τοῦ ἄξονος παραλληλόγραμμον τὸ ΘΛ , ἔσται καὶ ἐν τῷ κυλίνδρῳ τομή , ἧς διάμετρός ἐστιν ἡ ΖΕ . ὁμοίως | ||
ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος τῷ ΓΔΘ κώνῳ ἢ κυλίνδρῳ : ὅπερ ἔδει δεῖξαι . Δύο κύκλων περὶ τὸ |
: τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
. αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
, ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
, πρὸς τοὺς περιγραφομένους περὶ τὴν ἕλικα τομέας ὁμοταγεῖς τῷ ΟΘΝ , οὕτως πάντες οἱ ἐν τῷ ΑΖΓ τομεῖς οἱ | ||
ἐν τούτῳ καὶ τὸ Θ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΘΝ περιφέρειαν διελθὸν ἐπὶ τὸ Ν παραγίγνεται . Ὁμοία ἄρα |
μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
, καὶ τοῦ Κήτους ὁ νοτιώτερος τῶν ἡγουμένων ἐν τῷ τετραπλεύρῳ . Ἀνατέλλει δὲ ὁ Προκύων ἐν τρίτῳ μέρει ὥρας | ||
ἀριστερὸς πούς , ἔσχατος δὲ τοῦ Κήτους τῶν ἐν τῷ τετραπλεύρῳ ὁ βορειότερος τῶν ἡγουμένων . Ἀνατέλλει δὲ ὁ Λαγωὸς |
δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
ὁρίζοντι , ὅταν δὲ κατὰ τὸ Ο , δύνει τῷ ΔΒΓ ὁρίζοντι . Τὰ ἄρα ἀπλανῆ ἄστρα , ὅσα ἐστὶ | ||
ΠΞ : μεσημβρινὸς γάρ ἐστιν ὁ ΔΑΠ ἐν ἑκατέρῳ τῶν ΔΒΓ ΑΒΓ ὁριζόντων : λοιπὴ ἄρα ἡ ΜΝ ἴση ἐστὶν |
κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
αὐτοῖς τινος ὀργάνου διακρίνοντος αὐτοῖς τὰ τοιαῦτα , ἵνα ὥσπερ γνώμονί τινι καὶ κανόνι χρώμενοι τὰ μὴ ἐφαρμόζοντα ἀπωθῶνται : | ||
τὸ ΞΣ : ὅλον ἄρα τὸ ΤΣ ὅλῳ τῷ ΦΧΥ γνώμονί ἐστιν ἴσον . ἀλλ ' ὁ ΦΧΥ γνώμων τῷ |
τὸ σκέλος τοῖς διακόπτειν τεταγμένοις παραδίδωσιν , ὡς ἂν τῷ λοιπῷ σώματι ὑγιὴς ὁ ἄνθρωπος ᾖ . Σὺ δὲ τὸν | ||
ἀπὸ τῆς ΗΚ : λοιπὸν ἄρα τὸ ἀπὸ τῆς ΘΛ λοιπῷ τῷ ἀπὸ τῆς ΚΝ ἴσον ἐστίν : ἴση ἄρα |
τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
οὖν παράλληλός ἐστιν ἡ ΑΔ τῇ ΕΓ , ἡ ὑπὸ ΑΔΓ γωνία τῇ ὑπὸ ΕΓΔ ἴση ἐστί . δοθεῖσα δὲ | ||
κέντρον τὸ Β διὰ τῶν Α Γ κύκλος γεγράφθω ὁ ΑΔΓ , καὶ ἐκβε - βλήσθω ἡ ΑΒ ἐπὶ τὸ |
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ | ||
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
καὶ ἐὰν αἴσθηται ὁ κάμνων βάρους καὶ ὀδύνης ἐν τῷ ὑπερκειμένῳ , γίνωσκε ὅτι ἐν τῇ δεξιᾷ κοιλίᾳ ἐστὶ τὸ | ||
, νώτῳ τε καὶ τῷ πρώτῳ αὐτοῦ σπονδύλῳ τῷ τε ὑπερκειμένῳ τοῦ ὤμου ἄρθρῳ . εἰ μέντοι ὅλου τοῦ σώματος |
λέγω , ὅτι ἴσον ἐστὶ τὸ ΓΜ στερεὸν τῷ ΓΝ στερεῷ . Ἐκβεβλήσθωσαν γὰρ αἱ ΝΚ , ΔΘ καὶ συμπιπτέτωσαν | ||
εὐθεῖαν . αἰτιῶνται δὲ αὐτοῦ τινες ὡς οὐ δεόντως χρησαμένου στερεῷ προβλήματι . . . . . . . . |
ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
Κάραβος . παρὰ τὸ βαίνειν ἐπὶ τῆς κεφαλῆς προηκούσης τῷ ἐδάφει . οὕτως Ἡρωδιανὸς ἐν τῷ Συμποσίῳ . Κοίρανος . | ||
τούτοις γὰρ καὶ ζητεῖν ὅλως δεῖ τὰς ἀλλοιώσεις καὶ μεταβολὰς ἐδάφει καὶ ὕδατι καὶ ἀέρι καὶ ἐργασίᾳ . Καὶ γὰρ |
μὲν καλεῖ πλευράν , παράλληλον δ ' οὐ λέγει τῇ βορείῳ . δῆλον δ ' ὅτι οὐδ ' ὁ Εὐφράτης | ||
νότιον μὲν λέγων , παράλληλον δ ' οὐ λέγων τῷ βορείῳ τὸ νότιον . τὴν δὲ διαφωνίαν τοῦ μήκους φησὶ |
παραλληλογράμμων τῶν ΑΔ , ΔΗ , ΓΗ ἴσον ἐστὶ τῷ πρίσματι τῷ περιεχομένῳ ὑπὸ δύο μὲν τριγώνων τῶν ΜΛΝ , | ||
, τριπλάσιόν ἐστι πυραμίδος τῆς τὴν αὐτὴν βάσιν ἐχούσης τῷ πρίσματι : τοῦτο γὰρ δέδεικται ἐν τῷ ζʹ θεωρήματι τοῦ |
ἀνατελλέτω , πρότερον δὲ δυνέτω : τῶν ἄρα προηγουμένων τινὶ συνδύνει . Συνδυνέτω τῷ ζʹ : ἡ ἄρα ζδʹ περιφέρεια | ||
τὴν ΛΕ περιφέρειαν διαπορεύεται . Καὶ συνανατέλλει τῷ Ε : συνδύνει ἄρα τῷ Λ : ὥστε ἡ πρὸ τῆς Ε |
σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
τούτους ἕκαστον τῶν πλουσίων ἐγγράψαντα ἐς χαλκῆν στήλην ἔχειν ἐν μεσαιτάτῳ τῆς αὐλῆς , καὶ ἀναγινωσκέτω . δεῖ δὲ εἰδέναι | ||
, τὸν δὲ βασιλέα ἐν τῷ ἀσφαλεστάτῳ , τουτέστι τῷ μεσαιτάτῳ , κατασκηνοῦν , δείκνυσιν ἐν τῷ τοὺς μὲν γενναιοτάτους |
νοουμένου τοῦ ΗΛΜ συνεχοῦς ὄντος καὶ συνημμένου τῷ ΗΖΘ προλεχθέντι ἐσόπτρῳ , ἡ ΛΒ ἰσημερινὴ ἀκτὶς ἀνακλασθήσεται ἐπὶ τὸ Α | ||
, οὐ δύναται ὁρᾶσθαι τὸ πρόσωπον τοῦ ἀνθρώπου ἐν τῷ ἐσόπτρῳ : οὕτως καὶ ὅταν ᾖ ἁμαρτία ἐν τῷ ἀνθρώπῳ |
ὀρθὰς ἔχει , ἀλλὰ ταὐτὸν ὑπόκειται τριγώνῳ τε εἶναι καὶ σκαληνῷ . εἰ δὲ μὴ ταὐτὸν ἀλλ ' ἕτερον , | ||
ἡ ὑπὸ ΑΓΒ τῆς ὑπὸ ΓΔΒ . Ἐὰν ἐν κώνῳ σκαληνῷ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις τισὶν ἐπὶ παραλλήλων βάσεων |
μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
, ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
καὶ ὀλιγίστῃ σαρκὶ , καὶ ὁ πλεῖστος ἐγκέφαλος ὑπὸ τῷ βρέγματι κεῖται . Τῶν δὲ ἄλλων τὸ κατὰ τοὺς κροτάφους | ||
ἀνατρηθέντα τὸ κρανίον καὶ περιγενόμενον : ἦν γὰρ ἐν τῷ βρέγματι τὸ κάταγμα τὸ ἐκ βέλουϲ γεγονὸϲ καὶ ἔχον ἔκροιαν |
περιχώρῳ εὑρεθήσεται , καὶ θᾶττον εἰ ἐν τῷ ὑπὲρ γῆν ἡμισφαιρίῳ τύχῃ ὥσπερ βραδύτερον εἰ ἐν τῷ ὑπὸ γῆν . | ||
τοῖς λαιοῖς , καὶ ἡ Σελήνη δὲ ἐν τῷ βορείῳ ἡμισφαιρίῳ τὰ δεξιά : ἀνερχομένη γὰρ τὰ βόρεια σημαίνει ἕως |
καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
, νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
τῶν κάλων τοῦ ὀργάνου . βρόχος δ ' ὁ καρχήσιος περιτίθεται τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἄγονται κάτω καὶ | ||
πρὸς ἀπότασιν σφυροῦ καταρτιζομένου : ἡ μὲν γὰρ μία ἀγκύλη περιτίθεται τῷ πλατεῖ νεύρῳ ὄπισθεν τοῦ σφυροῦ , ἡ δ |
ΑΕΖ , καὶ ἴσον ὁμοίως . Ἐὰν ἐν σκαληνῷ κώνῳ τμηθέντι διὰ τῆς κορυφῆς ἐπιπέδοις ἐπὶ παραλλήλων βάσεων ἰσοσκελῆ τρίγωνα | ||
αἰσχύνομαι εἰς ὄψιν ἐλθεῖν τοῦ ἰατροῦ . Σχολαστικῷ τὴν σταφυλὴν τμηθέντι παρήγγειλεν ὁ ἰατρὸς μὴ λαλεῖν . ὁ δὲ τῷ |
αʹ , ἐπὶ τῆς σιαγόνος αʹ , ἐφ ' ἑκατέρῳ ὠτίῳ ἀμαυρὸν αʹ , ἐπὶ τῷ τραχήλῳ δʹ , ὧν | ||
ἀγγείοις ἐοικέναι . ὁ κυψελίτης ῥύπος , ὁ ἐν τῷ ὠτίῳ φυόμενος . Φιλόξενος . Κεφαλή . ἥτις καρφαλή ἐστι |
εἰς τὴν μασχάλην . βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω τῷ βραχίονι , οὗ αἱ ἀρχαὶ ἀγέσθωσαν πρὸς τὰς | ||
καὶ ἀποδεδέσθωσαν ἑνὶ κλιμακίῳ πρὸς κράτημα , τῷ δὲ βραχίονι περιτιθέσθω βρόχος ἰσότονος , οὗ αἱ ἀρχαὶ ἀναγέσθωσαν ὑπὲρ κεφαλῆς |
, καὶ τὸ ἀντικείμενον τῷ ὄντι τὸ μὴ ὂν τῷ ἀντικειμένῳ τῷ ἑνὶ ταὐτὸν ἔσται : οὐκ ὂν ἄρα τὰ | ||
εἴρηται : εἰ γὰρ τόδε τῷδε ἀκολουθεῖ , καὶ τῷ ἀντικειμένῳ τὸ ἀντικείμενον , οἷον εἰ τὸ πῦρ θερμόν , |
πυρετὸς , καὶ ὀδύνη ἐν τοῖσι στήθεσι καὶ ἐν τῷ μεταφρένῳ ἔγκειται , ἐνίοτε δὲ καὶ ἐν τῷ πλευρῷ : | ||
πλείονος φλογὸς τῷ τε στήθει καὶ τῷ στομάχῳ καὶ τῷ μεταφρένῳ κολλώμεναι , καὶ πταρμὸς ἐπιτετηδευμένος ἁρμοδιώτατος τοῖς ἐπὶ πλήθει |
ὁ βραχίων ἀσφαλιζέσθω πρὸς τὸν ἄξονα , καὶ τότε τῷ πήχει βρόχος ὁ καρχήσιος ἢ ἄλλος ἰσότονος περιτιθέσθω , οὗ | ||
βραχίων ἀσφαλιζέσθω βρόχῳ πρὸς τὴν ὑπερκειμένην φλιάν , τῷ δὲ πήχει πάλιν κατὰ τὰ ἀπολήγοντα μέρη περιτιθέσθω βρόχος ἀνισότονος , |
συλλαβῇ , οἷον τῷ Χρύσῃ , τῷ σοφῷ , τῷ κοχλίᾳ . Ἐν οἷς σὺν θεῷ καὶ ἡ πρᾶξις . | ||
ἔλυσεν ἑαυτὸν εἰπὼν συνήθης γεγονυῖα τῇ κοινῇ διαλέκτῳ . Τῷ κοχλίᾳ : πᾶσα γενικὴ ἰσοσυλλάβως καὶ ἑξῆς . Φυλακτέον τὸ |
. χιτῶνι καὶ μεταμπίσχουσα τὰς ψυχάς . σαρκῶν ἀλλογνῶτι περιστέλλουσα χιτῶνι . . . . λέγει δὲ καὶ Ἐ . | ||
γε μὴν ξανθότατόν ἐστι . τὸ δὲ ὑπὸ τούτῳ τῷ χιτῶνι κυανοῦν ἐστὶ χρόᾳ καὶ χαῦνον , ὥσπερ οὖν πεπρημένη |
καὶ διὰ τοῦ π , καὶ ὁ αὐτὸς ἔσται τῷ εζηκ ἐπικύκλῳ . γεγράφθω οὖν ὁ πρχ : ἐπεὶ οὖν | ||
ἐπὶ τὰ αὐτὰ τούτῳ φερόμενος ὁμοίως τεταρτημοριαίαν ἐνηνέχθω περιφέρειαν τοῦ εζηκ τὴν εζ : ἔσται οὖν ἐπὶ τοῦ π , |
ΚΕΔ . ἀλλ ' ἡ μὲν ὑπὸ ΚΔΕ τῇ ὑπὸ ΔΚΛ ἐστὶν ἴση , ἡ δὲ ὑπὸ ΚΕΔ τῇ ὑπὸ | ||
τῷ Ζ , διαστήματι δὲ τῷ ΖΔ κύκλος γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ |
ιαʹ . ὡρῶν ιδ ∠ ʹ : ὁ ἐν τῷ ἑπομένῳ ὤμῳ τοῦ Ὠρίωνος κρύπτεται . Αἰγυπτίοις ἀνεμώδης κατάστασις . | ||
ἄνθρωπον πᾶν ζῶον εἶναι ἢ πᾶν γελαστικόν . οὐ τῷ ἑπομένῳ οὖν δεῖ ἀλλὰ τῷ ὑποκειμένῳ συντάττειν τὸν προσδιορισμόν , |
ΘΚΛ , τριῶν δὲ παραλληλογράμμων τῶν ΚΖΓΛ , ΛΓΗΘ , ΘΚΖΗ . καὶ φανερόν , ὅτι ἑκάτερον τῶν πρισμάτων , | ||
δειχθήσεται . ὅτι μὲν οὖν ἰσόπλευρόν τε καὶ παραλληλόγραμμον τὸ ΘΚΖΗ τετράπλευρον , δῆλον : ὅτι δὲ καὶ ἰσογώνιον , |
ἀντὶ τῶν σκυταλῶν χειρολάβην τινὰ περιθεῖναι τῷ ἄκρῳ τοῦ κοχλίου ὑπερέχοντι εἰς τὸ ἐκτὸς τοῦ διαπήγματος καὶ οὕτως στρέφοντα τὸν | ||
ἐστιν ὥσπερ ᾧ πάντα τὰ μεγάλα ἐστὶ μεγάλα , τῷ ὑπερέχοντι : τούτῳ γὰρ πάντα μεγάλα ἐστί , καὶ ἐὰν |
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν | ||
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ |
ΚΞ τεταρτημόρια ἀλλήλοις . ὅσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίῳ πλευραὶ τοῦ πολυγώνου , τοσαῦταί εἰσι καὶ ἐν τοῖς | ||
ἕκαστον τῆς γῆς τόπον τῶν ἐν τῷ καθ ' ἡμᾶς τεταρτημορίῳ τεταγμένων , λέγω δὲ τῶν ἀπὸ τοῦ ἰσημερινοῦ μέχρι |
ληγούσης ἐφαίνετο ἐπ ' εὐθείας τῷ τε μέσῳ καὶ τῷ νοτίῳ τῶν ἐν τῷ μετώπῳ τοῦ Σκορπίου ἡ νότιος κεραία | ||
ἐν ταῖς χηλαῖς τοῦ Σκορπίου λαμπρῶν τὸν ἐν ἄκρᾳ τῇ νοτίῳ Τιμόχαρις μὲν ἀναγράφει νοτιώτερον τοῦ ἰσημερινοῦ μοίραις ε , |
ὑποτείνουσα κε . [ καὶ ] γίνεται ὁ ἐν τῷ ἐμβαδῷ μετὰ βας τῶν ὀρθῶν ΔΥ πδ ʂ ζ . | ||
περιμέτρῳ αὐτοῦ ᾖ κύβος , προσλαβὼν δὲ τὸν ἐν τῷ ἐμβαδῷ αὐτοῦ , ποιῇ τετράγωνον . Πρότερον δεῖ ἐπισκέψασθαι : |
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων | ||
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν |
ὑπ ' ἐμοῦ . . χειρωναξία ] βάναυσος τέχνη . ἁπλῷ λόγῳ ] ἐν ἀληθεῖ λόγῳ , ἢ ἐν συντόμῳ | ||
γὰρ γίνεται ψυχόμενον . Καὶ τὸ βαλάνινον δὲ παραπληϲίωϲ τῷ ἁπλῷ ἀμυγδαλίνῳ γίνεται ἀπὸ τῶν ἐν ταῖϲ δρυϲὶ βαλάνων . |
λαμπρός , καὶ τοῦ Ὄρνιθος ὁ ἑπόμενος τῶν ἐν τῷ ἀριστερῷ ποδί , καὶ τοῦ Κηφέως ὁ νοτιώτερος τῶν προηγουμένων | ||
Κενταύρου : τοῦ δὲ Βοώτου ὁ μέσος τῶν ἐν τῷ ἀριστερῷ ποδὶ ὡς κʹ μέρος ὡριαίου διαστήματος ὑπολείπεται τοῦ τὰς |
, καὶ ἡνωμένη πάσχει τι ὅμως διακρινόμενον , τῷ μὲν ἡνωμένῳ καὶ μένοντι τὸ ὅλον οὖσα , τῷ δὲ διακρινομένῳ | ||
τόδε καὶ τοδί , ἀλλ ' ὡς ἐν τῷ πάντη ἡνωμένῳ τὸ πληθοειδὲς ἐμφαντάζεται διὰ τὴν ἁπλότητα τοῦ πρώτου μικτοῦ |
ἑνοειδῆ τὴν ἐξ αὐτῶν φωνὴν γενέσθαι καὶ οἷον μίαν : διάφωνοι δὲ , ὅταν διεσχισμένη πως καὶ ἀσύγκρατος ἡ ἐξ | ||
βαρεῖς καλοῦνται , καὶ πάλιν τῶν οὐχ ὁμοφώνων οἱ μὲν διάφωνοι προσαγορεύονται οἱ δὲ σύμφωνοι , καὶ διάφωνοι μὲν οἱ |
. καθ ' ἑαυτὴν δὲ περιχρισθεῖσα τῷ δακτύλῳ ἢ τῷ ὀμφαλῷ πλεῖον κλυστῆρος κενοῖ τὴν γαστέρα . σὺν δὲ ἀρτεμισίᾳ | ||
τραχήλῳ τοῦ Ἵππου δύο ὁ λαμπρὸς καὶ ὁ ἐν τῷ ὀμφαλῷ τοῦ Ἵππου ἐπ ' εὐθείας εἰσὶν καὶ τὰ διαστήματα |
σημεῖον στῇ καὶ ἡ εὐθεῖα , τότε νοουμένων αὐτῶν ἐν ἐπιπέδῳ δυνατὸν ἀπὸ τοῦ σημείου ἐπὶ τὴν εὐθεῖαν κάθετον ἀγαγεῖν | ||
ΨΧ καὶ ἡ ΒΓ τέμνουσιν ἀλλήλας , ἐν ἑνί εἰσιν ἐπιπέδῳ διὰ τὸ δεύτερον τοῦ ιαʹ : ἐν δὲ τῷ |
ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
ἢ νάπεϊ ἢ ὑσσώπῳ ἢ ὀριγάνῳ . τὰς δὲ τῷ βρόγχῳ προσφυείσας ἐκβλητέον ἐμβιβάσαντας εἰς θερμὴν ἔμβασιν καὶ δόντας διακρατεῖν | ||
ϲὺν ὕδατι καὶ χαλκάνθῳ ϲὺν ὄξει . τὰϲ δὲ τῷ βρόγχῳ προϲφυείϲαϲ ἐμβιβάϲαϲ εἰϲ ἔμβαϲιν θερμὴν τὸν ἄνθρωπον δούϲ τε |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
ῥηθέντων τινῶν αὐτοῖς καὶ μὴ ἀποβάντων οὕτως ἐξηπατῆσθαι νομίζουσι , παρακείσθω σοι καὶ οὗτος ὁ λόγος , ὡς ἄρα οἱ | ||
ἐνόπτρου θεωρεῖται τὸ ΕΔ ἐν γωνίᾳ τῇ ὑπὸ ΑΒΓ . παρακείσθω δὴ ἔνοπτρον ἐπίπεδον τὸ ΑΓ ἁπτόμενον τῶν ὄψεων κατὰ |
δὲ Μαγνῆτίϲ τε καὶ Ἡρακλεία καλουμένη λίθοϲ παραπληϲίαν ἔχει τῷ αἱματίτῃ τὴν δύναμιν . ὅ γε μὴν Ἀράβιοϲ ἐοικὼϲ ἐλέφαντι | ||
ἡ μαγνῆτίς τε καὶ Ἡρακλεία καλουμένη , παραπλησίαν ἔχουσα τῷ αἱματίτῃ τὴν δύναμιν . Ὅ γε μὴν Ἀράβιος καλούμενος λίθος |
, εὐσαρκία περιττοτέρα τοῦ λόγου . τὰ δὲ ὑπὸ τῷ ἰσχίῳ μήτε ὑπόλισπα ἔστω , μήτ ' αὖ περιττά , | ||
τοῦ κρατήματος , σπάθης ἰπωτρίδος τὸ πλατὺ μέρος ὑποτιθέσθω τῷ ἰσχίῳ , τῷ δὲ μηρῷ κατὰ τὰ ἀπολήγοντα μέρη τὰ |
οὗτος ποιμαίνων ἔν τινι ὄρει τὰ πρόβατα περιέτυχε σπη - λαίῳ τινί : καὶ εἰσελθὼν ἐν αὐτῷ εὗρεν ἵππον χαλκοῦν | ||
ἐρχθέντας καὶ ἀποκλεισθέντας ἐν τῇ καλιᾷ καὶ τῷ σπη - λαίῳ τῷ αὐτοφυεῖ . ἀγρευτῆρσιν : ὑπὸ τοῖς κυνηγοῖς , |
. Κοιλίη ταραχθεῖσα ὑπὸ πλευρίτιδος ἐχομένῳ ἢ περιπλευμονίης , ἢ ἐμπύῳ ἐόντι , κακόν : πυρέσσοντι δὲ ἢ τρῶμα τετρωμένῳ | ||
δὲ γίνεται , ὅταν ἐς τὸ αὐτὸ , ὥσπερ τῷ ἐμπύῳ , ὁ ῥόος γένηται διὰ τοῦ βρόγχου καὶ τῶν |
: ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
ἐς τοῦτο γὰρ ἐπιφορώτερον αὐτὸ ἅμα τῷ ὤμῳ καὶ τῷ βραχίονι κάτω ῥέψαι μᾶλλον , ἢ ἐς τὸ ἄνω . | ||
ξυναυξάνεται . Ἐς δὲ τὸ εὔσαρκον τῇ χειρὶ καὶ τῷ βραχίονι ἡ ταλαιπωρίη τῆς χειρὸς μέγα προσωφελέει : ὅσα γὰρ |
περίθεσιν τῆς καιρίας αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν κατ ' εὐθὺ τῷ τύλῳ τοῦ ἄξονος , εἶτα | ||
αἱ τοῦ βρόχου ἀρχαὶ ἀγέσθωσαν καὶ ὑπὲρ κεφαλῆς ἀναφερέσθωσαν καὶ ἀποδιδόσθωσαν κρατήματι . ἄλλος δὲ βρόχος ἰσότονος ὡς καρχήσιος τῷ |
στερεοῦ . ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνῳ ὅμοιόν τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ , | ||
. Καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ ΖΗΘΚΛ πολυγώνῳ , ἴση ἐστὶν ἡ ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ |
καὶ γοητεύουσαν ταῖς ἡδυπαθείαις . . ΕΝ ΔΕ ΘΕΜΕΝ ΚΥΝΕΟΝ ΤΕ ΝΟΟΝ . Ἐπένευσεν ἡ Εἱμαρμένη καὶ τὸν προφορικὸν λόγον | ||
δ ' ἀμφοτέρων ἐπίσης ἀπέχει ἡ σωφροσύνη . . ἙΝΔΕΚΑΤΗ ΤΕ ΔΥΩΔΕΚΑΤΗ Τ ' . Ἡ ἑνδεκὰς ἐτιμᾶτο μὲν καὶ |
ΚΜ ἄξονος , ἐλάσσων ἐστὶ καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΧ κυλίνδρου , ἔστιν ἄρα ὡς ὁ ΕΚ ἄξων πρὸς | ||
ΚΜ ἄξονος , μείζων ἐστὶ καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΧ κυλίνδρου , εἰ δὲ ἐλάσσων ἐστὶν ὁ ΛΚ ἄξων |
ὀμφακίνων ⋖ βʹ . οἴνου διεὶς καὶ μέλιτος ποιήσας πάχος ἐπίβρεχε , ἔξωθεν ἐπιῤῥίπτων σπογγάριον ὀξυκράτῳ δεδευμένον καὶ ταινιδίῳ καταλάμβανε | ||
ὀμφακίνων ⋖ β : οἴνῳ διεὶϲ καὶ μέλιτοϲ ποιήϲαϲ πάχοϲ ἐπίβρεχε ἔξωθεν ἐπιρρίπτων ϲπογγάριον ὀξυκράτῳ δεδευμένον καὶ ταινιδίῳ καταλάμβανε . |
αὐλῳδῷ . Δίδοται δὲ ὁ στέφανος τῷ ἱλαρῳδῷ καὶ τῷ αὐλῳδῷ , οὐ τῷ ψάλτῃ , οὐδὲ τῷ αὐλητῇ . | ||
δ ' αὐτῷ ἄρρην ἢ θήλεια , ὡς καὶ τῷ αὐλῳδῷ . Δίδοται δὲ ὁ στέφανος τῷ ἱλαρῳδῷ καὶ τῷ |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
ὑπολειπόμενος τοῦ μεσημβρινοῦ : ἔσχατος δὲ μεσουρανεῖ τοῦ ἐν τῷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων λαμπρῶν , καὶ ὁ | ||
μέσος τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ |
λέγεται παντὶ μάλιστα δονεῖν θυμόν . ἑκόντι δ ' ἐγὼ νώτῳ μεθέπων δίδυμον ἄχθος ἄγγελος ἔβαν , πέμπτον ἐπὶ εἴκοσι | ||
, τὰς μέν τινας ἔχουσι πρὸς τοῖς νοητοῖς καὶ τῷ νώτῳ τοῦ οὐρανοῦ συζυγούσας δυνάμεις , τὰς δέ τινας καὶ |
: * * * ὑπὸ πυρὸς δὲ κεραυνωθῆναι καὶ ἐν μηρῷ βληθῆναι , ὅτι πολλάκις ὁ οἶνος ἡλιαζόμενος τελειοῦται τῇ | ||
ἀπὸ Φάσιδος ποταμοῦ , ἢ τοὺς ἵππους ἔχοντας ἐν τῷ μηρῷ αὐτῶν ὥσπερ τι σημεῖον φασιανὸν τὸ ὄρνεον . Φάσις |
συνανατελλέτω : τῶν ἄρα ἡγουμένων τινὶ τῷ δʹ συνδύνει . Συνδυνέτω τῷ ζʹ : ἡ ἄρα δζʹ ζῳδίου ἐστίν . | ||
δύνει : τῶν ἄρα ἑπομένων τινὶ τῷ δʹ συνδύνει . Συνδυνέτω τῷ ηʹ : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους |
ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
λαβεῖν , ὅτι οἱ ἔχοντες ἀρκτικὸν τὸν τροπικὸν ὑποπεπτώκασι τῷ γραφομένῳ κύκλῳ ὑπὸ τοῦ πόλου τοῦ ζωδιακοῦ κατὰ τὴν τοῦ | ||
ἔχοντι , ὑπὸ δὲ τοῦ πρώτου νοῦ τελειουμένῳ καὶ ἐντελεχείᾳ γραφομένῳ . τὸ γὰρ ἀμέριστον καὶ ἡνωμένον τῆς τελειότητος ἐκεῖθεν |
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον | ||
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ |
δὲ ἄλλοι , ἡ δι ' εὐεξίαν ἐπιτραφεῖσα σὰρξ τῷ γόνατι . Ὅμηρος : οἷον ὁ γέρων ἐπὶ γουνίδα φαίνει | ||
αʹ , ἐπὶ δεξιᾶς χειρὸς αʹ , ἐφ ' ἑκατέρῳ γόνατι αʹ , ἐφ ' ἑκατέρῳ ποδὶ αʹ , τοὺς |
διαστημάτων συμμέτρων ἔτρησα τρήμασι καταλλήλοις , ἵνα ὁπότε βουληθείην ἐν καταρτισμῷ ἀκινητεῖν τὸν ἄξονα , κατακλείσω τὸν κόρακα εἰς τὸ | ||
, τὸ δὲ σφάλμα διὰ χειρῶν . τούτῳ ἐγὼ τῷ καταρτισμῷ οὐ συναρέσκομαι : διότι , ἐγὼ φράσω : αἰωρούμενον |
ἐν τῷ Καρκίνῳ , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ βορείᾳ χηλῇ τοῦ Καρκίνου . Μεσουρανοῦσι δὲ τῶν ἄλλων ἀστέρων | ||
ἡμιπήχιον , καὶ τοῦ Κήτους ὁ προηγούμενος τῶν ἐν τῇ βορείᾳ σιαγόνι . Δύνει δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει |
ἐρυθροτέραν τῶν ὀρνίθων . τὴν δὲ τοῖς ὄρνισιν ἐπὶ τῷ ῥύγχει κειμένην , ἣν ἔνιοι πώγωνα καλοῦσιν , οὐκ ἔχει | ||
προηγούμενος τοῦ μεσημβρινοῦ , καὶ τῶν Ὑάδων ὁ ἐν τῷ ῥύγχει , ὡς ἡμιπήχιον ὑπολειπόμενος τοῦ μεσημβρινοῦ . Δύνει δὲ |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
ἔργων πλουτήσαντα , σπεύδει καὶ αὐτὸς πλουτῆσαι . . ΕΙΣ ἙΤΕΡΟΝ ΓΑΡ . Τίς γὰρ χρῄζων ἔργου , ἰδὼν εἰς | ||
τῆς ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ |
ἐν φρέατι ὕδατος πηγή : σκέπη δὲ ἀπὸ ἡλίου τῷ φρέατι ὄροφός τε καὶ ἀνέχοντες τὸν ὄροφον κίονες . ἔστι | ||
στρέφεται , καὶ συγκινεῖ μικρὸν ἕτερον κύκλον τὸν ἐπὶ τῷ φρέατι . ἐπὶ τούτῳ τὰ σχοινία καὶ οἱ χόες ἐπίκεινται |
ἐὰν δ ' ἀμφοτέρας ἀνέμου μέγεθος . Ἐὰν ὄρος πρὸς βορρᾷ ἄνεμον προσημαίνει . Ἐὰν ἐν θαλάττῃ ἐξαίφνης πνεύματος γαλήνη | ||
καὶ διαιρούμενον ὀλιγοχρόνιον καὶ πολυπαθὲς ζῷον , ἡλίῳ φρυγόμενον , βορρᾷ ψυχόμενον . γέλωτα δὲ ἔχεις προοίμιον πένθους , δάκρυα |
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
ἀπὸ δακτυλίου ἀρξαμένη καὶ ἐπὶ πολὺ κεχωρηκυῖα ἢ ἐν τῷ σφιγκτῆρι κατεσκευασμένη , μετὰ τὴν δεδηλωμένην σημείωσιν τῷ ἑδροδιαστολεῖ , | ||
τραχήλῳ τῆς κύστεως , ἐπίκειται δὲ τῷ δακτυλίῳ καὶ τῷ σφιγκτῆρι καὶ τῷ ἄκρῳ τοῦ ἀπευθυσμένου . κατὰ δὲ μῆκός |
ἡ δὲ ἐτυμολογία ἀπὸ τοῦ κορέννυσθαι τὰς ψυχὰς αἵματος . πόρῳ κλιθείς : τῷ ῥεύματι . τύμβον ἀμφίπολον ἔχων : | ||
, καὶ χρῶ ἐνστάζων ἢ ἐλλυχνίῳ περιχρίων καὶ προσβάλλων τῷ πόρῳ . Ἄλλο πρὸς τὰ αὐτὰ λίαν καλόν : στυπτηρίαν |
καὶ δεξιός ἐστιν ὁ τόπος κατὰ τρίγωνον στάσιν τῷ μεσουρανοῦντι κέντρῳ . σημαίνει δὲ ὁ τόπος τὰ πρὸς ὑπηρεσίαν συντείνοντα | ||
ἔλλοπος δὲ τοῦ ἰχθύος τουτέστι τῆς τρυγόνος : τῷ γὰρ κέντρῳ αὐτῆς χρώμενος ἀντὶ δόρατος ὁ Τηλέγονος ἀνεῖλε τὸν πατέρα |
μέσης . καὶ πρῶτος μὲν ἀστὴρ δύνει τῶν ἐν τῷ γοργονίῳ ὁ βορειότερος τῶν ἡγουμένων , ἔσχατος δὲ ὁ ἐν | ||
δεξιῷ γόνατι τῇ ζʹ μοίρᾳ : ὁ δὲ ἐν τῷ γοργονίῳ καὶ τῇ ἀριστερᾷ χειρὶ κείμενος λαμπρὸς ἀστήρ , ὃς |
: τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου | ||
. ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον , |
ἡ ΑΒ τῇ ΓΔ , ἀλλὰ καὶ γωνία ἡ ὑπὸ ΑΒΘ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση . καὶ περιφέρεια ἄρα | ||
καὶ ἔστω ὡς ὁ ΒΑΘ : μέγιστος ἄρα ἐστὶν ὁ ΑΒΘ κύκλος : ἡ γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση |
καὶ ἤχθωσαν αὐτῆς δύο συζυγεῖς διάμετροι , ὀρθία μὲν ἡ ΑΕΓ , πλαγία δὲ ἡ ΒΕΔ , καὶ παρὰ τὰς | ||
ὁ ΑΒΓΔ περὶ κέντρον τὸ Ε καὶ διάμετρος αὐτοῦ ἡ ΑΕΓ ἐκβεβλημένη ἐπὶ τὸ Ζ κέντρον τοῦ διὰ μέσων τῶν |
ἀριθμῆται κινδύνους τῳ συμπάντων ἄρχειν ἀξιοῦντι , τοτὲ δ ' ἐπαιρομένη , ἐπειδὰν τὸ μέγεθος τῆς ἐξουσίας τε καὶ τιμῆς | ||
ἔννοιαν , ὡς ἡ μὲν ὑφ ' ὧν ἐπάγεται χρημάτων ἐπαιρομένη τὰ πολλὰ κρατεῖν ἀξιώσει τοῦ συνοικοῦντος , ἡ δὲ |