: ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ μέσον ἐστίν . Κείσθω δὴ τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , | ||
ΑΒ , Ζ τῶν ΓΔ , Ε μείζονά ἐστιν . Κείσθω γὰρ τῷ μὲν Ε ἴσον τὸ ΑΗ , τῷ |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
σύνηθες καὶ παρὰ τῷ πεζῷ λόγῳ . . ΝΥΝ ΔΕ ΕΓΩ ΜΗΤ ' ΑΥΤΟΣ . Τὸ μὲν λεγόμενον , φανερόν | ||
ἀνθαμίλλου Ὁμήρου , καὶ νικητοῦ ποιητοῦ . . ΝΥΝ ΔΕ ΕΓΩ . Ἀρξάμενος ἀφ ' ἑαυτοῦ , εἶτα ὥσπερ μεταμεληθεὶς |
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι | ||
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
, τοιούτων # λγ . τοσούτων ἐστὶν ἄρα καὶ ἡ ΛΤ τοῦ ζῳδιακοῦ περιφέρεια . ἐπεὶ οὖν καὶ ἐπὶ τῆς | ||
δὴ ἡ μὲν ΙΤ παρὰ τὴν ΔΠ , αἱ δὲ ΛΤ , ΜΥ παρὰ τὰς ΑΠ , ΟΡ . καὶ |
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ | ||
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ |
σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ | ||
θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα |
, τοιούτων ἡ μὲν ΗΜ δ λγ , ἡ δὲ ΜΒ β λζ λ . πάλιν , ἐπεὶ ἡ ὑπὸ | ||
πενταγώνου ἐστὶν ἡ τοῦ εἰκοσαέδρου : εἰκοσαέδρου ἄρα ἐστὶν ἡ ΜΒ . Καὶ ἐπεὶ ἡ ΖΒ κύβου ἐστὶ πλευρά , |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν | ||
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον |
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς | ||
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου , |
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ . | ||
ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς |
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
διεχρήσατο , τὸ δὲ λειπόμενον προσθεῖναι τὴν αἰχμάλωτον βούλεται . ΕΠΙ ΤΗι ΚΑΤΑΣΤΑΣΕΙ Δ ' Η ΒΟΥΛΗΣΙΣ . Τῶν γὰρ | ||
πάντα τὰ κατὰ τὸν βίον πληροῦσα . . ΟΙ ΜΕΝ ΕΠΙ ΚΡΟΝΟΥ . Ὅτι μὲν οἱ ἀπὸ χρυσοῦ γένους ἄνθρωποι |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ | ||
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις . |
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
, ἤγουν ἡ Εἱμαρμένη . . ΤΟΥΝΕΚ ' ΑΡ ' ΑΝΘΡΩΠΟΙΣΙ . Τούτου δὴ ἕνεκα , ἤγουν τῆς παρὰ τοῦ | ||
, ἢ ἀπὸ τοῦ γέρας . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙ ΝΟΜΟΝ . Καὶ τοῦτο ἄξιον ποιητοῦ νικήσαντος Ὅμηρον . |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
αὐτῷ γεγονέτω ὁ τοῦ ΑΔ πρὸς ΕΔ : καὶ τοῦ ΔΑ ἄρα πρὸς ΕΔ λόγος ἐστὶ δοθείς : καὶ ἀναστρέψαντι | ||
, κοινὴ δὲ ἡ ΒΑ , καὶ ἔστιν βάσις ἡ ΔΑ βάσει τῇ ΑΖ ἴση , γωνία ἄρα ἡ ὑπὸ |
κέντρου τοῦ κύκλου ἤχθωσαν πρὸς ὀρθὰς ἐπὶ τὴν ΘΒ καὶ ΚΓ ἐκβεβλημένας ἡ ΛΜ , ΛΝ : τέμνουσιν ἄρα ταύτας | ||
ἡ ΚΒ πρὸς ὅλην τὴν ΒΗ ἐστιν , ὡς ἡ ΚΓ πρὸς ΖΗ , τουτέστιν ὡς ἡ ΔΘ πρὸς ΖΗ |
τὰ Μβσν : καὶ τὰ ἡμίση , τουτέστιν , τὰ Ϡοθ πρὸς τὰ Μαρκε . Ἡ ἀπὸ τοῦ κέντρου τῆς | ||
πρὸς ΝΞ ἐλάσσονα λόγον ἔχει ἢ ὃν τὰ Μαρκε πρὸς Ϡοθ : ὡς δὲ ἡ ΟΠ πρὸς ΝΞ , οὕτως |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
ἐν τῷ Καρκίνῳ , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ βορείᾳ χηλῇ τοῦ Καρκίνου . Μεσουρανοῦσι δὲ τῶν ἄλλων ἀστέρων | ||
ἡμιπήχιον , καὶ τοῦ Κήτους ὁ προηγούμενος τῶν ἐν τῇ βορείᾳ σιαγόνι . Δύνει δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει |
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
, καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
ΣΑ , τῆς δὲ ΒΗ ἡμίσεια ἡ ΒΤ . αἱ ΣΑ , ΒΤ ἄρα ἴσαι τε καὶ παράλληλοί εἰσι : | ||
αἱ ἄρα ὑπὸ τῶν ΓΣ , ΣΝ , ΝΣ , ΣΑ ταῖς ὑπὸ τῶν ΛΣ , ΣΑ , ΑΣ , |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
ἡ ΒΚΑ περιφέρεια τῇ ΘΖΕ περιφερείᾳ . Ἀλλ ' ἡ ΒΚΑ τῆς ΗΘΖ μείζων ἐστὶν ἢ ὁμοία : καὶ ἡ | ||
τῶν ΒΘΑ : ἡμίσους ἄρα ἐστὶν καὶ ἡ ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : |
δέ εἰσιν ἄνισοι , ὥς φησιν , αἱ ΑΔ , ΛΔ . τὸ γὰρ ἀπὸ ΑΛ , τῶν # λ | ||
ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου : πολλῷ ἄρα αἱ ΛΔ , ΔΝ οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου . ἐὰν |
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
, ὅτι καὶ οὕτως ἰσογώνιόν ἐστι τὸ ΑΒΓΔΕ πεντάγωνον . Ἐπεζεύχθω γὰρ ἡ ΒΔ . καὶ ἐπεὶ δύο αἱ ΒΑ | ||
ὁ αὐτὸς κύκλος περιλαμβάνει τὸ πεντάγωνον καὶ τὸ τρίγωνον . Ἐπεζεύχθω ἡ ΕΓ : κύβου ἄρα τοῦ ὑπὸ τὴν αὐτὴν |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١١ ١٠ ٥٠ ٢٢ ٥٦ ἡ ΘΜ ἤτοι τὸ πλάτος ٢ ٤٧ ٤٢ | ||
٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤ ٣٩ ٢٢ ٥ ١٤ Τοῦ ρζʹ . ἡ ΑΒ ٢ ٢٥ |
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
καὶ γοητεύουσαν ταῖς ἡδυπαθείαις . . ΕΝ ΔΕ ΘΕΜΕΝ ΚΥΝΕΟΝ ΤΕ ΝΟΟΝ . Ἐπένευσεν ἡ Εἱμαρμένη καὶ τὸν προφορικὸν λόγον | ||
δ ' ἀμφοτέρων ἐπίσης ἀπέχει ἡ σωφροσύνη . . ἙΝΔΕΚΑΤΗ ΤΕ ΔΥΩΔΕΚΑΤΗ Τ ' . Ἡ ἑνδεκὰς ἐτιμᾶτο μὲν καὶ |
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ | ||
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
, ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ | ||
ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα |
Αἰγόκερω μοίραις γ ι λοξώσεως . ἔστιν δὲ καὶ ἡ ΕΞ τῶν τοῦ ἐξάρματος ἐν Ἀλεξανδρείᾳ μοιρῶν λ νη . | ||
ΓΘ πρὸς τὴν ΕΞ : παραλλήλου οὔσης τῆς ΓΘ τῇ ΕΞ εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ Ξ Ζ |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν | ||
, ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων |
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς | ||
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ |
ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ | ||
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν |
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς | ||
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ |
ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , . | ||
ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας |
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση | ||
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ |
ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ | ||
ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ |
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ | ||
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
μέσον τὸ ΓΕ . Ἡ πλευρὰ τοῦ . . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ | ||
٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ ٢٨ ١٩ τὸ ΗΚ ١٦ ἡ δυναμένη αὐτό ٤ ΚΘ |
τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ | ||
τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ |
ἐκ τῆς ἐπιορκίας τιμωρίαν τοῖς σκολιῶς δικάσασι . . ΑΥΤΙΚΑ ΓΑΡ ΤΡΕΧΕΙ ὉΡΚΟΣ . Κατασκευάζων πῶς ἡ δικαιοσύνη ὑπερφέρει τῆς | ||
ἦτοι βασιλῆες Ἀχαιῶν εἰσὶ καὶ ἄλλοι . . ΗΔΗ ΜΕΝ ΓΑΡ ΚΛΗΡΟΝ ΕΔΑΣΣΑΜΕΘΑ . Ἀντὶ τοῦ πρὸ μακροῦ τὴν περιουσίαν |
ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν | ||
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα |
τοῦ κ καὶ τῆς πλευρᾶς τοῦ σ , ὅπερ ἐστὶ σπβ ν κ , μέσον ὡς ὑπὸ ῥητῶν δυνάμει μόνον | ||
Μηλέα περϲική σοθ Μηλέα ἀρμενιακή σπ Μηλέα μηδική σπα Μῆλα σπβ Μῆον σπγ Μορέα σπδ Μύκητεϲ σπε Μυωτίϲ σπϚ Μυρίκη |
τῆς ΑΒ ⸎ ٥٢ ٢٥ ٣٦ ١٦ ἡ ΓΖ ٢ ١٣ ٦ ٢٤ ٤ ἡ ΑΗ ٤ ٣٧ ٥٣ λοιπὸν | ||
٤٤ ٣ ἡ ΓΔ ٧ ١٥ ٣٣ ἡ ΔΖ ٥ ١٣ ٣٠ Ἡ ΓΖ ١ ٢٧ ٤٩ ٣٣ ἡ ΖΘ |
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν | ||
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν |
λέγουσα πᾶς ἄνθρωπος οὐ δίκαιός ἐστιν . αἱ μὲν οὖν διαγώνιοι καθόλου οἷον ἡ ἁπλῆ κατάφασις καὶ ἡ ἐκ μεταθέσεως | ||
ταῖς ἐπιζυγίσιν ἐπικείμεναι διαιρήσουσι τὸ ἔργον ἐκ τοῦ ἑτέρου πλευροῦ διαγώνιοι . Οὕτως γὰρ ἐξ ὀλίγων καὶ μικρῶν αὐξόμενον ξύλων |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
χαυνῶ κοινῶ οἰνῶ , χωρὶς τοῦ ἐλαύνω . Τὰ εἰς ΝΩ ὑπερδισύλλαβα παραληγόμενα τῇ ΕΙ διφθόγγῳ ἢ μακρῷ τῷ Ι | ||
ΕΤ , ΗΥ , ΜΦ , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ |
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ | ||
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
αἱ ΗΘ ΛΜ ΔΕ : ἴση ἄρα ἐστὶν καὶ ἡ ΘΜ τῇ ΜΕ . ὧν ἡ ΒΜ τῇ ΜΚ ἐστὶν | ||
ΑΚ , ΚΛ , τῇ δὲ ΕΘ ἴσαι ὁσαιδηποτοῦν αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ |
ἐπεὶ καὶ ἡ ΑΝ τῆς ΝΔ , ὡς ἄρα ἡ ΓΞ πρὸς ΞΑ , ἡ ΖΒ πρὸς ΒΔ καὶ ἡ | ||
ΓΝ λόγος ἐστὶ δοθείς . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΓΞ τῷ ΕΗ , ἔστι δὲ καὶ ἰσογώνιον , ἔστιν |
αἰτιατικὴ : ἔλαβέν αὐτον . ἐγκλίνεται δὲ ἀεὶ καὶ ἡ ΜΙΝ : καί μιν φωνήσας , καὶ ἡ ΕΘΕΝ παραλόγως | ||
, τιμὴ τιμήεις , αἴγλη αἰγλήεις . . ΩΜΟΙΣΙΝ ΔΕ ΜΙΝ . Οὕτω συντάσσεται : ἀμφιέκειτο δέ μιν , ἤγουν |
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
ΒΓ ٥ ٣٥ ٢٥ ١١ ٢٨ τὸ δίς ١١ ١٠ ٥٠ ٢٢ ٥٦ τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ | ||
٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ ١٢ ٣٠ Ἐκ |
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
٢ ١٨ ٤ ٤٥ ١٨ ٤٥ οὗ ἡ πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ | ||
τὸ ἀπὸ τῆς ἡμισείας τῆς ΔΗ ἤτοι τῆς ΕΗ ٢٦ ٣١ ٥٠ ١١ ٨ ١ ٤٠ ἡ ἡμίσεια τῆς ΑΗ |
τῶν πόλων τῶν παραλλήλων . λέγω , ὅτι καὶ ὁ ΒΘΔ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων , τουτέστιν | ||
ὑπὸ ΛΑΓ , ἥ ἐστιν ἴση συναμφοτέραις ταῖς ὑπὸ ΒΑΓ ΒΘΔ . καὶ ἔστι τοῦτο καθολικώτερον πολλῷ τοῦ ἐν τοῖς |
καὶ ἀδυνάτου ὥρισται : καθόλου γὰρ ὧν ἀντιφάσεων θάτερα μόρια συναληθεύει , τούτων καὶ τὰ λοιπὰ συναληθεύει . ἔστωσαν γὰρ | ||
τῷ α . οὐκοῦν εἰ ὁ λέγων ἔστιν ἄνθρωπος καλός συναληθεύει τῷ λέγοντι ἔστιν ἄνθρωπος οὐ καλός [ συναληθεύει τῷ |
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
, Μ , Ν σημεῖα παράλληλοι κύκλοι οἱ ΟΠ , ΡΣ , ΤΥ , ΦΧ , καὶ γεγράφθωσαν διὰ τῶν | ||
λόγον τέτμηται , καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ ΡΣ . ἴση δὲ ἡ ΡΣ τῇ ΥΦ : τῆς |
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς | ||
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ , |
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης | ||
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ |