τῆς ἐνστάσεως ἢ τῆς ἀντιπαραστάσεως πρώτης τιθεμένης , ἀλλ ' ἐναλλὰξ τοῦτο πασχούσης ἑκάστης , ὃν τρόπον φαμὲν δεῖν ἀνασκοπεῖν
τὴν ΑΓ , οὕτως ἡ ΒΔ πρὸς τὴν ΔΓ , ἐναλλὰξ ὡς ἡ ΑΒ πρὸς τὴν ΒΔ , οὕτως ἡ
6912096 ἀνισους
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως
6803400 στερεοι
αὐτῷ , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί : τὸ μὲν γὰρ ἓν στιγμή , τὰ δὲ
. ἀντὶ τοῦ : μὴ παρείσαγε ἡμῖν θηλυδριώδη λόγον : στερεοί : νικητήριον : ἢ μὴ γενοίμαν : εἰς τῶν
6765457 ΗΠ
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ
6760475 σνϚʹ
σιϚʹ σμγʹ , κείσθω καὶ ὁ τοῦ ρϞβʹ ἐπίτριτος ὁ σνϚʹ , ἔσται τοῦτο τὸ ἐπίτριτον συμπεπληρωμένον ὑπὸ δύο τόνων
ἅμα καὶ κύβος : εἶτα ρκηʹ : μεθ ' ὃν σνϚʹ , ὅς ἐστι τετράγωνος : καὶ μέχρις ἀπείρου ὁ
6738496 συνθεντι
ἀπὸ ΓΗ . καὶ ὡς ἄρα ἐπὶ μὲν τῆς ἐλλείψεως συνθέντι , ἐπὶ δὲ τῶν ἀντικειμένων ἀνάπαλιν καὶ ἀναστρέψαντι τὸ
ἄρα καὶ ὁ τῆς ΘΚ πρὸς τὴν ΚΑ δοθείς . συνθέντι ἄρα λόγος ἐστὶ τῆς ΘΑ πρὸς ΑΚ δοθείς .
6731976 σμγʹ
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους
6728185 ἰσοπλευρα
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν
6723893 τριγωνα
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου
6710160 ΡΕ
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ ,
6694461 ἰσοσκελη
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν
6677775 ΖΗΘΚΛ
τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ
. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς
6671373 ΛΘΚ
ΝΒΜ , τὸ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ ὑπὸ ΛΘΚ . τὸ δὲ ὑπὸ ΛΓ , ΚΑ πρὸς τὸ
πρὸς τὸ ΛΗΘ , καὶ ἔτι τὸ ΕΓΔ πρὸς τὸ ΛΘΚ , καὶ ὡς ἄρα ἓν τῶν ἡγουμένων πρὸς ἓν
6627195 ΑΗΓ
ἢ τοῦ αὐτοῦ ἐφάπτονται τῶν παραλλήλων . ἤτοι γὰρ ὁ ΑΗΓ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων ἢ οὔ
πολυγώνου περιμέτρου , τὸ αὐτὸ μέρος ἐστὶν καὶ ἡ ὑπὸ ΑΗΓ γωνία τεσσάρων ὀρθῶν , ὁμοίως δὲ καί , ὃ
6577232 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6555411 ἰσακις
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι .
6543478 ΞΑ
. τεμνέτωσαν ἀλλήλους κατὰ τὸ Ξ , καὶ ἐπεζεύχθωσαν αἱ ΞΑ , ΞΒ , ΞΗ , ΞΓ : ἡ μὲν
ΕΑ πρὸς ΑΔ : διελόντι , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΕΔ πρὸς ΔΑ . ἐδείχθη δὲ καί
6519397 ΞΟ
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ .
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ
6517014 ἀνισακις
δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ
? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ
6503919 ΟΜ
ἴση τῇ ὑπὸ ΟΝΜ , βάσις ἡ ΕΘ βάσει τῇ ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ
τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ . ὀρθογώνια
6484861 παραλειποντας
ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας ,
καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς
6445212 τριπλευρον
ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν
τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ
6441926 ΝΠ
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ
6440797 ἀνατελλουσι
λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν
, ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω -
6438618 ΑΝΘΡΩΠΟΙΣΙΝ
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς
6431506 ΞΖ
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς
6428813 Ϟοι
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ .
6421468 τετραχορδα
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις :
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ
6402325 βασεων
τό τε αγε καὶ τὸ εδβ ἴσα ὄντα ἐπὶ ἴσων βάσεων βεβήκασι καὶ ἐπ ' εὐθείας ἔχουσιν αὐτὰς καὶ ἐπὶ
σχῆμα ὡς σώματος πυραμὶς φερώνυμος διὰ τοῦτο ὑπὸ τεσσάρων τε βάσεων καὶ ὑπὸ τεσσάρων γωνιῶν μόνη περικλειομένη ἐστί : κἀκεῖθεν
6392286 ἰσογωνια
τοῦ τριγώνου . διὰ τὸ ἰσογώνιον γίνεσθαι . , ] ἰσογώνια γίνονται τὰ τρίγωνα διὰ τὸ Ϛʹ τοῦ Ϛʹ .
: ἴση ἄρα : ὅπερ ἔδει δεῖξαι . ] Τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν
6388665 γβ
ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ
ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ
6387343 ΠΑΤΗΡ
σιωπᾷν , ἢ λαλεῖν οὐ καιρίως . . ΖΕΥΣ ΔΕ ΠΑΤΗΡ . Ὁ Ζεὺς δὲ ὁ πατὴρ τῶν ἀνθρώπων καὶ
θεοῦ . . ὩΣ ΕΦΑΤ ' ΕΚ Δ ' ΕΓΕΛΑΣΣΕ ΠΑΤΗΡ ΑΝΔΡΩΝ ΤΕ ΘΕΩΝ ΤΕ . Καὶ τοῦτο δὲ προσωποποιΐα
6372938 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
6370464 ΕΚ
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ .
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ
6370447 φοϚ
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς
6347395 πολυγωνα
πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο πολύγωνα ἰσόπλευρά τε καὶ ἰσογώνια τὰ ΑΒΓ ΔΕΖ , καὶ
κύκλοι οἱ ΑΒΓ , ΖΗΘ , καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ΑΒΓΔΕ , ΖΗΘΚΛ , διάμετροι δὲ τῶν
6340724 ἐπογδοων
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν
6339047 ΘΝ
ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται
ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ
6337491 ΘΣ
τὰ ηʹ πρὸς βʹ : καὶ τῆς ΘΚ ἄρα πρὸς ΘΣ λόγος ὃν ἔχει τὰ ηʹ πρὸς τὰ εʹ .
δὲ ἡ ΘΠ τῆς ΠΝ . διπλῆ ἄρα καὶ ἡ ΘΣ τῆς ΝΒ . καὶ ἔστιν ὡς μὲν ἡ ΠΘ
6334840 ΛΗ
ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ
ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς
6325056 ΑΔΕΜ
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . δι ' ἴσου ἄρα ὡς ἡ ΑΒΓΔ
τὴν ΑΔΕ βάσιν , οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα . καὶ συνθέντι πάλιν , ὡς ἡ ΑΒΓΔΕ
6321968 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
6318774 ΤΒ
, ἀλλ ' ὡς ἡ ΘΒ πρὸς ΜΠ , ἡ ΤΒ πρὸς ΜΝ καὶ ἡ Ρ πρὸς ΞΗ , ὡς
ΝΟ πρὸς τὴν ΟΖ . ἐδείχθη δὲ καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν
6310510 ΠΛ
ΤΞΥ ἰσόπλευρόν ἐστιν . καὶ ἐπεὶ πενταγώνου ἐδείχθη ἑκατέρα τῶν ΠΛ , ΠΟ , ἔστι δὲ καὶ ἡ ΛΟ πενταγώνου
ἐστὶ καὶ τὸ μὲν ΑΗ τῷ ΜΠ , τὸ δὲ ΠΛ τῷ ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν
6308039 ΓΔΘ
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον
6307786 ΡΦΖ
ἑκάτερον τῶν ΟΜΝ , ΣΤΥ τριγώνων ἑκατέρῳ τῶν ΛΞΓ , ΡΦΖ . καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρὸς τὴν
Λῆμμα Ὅτι δέ ἐστιν ὡς τὸ ΛΞΓ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον , οὕτως τὸ πρίσμα , οὗ βάσις τὸ
6303322 ΙΑ
ἀλλὰ πρὸς θεῶν ἐπίσχετε [ ] μηδὲ συρίξητε . [ ΙΑ ] Ὅτι μέν , ὦ Ἀθηναῖοι , Φίλιππος οὐκ
Φθία βαρύνονται , καὶ τὸ δεία . Τὰ διὰ τοῦ ΙΑ ἐπὶ χωρῶν κείμενα παροξύνεται : Λυκία Ἀσία Κιλικία .
6302926 ΑΡ
δὲ δεύτερα ἐπὶ δεύτερα , τέταρτα : ἐὰν γὰρ τὰ ΑΡ , ΡΨ δεύτερα δύο ἐπὶ τὰ ΑΠ , ΠΗ
ἐπεὶ ὀρθογώνιά ἐστι τὰ τρίγωνα , ἡ δὲ ΠΑ τῆς ΑΡ μείζων : τριγώνου γὰρ τοῦ ΠΑΡ μείζων γωνία ἡ
6302866 πενταγωνοις
τις πρόληψίς ἐστιν εἰς ἐγγραφὴν καὶ περιγραφὴν πενταγώνων καὶ ἐν πενταγώνοις τῷ στοιχειωτῇ συμβαλλόμενον . ἐδείχθη τῆς μὲν ὑπὸ ΖΚΓ
τῆς ΚΛ . καὶ ὑπόκειται κʹ τρίγωνα τὰ ΔΕΖ ιβʹ πενταγώνοις τοῖς ΑΒΓ ἴσα : μεῖζον ἄρα τὸ εἰκοσάεδρον τοῦ
6299800 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
6298610 ΟΜΝ
τε δύο πρίσματα καὶ δύο πυραμίδας , ἔσται ὡς ἡ ΟΜΝ βάσις πρὸς τὴν ΣΤΥ βάσιν , οὕτως τὰ ἐν
, οὗ βάσις τὸ ΛΞΓ τρίγωνον , ἀπεναντίον δὲ τὸ ΟΜΝ , πρὸς τὸ πρίσμα , οὗ βάσις μὲν τὸ
6298150 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
6282113 ΜΘ
τῆς ΜΗ μείζων ἐστί . πάλιν ἐπεὶ ἡ ΚΘ τῆς ΜΘ ἐλάττων ἐστίν , ἡ δὲ ΜΘ τῆς ΜΗ ἐλάττων
: φανερὸν ὅτι ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΛΜ τῆς ΜΘ , ὡς προεδείχθη . Τῷ δὲ αὐτῷ τρόπῳ ἐφωδεύσαμεν
6277572 ΛΖ
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ
6276252 υλβ
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ
6270580 ἑξαγωνον
ἡ δὲ ΑΓ τὴν τρίγωνον , ἡ δὲ ΓΒ τὴν ἑξάγωνον . καὶ περιέξουσιν οἱ λόγοι τῶν ἀπὸ τοῦ αὐτοῦ
Σελήνης καλοσχηματίστου οὔσης πρὸς τοὺς ἀστέρας κατά τε τρίγωνον καὶ ἑξάγωνον , προσθετικῆς οὔσης τοῖς ἀριθμοῖς . Ἔαρ . Ἀπὸ
6262634 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6257512 ΣΞ
τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΤΧ . καί ἐστιν ἡ ΣΞ ἔγγιον τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΤΧ . ἐν
, ΠΚ ἑξῆς ἴσαι ἀλλήλαις εἰσίν , αἱ ΝΣ , ΣΞ ἄρα ἑξῆς ἀλλήλων μείζους εἰσὶν ἀρχόμεναι ἀπὸ μεγίστης τῆς
6254880 ΟΥΚ
] ΑΝΑΠΑΙΣΤΙΚΟΥ ΣΧΗΜΑΤΟΣ [ ] ΣΧΕΔΟΝ ΔΗΛΟΝ ΔΙΑ ΤΙ Δ ΟΥΚ ΑΝ ΓΙΓΝΟΙΤΟ [ ] [ ] ΚΑΙ ΤΟ ΑΝΤΕΣΤΡΑΜΜΕΝΟΝ
ἐν ἁπλοῖς τισιν οὕτω καταπαύσει τὴν κατάστασιν . ΠΑραγραφικῷ . ΟΥΚ ὀφείλω κρίνεσθαι ὑπὲρ ὧν ἄλλοι πεποιήκασιν . ΛΥσεις .
6253784 ΞΓ
ἡ ΑΓ τῇ ΓΒ ἴση : καὶ λοιπὴ ἄρα ἡ ΞΓ τῇ ΓΧ ἐστιν ἴση : ὥστε καὶ ἡ ΗΘ
τὰ ἀπὸ ΛΗ , ΚΖ : ἴσον ἄρα τὸ ἀπὸ ΞΓ τοῖς ἀπὸ ΗΛ , ΚΖ . ἴσον δὲ τὸ
6253686 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6253296 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
6242998 ΠΘ
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα
6237389 τριπλασιῳ
πρὸς δὲ τὸν ἀπὸ τοῦ τετάρτου μέρους γενόμενος ἐν λόγῳ τριπλασίῳ συμφωνήσει διὰ πασῶν καὶ διὰ πέντε . ἐὰν δὲ
τὴν ταὐτῷ λόγῳ ὑπερέχουσαν καὶ ὑπερεχομένην , οἷον διπλασίῳ ἢ τριπλασίῳ , ὡς γʹ Ϛʹ ιβʹ : ἁρμονικὴν δὲ τὴν
6237377 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
6234434 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ
6222154 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
6220605 ρϞβʹ
δὲ οβʹ γίνεται σιϚʹ , τὰ δὲ ξδʹ τρὶς γίνεται ρϞβʹ . τούτων ἐπίτριτα τὰ σνϚʹ , ἅτινα πρὸς σμγʹ
τοῖς ποδαγρικοῖς : λιθαργύρου ⋖ ϞϚʹ , ἐλαίου παλαιοῦ ⋖ ρϞβʹ , οἴνου παλαιοῦ καὶ κιρροῦ διαυγοῦς καὶ ἠρέμα γλυκέος
6219034 ΠΔ
ἄρα ἔγγιόν ἐστι τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ ἤπερ ἡ ΠΔ . ὡσαύτως δὲ καὶ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ αἱ
Π τὴν ΠΓ διελθὸν ἐπὶ τὸ Γ παραγίγνεται , ἡ ΠΔ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : ἐν πλείονι ἄρα χρόνῳ
6218350 ΗΘ
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς
6216752 ΕΣ
τὸ ΠΝ ὕψος , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον . καὶ ὡς ἄρα ὁ ΑΞ κύλινδρος πρὸς
ΔΡ τῇ ΓΚ ἐστι παράλληλος , αἱ ἄρα ΔΡ , ΕΣ παράλληλοί τέ εἰσιν ἀλλήλαις καὶ ἐν ἑνί εἰσιν ἐπιπέδῳ
6215662 ἁμιολιος
υπϚ . κζʹ ͵δχη σλδ . κηʹ ͵ερπδ φοϚ : ἁμιόλιος ͵ερπδ τοῦ κδʹ , ὃς ἦν ἁμιόλιος τοῦ κʹ
τρίτων ἅδ ' ἐστίν . ἁ δὲ μεγίστα ὀρθά , ἁμιόλιος μὲν τᾶς μέσας ἔασσα , τριπλατία δὲ τᾶς ἐλαχίστας
6215002 ΠΟ
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς
6212543 ΤΑ
] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ]
λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον
6203748 ΝΘ
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ :
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται
6199827 ΑΟ
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ
6198999 Ϟους
εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων ,
ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι
6197552 ͵αρνβ
λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε
' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ
6189219 ΑΞ
ΟΔ , ὡς δὲ τὸ ἀπὸ ΛΑ πρὸς τὸ ἀπὸ ΑΞ , τὸ ἀπὸ ΖΕ πρὸς τὸ ἀπὸ ΕΔ :
ὡς ἄρα ἡ ΚΑ πρὸς ΑΔ , ἡ ΗΑ πρὸς ΑΞ . ἔστι δὲ καί , ὡς ἡ ΓΑ πρὸς
6188205 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
6185989 τμηματα
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ
6180534 ΜΑ
ΘΡΝ τρίγωνον πρὸς τὸ ΚΣΟ , ὡς δὲ τὸ ἀπὸ ΜΑ πρὸς τὸ ἀπὸ ΑΠ , τὸ ΞΜΑ τρίγωνον πρὸς
ἐναλλάξ , ὡς ἡ ΠΜ πρὸς ΒΛ , οὕτως ἡ ΜΑ πρὸς ΑΛ . μείζων δὲ ἡ ΠΜ τῆς ΒΛ
6175384 ΜΚ
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ
6169857 ΛΚ
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ
6169845 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6167316 ῥομβοειδες
ἑτέρων ὄντα προπέπτωκεν εἰς τὸ Ἀτλαντικὸν πέλαγος , καὶ γίνεται ῥομβοειδὲς τὸ τῆς χώρας σχῆμα , τῶν μειζόνων πλευρῶν ἑκατέρου
ῥόμβος δὲ τὸ ἰσόπλευρον μέν , οὐκ ὀρθογώνιον δέ , ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας
6166178 ΚΛ
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι
6165935 ἐπιπεδα
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ
6165789 ΡΧ
ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , ἔσται ὡς ὁ
ΥΤ τὴν ΩΨ καὶ τὰς λοιπάς , καὶ ἐπιζεύξαντες τὰς ΡΧ ΥΩ ΤΨ ἕξομεν τὰς τῶν ὀδόντων λοξώσεις . καὶ
6165566 παραλληλογραμμα
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν
6163968 ΣΤΥ
ἐστὶ τῷ ΣΤΥ γνώμονι καὶ τῷ ΞΘ . ἀλλὰ ὁ ΣΤΥ γνώμων καὶ τὸ ΞΘ ὅλον ἐστὶ τὸ ΑΕΖΔ τετράγωνον
ἄρα τετράκις ὑπὸ τῶν ΑΒ , ΒΔ ἴσον ἐστὶ τῷ ΣΤΥ γνώμονι . κοινὸν προσκείσθω τὸ ΞΘ , ὅ ἐστιν
6162786 Ϟος
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ ,
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι
6161837 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6161719 ΑΝ
τῇ ΑΕ : μείζων ἄρα ἐστὶν καὶ ἡ ΑΕ τῆς ΑΝ : ὅπερ ἀδύνατον . οὐκ ἄρα τὸ κέντρον τῆς
ἐστίν . ὀρθὴ ἄρα ἡ ὑπὸ ΒΝΑ γωνία : ἡ ΑΝ ἄρα ὕψος ἐστὶ τοῦ διὰ τοῦ ἄξονος τριγώνου ,
6161702 ΑΙΨΑ
τὸ πολλὰ καρτερεῖν καὶ πάσχειν τοὺς συγκροτοῦντας πόλεμον . . ΑΙΨΑ ΚΕ ΠΗΔΑΛΙΟΝ . Ἤγουν ταχέως ἂν τὸ πηδάλιον μὲν
ΧΑΛΕΠΟΙΣ ΒΑΖΟΝΤ ' ΕΠΕΕΣΣΙ ΣΧΕΤΛΙΟΙ , ἤγουν ἄθλιοι . . ΑΙΨΑ ΔΕ ΓΗΡΑΣΚΟΝΤΑΣ ΑΤΙΜΗΣΟΥΣΙ ΤΟ - ΚΗΑΣ . Οἱ παῖδες
6160607 ἐπιπεδοι
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς
6151740 ΟΠ
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση :
6151307 τομευς
ἄρα πρὸς τὴν ΕΔ μείζονα λόγον ἔχει ἤπερ ὁ ΕΗΘ τομεὺς πρὸς τὸν ΕΖΘ τομέα . ὡς δὲ ὁ τομεὺς
κέντρου τοῦ κύκλου διπλάσιόν ἐστιν τοῦ τομέως . Ἔστω γὰρ τομεὺς κύκλου ὁ ΑΒΓ . καὶ τοῦ ὑπὸ τῆς ΑΕΒ
6143961 ΚΗ
ἴσαι ἀλλήλαις εἰσίν , ὧν αἱ τέσσαρες αἱ ΕΚ , ΚΗ , ΖΛ , ΛΘ ἴσαι ἀλλήλαις εἰσίν [ ὁμοίως
πρὸς τὸ ΓΔΛ τρίγωνον , οὕτως ἡ ΘΚ πρὸς τὴν ΚΗ , ἀλλ ' ὡς τὸ παραλληλόγραμμον πρὸς τὸ τρίγωνον
6135048 ΘΤ
ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω
ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως
6132854 ΛΓ
, ὅτι μεῖζον φανήσεται τοῦ ΓΔ . Διὰ τὸ τὴν ΛΓ ὑποτείνειν καὶ τὴν Μ μείζονα οὖσαν καὶ τῆς ΛΚ
ΞΝ πρὸς τὴν ΝΛ , οὕτως ἡ ΝΛ πρὸς τὴν ΛΓ . ἀλλ ' ἡ ΝΛ πρὸς τὴν ΛΓ μείζονα

Back