
Ὑδροχόου Ϛ γʹ βο ια γʹ ὁ ὑπ ' αὐτὸν ἀμαυρότερος . . . . . . . . . | ||
τῶν ἄλλων ἀστέρων ἐν μὲν τῇ ἀρχῇ τῆς Κασσιεπείας ὁ ἀμαυρότερος τῶν ἐν τῷ δίφρῳ , καὶ τῆς Ἀνδρομέδας ὁ |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
ἐπεὶ καὶ ἡ ΑΝ τῆς ΝΔ , ὡς ἄρα ἡ ΓΞ πρὸς ΞΑ , ἡ ΖΒ πρὸς ΒΔ καὶ ἡ | ||
ΓΝ λόγος ἐστὶ δοθείς . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΓΞ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , ἔστιν |
δείξει τὸ ΚΛ μῆκος , ἡ δὲ μεταξὺ τῶν ἀληθινῶν ἐπαφῶν καὶ ἀποψαλμάτων ποιήσει τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον | ||
ἄξων μὲν κοινὸς ὁ ΔΘΝΞ , αἱ δὲ διὰ τῶν ἐπαφῶν εὐθεῖαι παράλληλοι δηλονότι γιγνόμεναι καὶ ταῖς διαμέτροις ἴσαι πρὸς |
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ | ||
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ |