| δὴ παράλληλοι αἱ ΑΒ , ΔΕ , ἀλλ ' ἐκβαλλόμεναι συμπιπτέτωσαν κατὰ τὸ Π , καὶ ἡ ΓΟ ἤχθω παρὰ | ||
| μὴ ἔστωσαν δὴ παράλληλοι αἱ ΑΚ , ΕΖ , ἀλλὰ συμπιπτέτωσαν κατὰ τὸ Κ , καὶ ἡ ΓΔ παρὰ τὴν |
| ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
| Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
| συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις | ||
| πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ |
| κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
| τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
| , καὶ ἐπιζευχθεῖσα ἡ ΚΔ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΒΑ ἐκβληθείσῃ κατὰ τὸ Μ : λέγω ὅτι ἐστὶν ὡς ἡ | ||
| καὶ ἐπιζευχθεῖσα μὲν ἡ ΔΛ ἐκβεβλήσθω καὶ συμπιπτέτω τῇ ΓΒ ἐκβληθείσῃ κατὰ τὸ Η , τῇ δὲ ΒΓ πρὸς ὀρθὰς |
| ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν καθέτῳ ἀγομένῃ περιφέρειαι γραφεῖσαι τεμνέτωσαν ἀλλήλας : καὶ αἱ ἀπὸ τῆς τομῆς ἐπὶ τὰ | ||
| πόλος ἔστω τῶν παραλλήλων τὸ Α σημεῖον , καὶ τοῦτον τεμνέτωσαν δύο μέγιστοι κύκλοι οἱ ΒΖΓ , ΔΖΕ πρὸς ὀρθάς |
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
| δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
| ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
| ἐπὶ τὰ διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ | ||
| , ΠΧ , ΖΨ , ΝΩ , ΣΙ , καὶ συμβαλλέτωσαν τῷ ἐπιπέδῳ κατὰ τὰ Ξ , Τ , Υ |
| τέμνουσι τὸ Ν τοὺς πόλους ἔχοντες ἐπ ' αὐτοῦ , ἐφάψονται ἄρα ἀλλήλων : ὁ ΓΝΞ ἄρα τοῦ ΑΒ κύκλου | ||
| ἀντικειμένων , καὶ αἱ ἁπὸ τῶν συμπτώσεων ἐπὶ τὸ Δ ἐφάψονται τῶν ἀντικειμένων . ἤχθωσαν ἐφαπτόμεναι αἱ ΔΕ , ΔΖ |
| Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
| τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
| Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
| ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
| τοῦ Φ τῷ τοῦ κύκλου ἐπιπέδῳ πρὸς ὀρθὰς ἀνεστάτω ἡ ΦΩ , καὶ ἐκβεβλήσθω ἐπὶ τὰ ἕτερα μέρη ὡς ἡ | ||
| δίχα κατὰ τὸ Αʹ . καὶ ἐπεὶ εὐθεῖα γραμμὴ ἡ ΦΩ ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Χ , |
| ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
| τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
| ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε , Η μέρη ἐκβαλλόμεναι συμπεσοῦνται . αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί | ||
| ἀγομένη ΗΘ ἴσην ἀποτέμνει τῇ ζητουμένῃ τὴν ΘΒ . [ συμπεσοῦνται γὰρ αἱ ΓΔ ΒΖ ὡς ἐπὶ τὸ Η ἠγμέναι |
| ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
| αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
| ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
| τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
| δὴ ἐφάπτονται αἱ ΑΓ ΔΖ τῶν τμημάτων ἢ οὔ . ἐφαπτέσθωσαν πρότερον : ἴσον ἄρα ἐστὶν τὸ μὲν ὑπὸ ΒΓΗ | ||
| , Δ σημεῖα , καὶ τῶν Α , Β τομῶν ἐφαπτέσθωσαν αἱ ΒΕ , ΑΕ συμπίπτουσαι κατὰ τὸ Ε , |
| ΓΔ , ΑΕ , ΒΖ , ΗΘ αἱ πλευραὶ δίχα τετμήσθωσαν αἱ ΓΔ , ΔΑ , ΑΕ , ΕΓ , | ||
| ἀνεσταμένον πρίσμα μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ κυλίνδρου . τετμήσθωσαν αἱ ΑΒ , ΒΓ , ΓΔ , ΔΑ περιφέρειαι |
| , καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
| διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
| ἐπιψαύωσι , καθ ' ἕτερον σημεῖον οὐ συμπεσοῦνται . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΓΔ καὶ ἕτεραι αἱ ΑΓ , | ||
| μέν εἰσιν ὑπερτελεῖς , οἱ δὲ ἐλλιπεῖς , καθάπερ ἀκρότητες ἀντικείμεναι ἀλλήλαις , οἱ δὲ ἀνὰ μέσον ἀμφοτέρων , οἳ |
| ἀρχομένων ὑπ ' αὐτῶν ἤτοι τῶν σχολῶν , ἐν αἷς ἀναφέρονται . εἰ δὲ συμβῇ τινας αὐτῶν μαχομένους γενέσθαι πληγάτους | ||
| τεκνοποιοῦνται . Τὸ δὲ τοῦ Τοξότου δωδεκατημόριον , εἰς ὃ ἀναφέρονται οἱ μηροί , οἶκος τοῦ Διός , δίσωμον , |
| τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
| παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |
| διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
| , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
| , ὅπερ ἂν ἕλωνται : καὶ παρακολουθήσουσιν αὐτοῖς αἱ ἔμπροσθεν εἰρημέναι ἀπορίαι . εἰ δὲ ταῖς αἰσθήσεσι τὰς αἰσθήσεις καὶ | ||
| τοῦ μηροῦ ἐς τὴν ἀρχαίην φύσιν . Αὗται πᾶσαι αἱ εἰρημέναι ἀνάγκαι ἰσχυραὶ , καὶ πᾶσαι κρέσσους τῆς ξυμφορῆς , |
| Μαρναμένων : μαχομένων . ἀνδρός τε : ἁλιέως ἕλκοντος κατὰ παράλειψιν . Τοῦ μὲν γάρ : τοῦ ἁλιέως . μέτωπα | ||
| λέγοντες , εἰ δὲ ἰδιωτικὸν εἴη τὸ πρόβλημα , κατὰ παράλειψιν εἰσάγοντες , ὥσπερ ἐν ταῖς κατηγορίαις ἔφαμεν . Ὁμοίως |
| τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ | ||
| αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ |
| ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου δειχθήσονται , οἱ δὲ καὶ διὰ τῆς ἀντιστροφῆς : καὶ | ||
| ζʹ : ὁ γὰρ τῶν ΒΓ καὶ ΓΔ μετὰ ταῦτα δειχθήσονται . εὑρεθήσονται τοίνυν μεῖζον τόνου ποιοῦντες μέγεθος ἑκάτεροι οἵ |
| τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
| ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
| , τὸ δὲ ὑπὸ ΑΔ ΓΒ τῷ ἀπὸ ΕΗ . Ἐπεζεύχθωσαν γὰρ αἱ ΗΓ ΗΔ ΑΖ ΖΒ . ἐπεὶ οὖν | ||
| σφαίρας διάμετρος δυνάμει τριπλασία ἐστὶ τῆς πλευρᾶς τοῦ κύβου . Ἐπεζεύχθωσαν γὰρ αἱ ΚΗ , ΕΗ . καὶ ἐπεὶ ὀρθή |
| , καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
| ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
| τέ μέ φησι τοῦ ἔμμεναι , αὐτὰρ ἔγωγε . αἱ ἐγκλινόμεναι τῇ αὐτῇ καταλήξει χρῶνται , ᾗπερ καὶ αἱ ὀρθοτονούμεναι | ||
| τοῦ προσώπου , λέγω εἰς τὸ σύνθετον , αἵ τε ἐγκλινόμεναι εἰς τὸ ἁπλοῦν , τουτέστιν τὸ διαβιβαζόμενον εἰς ἕτερον |
| δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
| διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
| Θ , τὴν δὲ μετὰ τὴν Θ ἀνατολὴν ἑτέραν ἀνατολὴν πεποιήσθω κατὰ τὸ Κ : ἡμέρας ἄρα χρόνος ἐστὶ καὶ | ||
| λόγος δοθείς . μὴ ἔστω δὴ ὁ αὐτός , καὶ πεποιήσθω ὡς τὸ ΑΒ πρὸς ΓΔ , οὕτως τὸ ΑΗ |
| , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν τὴν χψ , ἀποκαθεστάσθω ἐπὶ τὸ ε , φανήσεται δὲ κατὰ | ||
| μεταβὰν περιφέρειαν τὴν νξ , μετενηνοχέτω τὸν κύκλον ἐπὶ τὸν χψ : ὁ δὲ ἥλιος τεταρτημοριαίαν ἐνεχθεὶς περιφέρειαν ἔστω ἐπὶ |
| εἶ σύ : καὶ κατὰ τοῦτο οὖν ἀντὶ κυρίων δείκνυνται παραλαμβανόμεναι . Ἔτι καὶ τὸ ἵππος με ἐλάκτισε , μεταλαμβανόμενον | ||
| ὅτε τι πρᾶγμα δι ' ἐναργείας σημαίνοιεν , εἰς δέον παραλαμβανόμεναι , καὶ φαίνονται τοιαῦται διὰ τὸ αὐτό . Σχήματα |
| τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
| ' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
| σίνη γὰρ τὰ βλαπτικὰ τύμματα τῶν θηρίων φησίν : κατὰ περίφρασιν τῶν θηρίων τὰ εἴδη καὶ τὰς βλάβας . ὀλοφώια | ||
| τις ] πλεονάζει τὸ τις . Τηρείας μήτιδος : κατὰ περίφρασιν τοῦ Τηρέως . κιρκηλάτου ] τῆς ὑπὸ κίρκων ἐλαυνομένης |
| τοιοῦτοι καὶ ἄτολμοι , καὶ μάλιϲτα εἰ ψιλὸν αὐτοῖϲ τὸ ϲτέρνον εἴη . ἡ δὲ ξηροτέρα καρδία τοὺϲ ϲφυγμοὺϲ ἐργάζεται | ||
| ἀνθερεῶνι ξηρὸϲ ϲπόγγοϲ πρὸϲ τὸ μὴ καταρρεῖν ὕδωρ ἐπὶ τὸ ϲτέρνον . Περὶ καταιονήϲεων . Καταιονήμαϲι χρώμεθα ἐφ ' ὧν |
| καὶ ΔΛ , κάθετοι δ ' ἤχθωσαν ἐπὶ μὲν τὴν ΓΖΘ ἐκβληθεῖσαν ἀπὸ τῶν Η καὶ Δ ἥ τε ΗΜ | ||
| καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ τὴν ΚΘ , |
| τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν . | ||
| τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ , |
| ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
| κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
| , ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
| δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
| ψυχρὰ καὶ ξηρὰ καὶ ὑγρά . καθ ' ἕκαϲτον μέντοι γένοϲ ἢ ϲπέρματοϲ ἢ ῥίζηϲ ἢ χυλοῦ δυνατόν ἐϲτι κἀκ | ||
| ἐπικαίονταϲ καὶ τὸ τετμημένον μέροϲ : νομὴ γάρ ἐϲτι κατὰ γένοϲ τὸ πτερύγιον , καὶ οὐ καθίϲταται ταῦτα , εἰ |
| τῆς ΜΠ , οὐκ ἔστιν φανερὸν ὅτι καὶ ὅλη ἡ ΔΝ ὅλης τῆς ΔΠ ἐλάσσων ἐστίν : δυνατὸν γάρ ἐστιν | ||
| καθ ' ἓν ἄρα ἐφ - άπτονται αἱ ΔΛ , ΔΝ τῆς σφαίρας . αἱ ἄρα ἀπὸ τοῦ Δ ὄμματος |
| ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
| δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . : Νικόλαος δ | ||
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . Τιρυνθίους δέ φησι |
| τοῦ Δ κάθετος ἤχθω ἐπ ' αὐτὸν ἡ ΔΕ καὶ συμβαλλέτω τῷ τοῦ κύκλου ἐπιπέδῳ κατὰ τὸ Ε σημεῖον , | ||
| καὶ ἐκβεβλήσθω ἡ ΔΕ ἐπ ' ἀμφότερα τὰ μέρη καὶ συμβαλλέτω τῇ ἐπιφανείᾳ τῆς σφαίρας κατὰ τὰ Ζ , Η |
| πολιορκούμενοι ἀντέχειν , ἀλλ ' αἵ τε ἐς τὴν Ἀττικὴν ἐσβολαὶ Πελοποννησίων οὐδὲν μᾶλλον ἀπανίστασαν τοὺς Ἀθηναίους ὅ τε σῖτος | ||
| . Κατὰ τοῦτο δὲ ἐργάζετο τῆς χώρης τῇ αἵ τε ἐσβολαὶ ἦσαν καὶ τὰ σύντομα τῆς ἐκ Μήδων ὁδοῦ , |
| τοῖϲ καλουμένοιϲ ἡμικρανικοῖϲ κεχρῆϲθαι : θερμαϲίαϲ μὲν πολλῆϲ ἐν ταῖϲ ὀδύναιϲ διαϲημαινούϲηϲ τοῖϲ ἔχουϲί τι ψυκτικόν , μὴ παρούϲηϲ δὲ | ||
| καὶ ἱκανῶϲ κουφίζει . ποιεῖ καὶ τοῖϲ ὑπερϲαρκώμαϲιν , χρονίαιϲ ὀδύναιϲ καὶ ἑλκώϲεϲιν . Ἄλλο . ἀλόηϲ , λιβάνου , |
| ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ ΧΦ παράλληλος ἡ ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ | ||
| ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος ἄρα ἐστὶν ἡ ΧΦ τῇ ΚΒ . καὶ ἐπεὶ ἑκατέρα τῶν ΟΦ , |
| περιγράψομεν : ὅπερ ἔδει ποιῆσαι . Εἰς τὸν δοθέντα κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς | ||
| κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς τὸν |
| ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς | ||
| δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν |
| Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
| τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
| συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ ἐκτὸς τῆς τομῆς . κατήχθωσαν γὰρ ἀπὸ τῶν Ε , Ζ τεταγμένως ἐπὶ μὲν | ||
| ὅτι ἡ ΕΖ συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ . κατήχθωσαν ἀπὸ τοῦ Η ἐπὶ τὰς ΑΒ , ΓΔ τεταγμένως |
| μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
| δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
| κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
| ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
| μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| οὔρους . Ὡς δὲ ἐκ τῆς Φρυγίης ἐσέβαλε ἐς τὴν Λυδίην , σχιζομένης τῆς ὁδοῦ καὶ τῆς μὲν ἐς ἀριστερὴν | ||
| . Ἐπὶ Ἄτυος τοῦ Μάνεω βασιλέος σιτοδείην ἰσχυρὴν ἀνὰ τὴν Λυδίην πᾶσαν γενέσθαι : καὶ τοὺς Λυδοὺς τέως μὲν διάγειν |
| , ἐκπερι - σπασθεῖσα δὲ τὴν αφχψ καὶ ἐπικατασταθεῖσα τὴν αβγδ . ἡ δὲ τῶν ἀποκαταστάσεων διαφορὰ ὁμοία ταῖς ἐπὶ | ||
| ἀσπίδα δὲ τὴν ἐπὶ λαιάν . Οἷον ἔστω σύνταγμα τὸ αβγδ , λοχαγῶν δ ' ἐν αὐτῷ ζυγὸν τὸ αβ |
| ἐν μοναρχίᾳ . χὡπόταν ] λάμβανε κἀντεῦθεν τὸ τηρέοντι κατὰ συνεκδοχήν . ὁ σφοδρὸς καὶ πολὺς δῆμος : λέγει δὲ | ||
| ἤγουν τὸν Πολυνείκην τῶν προσμόρων καὶ τῶν πλησιοθανάτων καλεῖ κατὰ συνεκδοχήν : ἢ βάζει τῶν προομόρων ὑπάρχειν , ἤγουν τῶν |
| ἐντὸς πεσεῖται τῆς τομῆς . εἰ γὰρ δυνατόν , ἐκτὸς πιπτέτω τῆς τομῆς ὡς ἡ ΓΔΕ , καὶ ἀπὸ τυχόντος | ||
| τὸ [ διὰ ] τοῦ κύκλου ἐπίπεδον ἡ ΖΗ μὴ πιπτέτω ἐπὶ τὸ Ε κέντρον , καὶ ἐπιζευχθεῖσα μὲν ἡ |
| ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ | ||
| τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν |
| τῆϲ τριχὸϲ τῆϲ χοιρείαϲ καθέϲεωϲ : κενεμβατεῖ γὰρ πρὸϲ τὸ βάθοϲ τὸ ὄργανον καὶ τῷ λιχανῷ δακτύλῳ παραπεμφθέντι κατὰ τὴν | ||
| δὲ δύο κατωτέρω , κατὰ τρίγωνον ϲχῆμα , τὸ δὲ βάθοϲ ὅλον τὸ δέρμα διακαίοντεϲ : οἱ δὲ μίαν μόνην |
| . καὶ ἡ μὲν ἐμὴ συμφορὰ τῷ βίῳ τῷ ἐμῷ περιγραφήσεται , τὸ μίασμα δὲ καὶ ὁ σὸς τρόπος τῷ | ||
| εἰς τὸν αὐτὸν μερισμὸν καταλήψεται . πῶς οὖν οὐ μᾶλλον περιγραφήσεται τοῦ εἶναι ἄρθρον τὸ ὦ , ἀπονεῦσαν καὶ τὴν |
| ἢ τοῦ αὐτοῦ ἐφάπτονται τῶν παραλλήλων . ἤτοι γὰρ ὁ ΑΗΓ κύκλος διὰ τῶν πόλων ἐστὶ τῶν παραλλήλων ἢ οὔ | ||
| πολυγώνου περιμέτρου , τὸ αὐτὸ μέρος ἐστὶν καὶ ἡ ὑπὸ ΑΗΓ γωνία τεσσάρων ὀρθῶν , ὁμοίως δὲ καί , ὃ |
| μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος | ||
| δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ |
| ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
| ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
| καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
| , καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
| , οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
| , οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
| τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
| ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
| Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ | ||
| ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον |
| καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
| τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
| κήδετο λίην : πρὸς τὸ τοιοῦτο οὖν εὐτρεπίζοιντο αἵ τε ὀρθοτονούμεναι εἰς τὸ ἀμετάβατον τοῦ προσώπου , λέγω εἰς τὸ | ||
| αἱ μὲν οὖν ἐγκλινόμεναι τῶν ἀντωνυμιῶν αὗταί εἰσιν , αἵτινες ὀρθοτονούμεναι μὲν ἀντιδιαστολὴν ἔχουσιν ἑτέρου προσώπου : ἐμοῦ ἤκουσας , |
| ἐπανέρχεσθαι . γίνεται δὲ τούτων ἕκαστος τῶν ὑδέρων ἢ κατὰ πρωτοπάθειαν ἢ κατὰ συμπάθειαν : καὶ γὰρ ἐπὶ σπληνὶ κακοχύμῳ | ||
| καλεῖν , ἐκεῖσε δειχθήσεται . νῦν γὰρ περὶ τῶν κατὰ πρωτοπάθειαν ἐν αὐτῷ μόνῳ συνισταμένων πρόκειται διαλαβεῖν . ἐπειδὴ δὲ |
| ὁμοίως μένειδυνατὸν γὰρ τὸ κατὰ εἰρωνείαν εἰ : τύχοι καὶ διαπόρησιν , αἵπερ εἰσὶν περὶ ἔννοιαν μέθοδοι , πολυτρόπως μεταφράσαι | ||
| , παραλαμβανόμενον οὐ μόνον κατὰ ἀπαγόρευσιν , ἀλλὰ καὶ κατὰ διαπόρησιν , τοῖς κατ ' ἐρώτησιν προοιστοῖς συντάσσεται , μὴ |
| τοῦ τος τὰ δὲ διὰ τοῦ εος , ἃ καὶ συναίρεσιν ἐπιδέχονται , τρεῖς σοι τούτων κανόνας προτίθεται , τὸν | ||
| τειχέοιν καὶ κατὰ συναίρεσιν τειχοῖν . ὦ τείχεε καὶ κατὰ συναίρεσιν τείχη . Πληθ . Τὰ τείχεα καὶ κατὰ συναίρεσιν |
| τὸ γόνυ διαρθρώϲεωϲ . ρκʹ . Περὶ τῆϲ κατὰ τὸ ϲφυρὸν διαρθρώϲεωϲ , ἐν ᾧ καὶ περὶ δακτύλων ποδόϲ . | ||
| ϲτηριζόμεθα : ἔπειτα ἐϲ τὸ κοῖλον ἧκε , τὸ δὲ ϲφυρὸν ἐξῴδηϲε ὕϲτατον . πρόφαϲιν δὲ αἰτιῶνται ἀναίτιον , οἱ |
| τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
| τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
| ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ ' | ||
| πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ |
| ριδ ι , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΔΗ περιφέρεια τοιούτων ριδ ι οἵων ἐστὶν ὁ περὶ τὸ | ||
| παράκειται πλάτος ποιοῦν τὴν ΔΗ : ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΙ μήκει . πάλιν , ἐπεὶ |
| ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
| τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
| Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
| ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
| , καὶ τοῦ ἡλίου ἀνατέλλοντος μὲν κατὰ τὸ Ο ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΟΠΡ , δύνοντος δὲ | ||
| ὡς τὴν ΟΠΡ , δύνοντος δὲ κατὰ τὸ Μ ἡ ΚΘΛ περιφέρεια θέσιν ἕξει ὡς τὴν ΜΣΤ . Καὶ ἐπεὶ |
| τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ . | ||
| ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς |
| , ἐπειδὰν κάθαρσιν ἐπεσχημένην προκαλεῖσθαι θέλωμεν ἢ μύσιν ὑστέρας ἢ συστολὴν ἐπανορθῶσαι : σκευάζονται δὲ καὶ οὗτοι διὰ μέλιτος , | ||
| Ἐρασιστρατείων συντιθείς , ὅσοι τὸν σφυγμὸν ἔφασαν εἶναι διαστολὴν καὶ συστολὴν ἀρτηριῶν τε καὶ καρδίας , ὑπὸ ζωτικῆς τε καὶ |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| ἐκ τοῦ ὀδυνωμένου μέρουϲ . λύουϲι δὲ αἱ ἐκ ῥινῶν αἱμορραγίαι πολλάκιϲ καὶ φρενῖτιν , οὐ μέντοι λήθαργον ἢ περιπνευμονίαν | ||
| ϲτομάχῳ ἐϲτὶν ἡ ῥῆξιϲ : εἰ ὦν ἀπορραγῇ κοτε , αἱμορραγίαι οὐ κάρτα μεγάλαι , ὁκοῖαι ἀπὸ θώρηκοϲ : ἰϲχνὰ |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| λέγειν , οὐχὶ κάκκαβον . καλὸς κἀγαθός : λέγεται κατὰ συναλιφήν , οὐχὶ καλὸς καὶ ἀγαθός . κατὰ χειρὸς ὕδωρ | ||
| τοῦ εἰπεῖν καὶ λαλεῖν , οἷον νηέπιος καὶ νήπιος κατὰ συναλιφήν . ὁ λέγειν μὴ δυνάμενος . οὕτω Φιλόξενος . |
| . ] Ἀποστασίου : δίκη τίς ἐστι κατὰ τῶν ἀπελευθερωθέντων δεδομένη τοῖς ἀπελευθερώσασιν , ἐὰν ἀφιστῶνταί τε ἀπ ' αὐτῶν | ||
| ἡ ὑπὸ ΕΒΞ δοθεῖσα , λοιπὴ ἄρα ἡ ὑπὸ ΒΝΕ δεδομένη ἔσται . καὶ τὸ ΕΝΞ τρίγωνον τῷ εἴδει . |
| μάλιϲτα [ καὶ ] τῶν ἡμερῶν λύει τελέωϲ ἀεὶ καὶ πιϲτῶϲ καὶ ἀγαθῶϲ καὶ ἀκινδύνωϲ καὶ ϲαφῶϲ καὶ εὐϲήμωϲ . | ||
| ἐκρίθη τὸ νόϲημα , εἴτε κατὰ βραχὺ προακμαϲτικῶϲ ἐλύθη , πιϲτῶϲ τοῖϲδε ἂν γνωρίϲαιϲ : πρῶτον γὰρ καὶ μέγιϲτον ϲημεῖον |
| τὸ βρέγμα διπλοῖς ἅμμασιν ἁμματίζονται . καὶ τὰ παρειμένα σκέλη ἐναλλάσσονται πρὸς τὴν τῶν πτερύγων συναγωγήν , ἔπειτα δι ' | ||
| φέρονται εἰς τὰ ἐμπρόσθια καὶ κατὰ τὸν ταρσὸν κατὰ χιεσμὸν ἐναλλάσσονται , εἶτ ' ἀναφέρονται ἐπὶ τὸ πέλμα , καὶ |
| καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
| ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
| τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ ὑπὸ ΒΕΗ γωνία γίνηται # μϚ ἐκ τῆς παρὰ τὴν ΗΘ | ||
| περιφέρειαν τοιούτων γίνεσθαι ρκ , οἵων ἐστὶν ὁ περὶ τὸ ΒΕΗ ὀρθογώνιον κύκλος τξ , τὴν δ ' ἐπὶ τῆς |
| , οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ : | ||
| ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ |
| ἴση τῇ ὑπὸ ΟΝΜ , βάσις ἡ ΕΘ βάσει τῇ ΟΜ ἴση καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ | ||
| τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν ΠΝ . ὀρθογώνια |
| ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς | ||
| οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς |
| ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ . Τετμήσθω γὰρ ἡ ΒΓ δίχα κατὰ τὸ Ε σημεῖον , | ||
| , ἐν ἀναλογίᾳ εἰσὶ τῇ ὑποκειμένῃ , δείξομεν οὕτως : Τετμήσθω γὰρ ἡ μὲν ΑΒ ἄκρον καὶ μέσον λόγον κατὰ |