περὶ ἡμικύκλιον οὗ κέντρον τὸ Σ , γραφῇ τι πολύγωνον ὁποσασοῦν ἔχον πλευράς , ὡς τὸ ΒΕΖΘΛΓ , μενούσης δὲ
ἡ Θ , καὶ διῃρήσθω ἡ ΚΒ περιφέρεια εἰς ἴσας ὁποσασοῦν , καὶ ἐφαπτόμεναι ἤχθωσαν , ὡς καταγέγραπται , ὥστε
6794304 ἁφων
ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ μὲν τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , διὰ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων
τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι
6640946 συναμφω
ποταμοῦ κελάδοντος Ἀράξεω Φάσιδι συμφέρεται ἱερὸν ῥόον , οἱ δὲ συνάμφω Καυκασίην ἅλαδ ' εἰς ἓν ἐλαυνόμενοι προρέουσιν : δείματι
γὰρ ἂν ἐφαρμόττοι τῷ δὶς γενέσθαι τὴν παλίρροιαν κατὰ τὸν συνάμφω χρόνον , τὸν ἐξ ἡμέρας καὶ νυκτός , ἢ
6622407 ἐφαπτομεναι
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ
6598099 συμπιπτωσι
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι ,
6520370 διχοτομιων
: τὸ μὲν γὰρ δὶς ἀπὸ ΑΒ , διὰ τῶν διχοτομιῶν , ἴσον ἐστὶν τῷ τε δὶς ὑπὸ ΑΔΓ καὶ
, τῶν δὲ ἄλλων οἱ μὲν ἴσον ἀπέχοντες ὁποτερασοῦν τῶν διχοτομιῶν ὁμοίως εἰσὶ κεκλιμένοι , αἰεὶ δὲ ὁ πορρώτερον τὴν
6458397 ἐπιζευγνυμεναι
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ
6440208 ἀμφιβολιων
θανάτου , Τέχνης διαλεκτικῆς δύο , Περὶ κατηγορημάτων , Περὶ ἀμφιβολιῶν , Ἐπιστολάς . Χρύσιππος Ἀπολλωνίου Σολεύς , ἢ Ταρσεὺς
μέρη , καὶ περὶ σολοικισμοῦ καὶ βαρβαρισμοῦ καὶ ποιημάτων καὶ ἀμφιβολιῶν καὶ περὶ ἐμμελοῦς φωνῆς καὶ περὶ μουσικῆς καὶ περὶ
6418552 ἀνακλωμενας
ἢ κατ ' εὐθείας ἢ κατὰ καμπύλας ἢ κατ ' ἀνακλωμένας , γραμμὰς ἀδήλους λόγῳ θεωρητὰς καὶ ἀσωμάτους . κατὰ
ἐπεὶ ἴση ἐστίν . , ] διὰ τὸ τὰς μὲν ἀνακλωμένας ἴσας εἶναι , ἐκβληθείσης δὲ τῆς ΘΓ τὰς κατὰ
6412539 ΞΓΔ
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα
6410044 ἀπογραφων
Ἀθήνησιν . . . . Ἄλλως . οἷον τὰ ἴσα ἀπογράφων ὧν λαμβάνει παρὰ τῶν συντελεστῶν , καὶ παρέχων αὐτοῖς
καὶ τῶν παραπλησίων τούτοις διαφέρειν οἰόμενος Λυσίαν καὶ ὥσπερ ἀρχέτυπον ἀπογράφων ὑπερέχειν , ἐκεῖνον τὸν ἄνδρα ταύτης τῆς προαιρέσεως τῶν
6401809 ΑΝΘΡΩΠΟΙΣΙ
, ἤγουν ἡ Εἱμαρμένη . . ΤΟΥΝΕΚ ' ΑΡ ' ΑΝΘΡΩΠΟΙΣΙ . Τούτου δὴ ἕνεκα , ἤγουν τῆς παρὰ τοῦ
, ἢ ἀπὸ τοῦ γέρας . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙ ΝΟΜΟΝ . Καὶ τοῦτο ἄξιον ποιητοῦ νικήσαντος Ὅμηρον .
6389106 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
6366941 περιεχουσας
δύο εὐθείας μείζους τῶν ἐκτὸς καὶ πάλιν ἄλλας μείζονα γωνίαν περιεχούσας τῆς ὑπὸ τῶν ἐκτὸς περιεχομένης . τούτου γὰρ δειχθέντος
' ἡμᾶς θάλαττα τοιαύτη τις . Ὑπογραπτέον δὲ καὶ τὰς περιεχούσας αὐτὴν γᾶς , ἀρχὴν λαβοῦσιν ἀπὸ τῶν αὐτῶν μερῶν
6354433 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6304136 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
6302437 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
6290899 ὀξυγωνιον
, καὶ ἐπωθοῦντι ἐς τὸ πρόσω , εἶτα μέντοι τρίγωνον ὀξυγωνίον τὸ σχῆμα τῆς πτήσεως ἀποφήνασαι , ἵνα ἐμπίπτουσαι τῷ
, καὶ ἐπωθοῦντι ἐς τὸ πρόσω , εἶτα μέντοι τρίγωνον ὀξυγωνίον τὸ σχῆμα τῆς πτήσεως ἀποφήνασαι , ἵνα ἐμπίπτουσαι τῷ
6289640 ΗΖΝ
μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ
6287710 λειπουσαν
δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν ἔδει λείπουσαν , ἐκεῖνον μετὰ φωτὸς ὁρῶσαν . Αὐτῇ μὲν οὖν
Ἐπεὶ οὖν τὴν τάξιν ἐγνώκαμεν , φέρε καὶ ἐπὶ τὴν λείπουσαν διδασκαλίαν χωρήσωμεν : δεῖ γὰρ πρῶτον Ἀριστοτελικῷ νόμῳ κεχρημένους
6259830 περαναντες
ἀνωτέρω περὶ διαφορᾶς οὔρων λόγον ἐκθέμενοι , καὶ πᾶν αὐτῷ περάναντες τῆς μεθόδου , λείποιτ ' ἂν ἴσως ἤδη φάναι
ἡψάμεθα , μήπω δὲ τὸ πᾶν τῆς διαγνώσεως πρώτῳ λόγῳ περάναντες ἤδη καὶ δευτέρου ἐδεήθημεν λόγου , ἵνα εὐκρινὲς τὸ
6248228 διεχειαν
συνέχειαν τῆς φωνῆς ὡς ἄχρηστον περιεφρόνησε , τὴν δὲ μείζω διέχειαν ὡς ἄπειρον ἀποδοκιμάσασα συμμέτρῳ διαστάσει τὴν μελῳδίαν ὑπεστήσατο .
ὃς πρὸς ἀμφοτέρους τὸν ἡμιόλιον σώζει λόγον , καὶ μεταξὺ διέχειαν τοῦ ιϚ καὶ τοῦ δ ἐστιν ὁ η ,
6236327 αἰτηματων
ἐπιμιγνὺς δικαίων δὲ φειδομένη , δὸς εὐμενῶς ἤδη μοι τῶν αἰτημάτων τυχεῖν . Βραχμᾶνας δὲ παρόντας ἐνθάδε σοφούς τε καὶ
ἀξιοῦτε καταλύσασθαι τὴν διχοστασίαν , ἂν ᾖ μέτριόν τι τῶν αἰτημάτων καὶ μήτε τῷ ἀδυνάτῳ μήτε ὑπ ' ἄλλης αἰσχύνης
6228113 ἰσοχρονιων
ὑπεροχήν , ᾗ ὑπερέχει ἡ τοῦ ἡλίου πάροδος συναμφοτέρων τῶν ἰσοχρονίων παρόδων τῆς τε τῶν ἀπλανῶν καὶ τῆς τοῦ ἀστέρος
ὑπεροχήν , ᾗ ὑπερέχει ἡ τοῦ ἡλίου πάροδος συναμφοτέρων τῶν ἰσοχρονίων παρόδων τῆς τε τῶν ἀπλανῶν καὶ τοῦ ἀστέρος ,
6206831 πεποιημενας
τόξα μετεξέτεροι Λύκια , περὶ δὲ τῇσι κεφαλῇσι ἐκ διφθερέων πεποιημένας κυνέας . Τούτων πάντων ἦρχε Βάδρης ὁ Ὑστάνεος .
διὰ τὸν δεῖν ' ἢ τὸν δεῖν ' ἐπιδείξῃ μὴ πεποιημένας , ἐκείνῃ προσῆκε λαβεῖν ; χωρὶς δὲ τούτων ἔμοιγε
6193293 δεδομενας
πρὸς τὴν ΓΖ λόγος ἐστὶ δοθείς . Ἐὰν δύο παραλληλόγραμμα δεδομένας ἔχῃ γωνίας καὶ λόγον πρὸς ἄλληλα ἔχῃ δεδομένον ,
καὶ τὴν ὑπεροχὴν τὴν πρὸς τὰς τὰ διαστήματα περιεχούσας καὶ δεδομένας εὐθείας καὶ τὰς λοιπὰς τὰς μεταξὺ πάσας ἡμῖν συναναπληρώσει
6191072 μεσοδμην
ἥδεται κομψευόμενος . κρεμάσαι χρὴ τὸν ἄνθρωπον τῶν ποδῶν πρὸς μεσόδμην δεσμῷ μαλθακῷ , δυνατῷ δὲ καὶ πάχος ἔχοντι .
πλατεῖ ἱμάντι καὶ μαλ - θακῷ , ἀνατείνοντι ἐς τὴν μεσόδμην : τὸ δὲ σκέλος τὸ σιναρὸν ἐντετάσθαι χρὴ ὡς
6163439 γεγραφθωσαν
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου .
6155941 κεκραξομαι
] τῷ κεκραγμῷ σου περιέσομαι ἀντὶ τοῦ νικήσω . Γ κεκράξομαι ] βοήσω . καταβοήσομαι βοῶν σε ] τῇ βοῇ
διπλῆ ἔξω νενευκυῖα . ἐς τὸν οὐρανόν ] ⌈ λείπει κεκράξομαι . ἐγὼ ] κοινή . θεοσεχθρία : θεομισητία .
6130394 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
6129724 ἀναγωγους
Σωκράτους , ὅτι ὡς πρὸς τὰς προηγουμένας καὶ ἀληθεῖς καὶ ἀναγωγοὺς ἐνεργείας τοῦ ἔρωτος οὐδὲν ὑγιὲς οὐδὲ ἀληθὲς εἶχεν οὐδ
. Πᾶσα γὰρ ἦν : ἀντὶ τοῦ : εἶχε τὰς ἀναγωγοὺς δυνάμεις . Τὸ δὲ ζεῖ οὖν : ὥσπερ ἐνταῦθα
6126907 ἰσοϋψης
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν
6120191 ροθ
. . . . . . . . . . ροθ ∠ ʹγ νότ . β Σάρατα . . .
ροϚ Περὶ καράβου ροζ Κάϲτοροϲ ὄρχιϲ ροη Κυνὸϲ ποταμίου ὄρχιϲ ροθ Κυνὸϲ χερσαίου ϲκύλαξ ρπ Κύκνου νεοττόϲ ρπα Κηρύκων ὄϲτρακα
6104419 διαιρουμεν
καὶ τὰς μὲν χρόνον τινὰ προσσημαινούσας τὰς δὲ οὔ , διαιροῦμεν αὐτὰς ἀπ ' ἀλλήλων καὶ τὰς μὲν ἄρθροις συνταττομένας
καὶ τοῦτο ἐπ ' ἄπειρον προέλθῃ . οὔτ ' οὖν διαιροῦμεν τὸν δέκα εἰς πέντε δυάδας , ἀλλὰ πεντάκις [
6093311 ἀνισους
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως
6090378 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
6085507 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
6080153 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6079693 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6072165 ΔΕΖ
: ∼ ιηʹ . Ἔστω δύο ἡμικύκλια ὡς τὰ ΑΒΓ ΔΕΖ , καὶ ἔστω ἴση ἡ ΑΔ τῇ ΔΓ ,
, καὶ ἴση ἔσται ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ , καὶ λοιπὴ δηλονότι ἡ πρὸς τῷ Γ λοιπῇ
6070473 ἐναρμοσαι
, καὶ εὐθείας τῆς ΔΕ , εἰς τὰς ΑΒ ΒΓ ἐναρμόσαι εὐθεῖαν ἴσην τῇ ΔΕ καὶ παράλληλον αὐτῇ . Τοῦτο
' ὅλου ἡ ἔξαψις κατὰ συμφωνίαν τῶν ἁρμοσθέντων πρὸς τὸ ἐναρμόσαι οἷόν τε . οὕτω γὰρ καὶ ὀφθαλμὸς ὁρᾷ οὐ
6069715 παρεληφθησαν
ἑαυτὰς ὁρᾶν τὰς ἐννοίας ταύτας , ἀλλὰ μὴ ὧν ἕνεκα παρελήφθησαν , ἐπεὶ ἄλλο τι ὑπονοήσομεν εἶναι αὐτὰς καὶ οὐ
συνέχοντες . καὶ ἐν ἄλλοις ὀργάνοις χάριν τῆς αὐτῆς χρείας παρελήφθησαν ψαλίδες : ἐν δέ τισιν ὀργάνοις πρὸς ἀσφαλῆ συμπηγίαν
6032886 εὐθειαι
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ
6030517 βασεις
δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ
τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα |
6010883 πεντεκαιδεκαγωνον
περιγράψομεν : ὅπερ ἔδει ποιῆσαι . Εἰς τὸν δοθέντα κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς
κύκλος ὁ ΑΒΓΔ : δεῖ δὴ εἰς τὸν ΑΒΓΔ κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι . Ἐγγεγράφθω εἰς τὸν
6010164 ζγʹ
ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δεʹ , καὶ πάλιν ἡ ζγʹ καὶ ἡ γηʹ καὶ ἡ θδʹ : φανερὸν δὴ
τὰ ζηʹ δυτικὰ δὲ τὰ βγʹ : λέγω ὅτι ὁ ζγʹ κύκλος αἰεὶ διὰ μὲν τῆς ζηʹ περιφερείας ἀνατέλλει ,
6007504 πενταπλευρον
μὲν τετράπλευρον τέτρασιν ὀρθαῖς ἴσας ἔχει γωνίας , πᾶν δὲ πεντάπλευρον ἓξ καὶ τοῦτο ἑξῆς ὁμοίως . ἓν μὲν οὖν
: καὶ ἐκτὸς ἄρα ἄλλαις τοσαύταις ἴσαι . εἰ δὲ πεντάπλευρον , δέκα μὲν αἱ πᾶσαι , ἓξ δὲ αἱ
6001631 συναγομενας
τῶν ἀριθμῶν , ὡς ἔφαμεν , τὰς αὐτὰς πηλικότητας δείξωμεν συναγομένας καὶ ἐπὶ τῆς κατὰ τὸν ἐπίκυκλον ὑποθέσεως , ὅταν
ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας συναγομένας ποιῆσαι τὴν ἔξαψιν : ὥστε ἔσταν διὰ πλειόνων ἀνδρῶν
6000698 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
5999129 ἀσυμπτωτοι
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων
5997305 ἐκκεντροι
μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος
δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ
5995920 ٥٤
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ
5960798 Λημμα
τὸ τρίτον εἰς τὸν περὶ πυραμίδων καὶ κώνων λόγον . Λῆμμα εἰς τὸ αʹ θεώρημα . Εἰς τὸν δοθέντα κύκλον
τὸ ΔΓ ἀπὸ τῆς Γ ἐπὶ τῆς διχοτομίας πεσεῖται . Λῆμμα δʹ . Δύο δοθεισῶν εὐθειῶν ἀνίσων τὸ τέταρτον τοῦ
5956148 σκυταλων
καρποφορήσει . Φυτεύεται δὲ ἀπὸ ἰσημερίας , οὐ μόνον ἀπὸ σκυταλῶν καὶ κλάδων , ἀλλὰ καὶ ἀπὸ παρασπάδων αὐτοῤῥίζων ,
χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , περιαγωγίδων , σκυταλῶν , ἐπιτονίων , ἀντηρίδων , σφηνοειδῶν , μηνοειδῶν ,
5954510 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
5950611 ζητηθησεται
' ὀνόματος ἀποδοθήσεται , τότε καὶ τὸ ὁποῖόν τί ἐστι ζητηθήσεται , ὡς ἂν δι ' αὐτοῦ αἱ εἰδοποιοὶ ἀποδοθήσονται
τὸν ἀκούσιον ἀνέτλη τοῦτον ; καὶ ἐπὶ τῆς ὕλης δὲ ζητηθήσεται πότερον εἰς τὸ κακὸν ὅμοιαι ἢ ἐλάττους δυνάμεις .
5947513 ΘΕΟΙ
ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας καὶ ὕλης ὁμοῦ
μίμησιν ἐκείνων ταύτης τυγχάνουσιν τῆς εὐδαιμονίας . . ὩΣ ΤΕ ΘΕΟΙ Δ ' ΕΖΩΟΝ . Ἤγουν ἀκοπίαστον καὶ ἄμοχθον καὶ
5945497 τομας
τὰς ΑΚ , ΕΖ ἡ ΓΛΔΒ : τεμεῖ ἄρα τὰς τομὰς κατ ' ἄλλο καὶ ἄλλο σημεῖον . ἔσται δὴ
δέ τις ἑτέρα εὐθεῖα παρὰ τὴν αὐτὴν τέμνουσα τάς τε τομὰς καὶ τὰς ἐφαπτομένας , ἔσται , ὡς τὸ περιεχόμενον
5932486 ΚΡΛ
ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι αἱ ΚΡΛ , ΕΞΖ , ΑΝΒ , ΗΟΘ , ΓΠΔ περιφέρειαί
ΚΡΛ , ΕΞΖ , ΑΝΒ ὅμοιαί εἰσι καὶ ἔτι αἱ ΚΡΛ , ΗΟΘ , ΓΠΔ ὅμοιαι ἀλλήλαις εἰσίν , αἱ
5928977 ἀγομεναι
ἡ δευτέρα διάμετρος ἡ αὐτὴ οὖσα καὶ πᾶσαι αἱ τεταγμένως ἀγόμεναι . τέτμηται ἄρα καὶ ὁ κῶνος τῇ αὐτῇ ἐλλείψει
κέντρου τῆς σφαίρας : πᾶσαι γὰρ αἱ ἀπὸ τοῦ Σ ἀγόμεναι ἐπὶ τὰς πλευρὰς κάθετοι , ὡς αἱ ΣΜ ,
5928833 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
5916074 συλλογιστικας
ὅσαι ἐξ ὑπαρχουσῶν λαμβανόμεναι προτάσεων συζυγίαι ἐν τῷ τρίτῳ σχήματι συλλογιστικὰς ἐποίουν συμπλοκάς , τοσαῦται καὶ ἐπὶ τῶν ἐνδεχομένων ,
ἀντὶ τῶν ὅρων καὶ ἐπ ' αὐτῶν δεικνύομεν τάς τε συλλογιστικὰς συζυγίας καὶ τὰς ἀσυλλογίστους , ὡς τῆς τῶν στοιχείων
5909069 Ἱσπανων
γὰρ ἡ τῶν προειρημένων λεπίδων ἐργασία διὰ τῶν Κελτικῶν καὶ Ἱσπανῶν καλουμένων μαχαιρῶν . ταύτας γὰρ ὅταν βούλωνται δοκιμάζειν εἰ
διοικῶν , προςέθηκε μεγάλοις μείζονα . Τὸν γὰρ βασιλέα τῶν Ἱσπανῶν μεγάλῃ νικήσας μάχῃ μετὰ ταῦτα πρὸς αὐτὸν ἐσπείσατο .
5907926 Ταυτας
: δωτίνην γὰρ ἐν τῷ νόμῳ οὐκ ἐξῆν δοῦναι . Ταύτας τε δὴ λαβόντες οἱ Ἀθηναῖοι καὶ τὰς σφετέρας ,
ἀνδρείαν , καὶ τὰς ἄλλας τὰς ἠθικὰς καλουμένας ἀρετάς . Ταύτας δή φασιν ὑπ ' ἐνδείας καὶ ὑπερβολῆς φθείρεσθαι .
5907201 ἀνακλασαντες
τῶν παρειμένων κἀκεῖ ἁμματίζομεν , ἐπὶ τὰς ἑτέρας δύο ἀρχὰς ἀνακλάσαντες ἄγομεν ἐπὶ κορυφὴν , ὑπ ' αὐτὴν δὲ ἁμματίζομεν
καὶ φλεβῶν . ἀλλὰ καὶ διὰ τῆς ὀστάγρας ἀνατείναντες ἢ ἀνακλάσαντες ἔνια τῶν ἰσχυρῶς συντετριμμένων ὀστῶν , κατ ' ἐκεῖνο
5904676 καταφατικας
μὴ εἶναι . τὰς δὴ ἐνδεχομένας ἀποφατικὰς καὶ τὰς ἐνδεχομένας καταφατικὰς συμβέβηκεν ἀντακολουθεῖν ἀλλήλαις , κατὰ τὸ σημαινόμενον τὸ κείμενον
τὰς καταφατικὰς καὶ οὕτω ποιοῦμεν συλλογιστικὰς συζυγίας , οὕτως τὰς καταφατικὰς μεταλαμβάνομεν εἰς τὰς ἀποφατικὰς καὶ δεικνύομεν οὕτω τὰς συλλογιστικὰς
5904500 πενταγωνων
φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται
καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν
5903005 ἐλλειψεις
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν
5901480 εὐθειων
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς
5892752 ἐλαχιστας
περὶ πεντεκαίδεκα ἡμέρας πάλιν τὸ τρίτον ἐπιβάλλεται βλαστοὺς Ἑκατομβαιῶνος , ἐλαχίστας ἡμέρας τῶν πρότερον : ἴσως γὰρ ἓξ ἢ ἑπτὰ
, κατὰ μικρὸν προστιθέντα τὸ σιτίον ἐς ἡμέρας τέσσαρας τὰς ἐλαχίστας . Χρίεσθαι δὲ ξυμφορώτερον ἢ λούεσθαι , λαγνεύειν δὲ
5892065 κορωνων
, καὶ συνάπτουσιν πόλεμον ἐκεῖσε μετὰ τῶν κοράκων τε καὶ κορωνῶν καὶ κολοιῶν καὶ γυπῶν , καὶ ὅσα σαρκοβόρα εἰσίν
ἐτίμησε καὶ στήλῃ καὶ τάφῳ ⋮ Λέγεται καὶ τοῦτο περὶ κορωνῶν , ὅτι ἀλλήλαις εἰοὶ πιστόταται , καὶ ὅταν εἰς
5890515 κλασαι
ἐπ ' ἀμάξης ὡς εἰς Μεσσήνην πεσεῖν καὶ τὸν μηρὸν κλάσαι : νοσήσαντα δ ' ἐκ τούτου τελευτῆσαι ἐτῶν ἑπτὰ
λδʹ . Ῥᾴδιον δὲ ἀπὸ δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων
5886996 φραστεον
τέχνην . Ἆρ ' ἡγεῖ με σαφῶς λέγειν , ἢ φραστέον σοι οὑτωσὶ ἐνδηλότερον ; Καλεῖς τινα τέχνην ἰατρικήν ,
γρ . . φραστέον δή σοι δι ' αἰνιγμῶν . φραστέον δή σοι δι ' αἰνιγμῶν . ἀλλ ' ᾄττει
5886610 τετρασυλλαβων
ὡς καὶ τοῦ ἰάμβου καὶ τοῦ τροχαίου καὶ τῶν λοιπῶν τετρασυλλάβων ποδῶν . ἐπὶ τῷ τέλει διπλῆ ἔξω νενευκυῖα .
ποδῶν καὶ πεντασυλλάβους καὶ ἑξασυλλάβους . διαλύονται γὰρ καὶ τῶν τετρασυλλάβων ποδῶν αἱ μακραὶ συλλαβαὶ εἰς δύο βραχείας . ἔοικε
5884631 συστολας
τὰς λέξεις καὶ τὰ συμβεβηκότα αὐταῖς , ἐκτάσεις τε καὶ συστολὰς καὶ προσῳδίας καὶ τὰ παραπλήσια : ὅταν δὲ τούτων
πάντες ὦσιν ἐν τάξει : καὶ τάς τε ἐκτάσεις καὶ συστολὰς καὶ ἐγκλίσεις ἐπὶ λαιὰ καὶ δεξιά , καὶ λόχων
5873142 ἀποφατικας
ἀπορεῖ καὶ τὴν ἀπορίαν ἐπιλύεται . τὰς δὲ καθόλου προτάσεις ἀποφατικὰς καὶ καταφατικὰς λέγει ἐναντίως μάχεσθαι . διὰ τί δὲ
' ὧν τὰς μὲν τοῦ ἀδυνάτου προτάσεις καταφατικάς τε καὶ ἀποφατικὰς ἀκολούθως ἐκκεῖσθαί φησι καὶ ὑποτετάχθαι ταῖς τοῦ δυνατοῦ καὶ
5871468 σχεσεις
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ '
5867945 σχισμας
οἱ τὰς ῥάβδους χλωρὰς ἐσχηκότες , ἐλάχιστον δὲ ξηρὸν καὶ σχισμὰς ἐχούσας . ἐκ τούτων τινὲς χλωρὰς ἐπέδωκαν , τινὲς
: ἦσαν γάρ τινες ἐξ αὐτῶν ἐψωριακότες , ἕτεροι δὲ σχισμὰς ἔχοντες , ἀλλοὶ δὲ κεκολοβωμένοι , ἄλλοι δὲ λευκοὶ
5867240 ἐγκυκλιους
δ ' ἄλλας δύο ἀρχὰς ὑπὸ λοβοὺς ἐπὶ ἰνίον χιάσαντες ἐγκυκλίους ἐπὶ μέτωπον καὶ ἐπὶ μέρος τῆς κεφαλῆς ἀναλαμβανόμενοι καὶ
τὰς ἐπειλήσεις ἔμπροσθεν κατὰ κλειδῶν ἐπὶ στέρνον αὑταῖς τε ἀντεμπλέξαντες ἐγκυκλίους ὑπὸ μασχά - λας ἐπὶ νῶτον , ὁμοίως τὰς
5866707 ΒΖΓ
περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ
τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο
5866099 ἀπολαμβανουσιν
τῆς σελήνης ἐκλειπτικοὶ ὅροι ἐφ ' ἑκάτερα τοῦ διὰ μέσων ἀπολαμβάνουσιν ἐπὶ τοῦ πρὸς ὀρθὰς τῷ λοξῷ σελήνης μοῖραν α
αὐτῶν ἐπὶ πάντων ἁπλῶς ἐν τοῖς ἴσοις χρόνοις ἴσας γωνίας ἀπολαμβάνουσιν πρὸς τοῖς κέντροις ἑκάστης τῶν περιφορῶν , αἱ δὲ
5865381 τομης
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ
5861652 κρατηματος
κλιμακίῳ ἑνί τινι κλίμακος πρὸς κράτημα . γενομένου δὲ τοῦ κρατήματος , καθὼς ἐδηλώθη , στρέφεται ὁ ἄξων , ὅτε
ἐπ ' ὀφθαλμοῦ παραλαμβάνομεν , ἤτοι προπεσεῖν κινδυνεύοντος , ἢ κρατήματος ἕνεκα τῶν ἐπικειμένων αὐτῷ : τὸν δὲ ῥόμβον ἐπὶ
5859778 ἀμβλειας
συναγομένας καὶ ὀξείας γινομένας , τὰς δὲ λοιπὰς διισταμένας καὶ ἀμβλείας ἀναφαινομένας . καὶ ἔοικεν καὶ τὸ ὄνομα τῷ ῥόμβῳ
ἡ σελήνη φαντάζεται . Ἀπὸ δὲ τοῦ σχήματος τούτου πρὸς ἀμβλείας ἤδη γωνίας προϊόντες οἱ κύκλοι τὸ ἀμφίκυρτον τῆς θεοῦ
5859719 σχισιν
τροφήν τε γὰρ ἱκανὴν λαμβάνουσι καὶ οὐκ ἀναξηραίνεται διὰ τὴν σχίσιν , ὑπὸ δὲ τοῦ ψύχους οὐδὲν πάσχουσιν . Εἰ
δ ' ὑπὸ πυθμένες ἦσαν , καθ ' ἑκατέραν τὴν σχίσιν τῶν ὤτων ἀκουσόμεθα μίαν πελειάδα : ἃς δοιὰς εἶπεν
5856734 προηγησεις
τοῦ κανόνος ἔκθεσις τοιαύτη : Ἐφωδευμένων δὲ τῶν περὶ τὰς προηγήσεις θεωρουμένων εὔλογον ἂν εἴη κατὰ τὸ ἑξῆς ἀποδεῖξαι τὰς
ὠμάς , κολαστικάς , κριτικάς , ἐπιστημονικάς , αἱ δὲ προηγήσεις καὶ αἱ δύσεις ἀβεβαίους , εὐμεταθέτους , ἀσθενεῖς ,
5856210 πιπτουσας
ἀμφίσκιοι μὲν ὅσοι κατὰ μέσον ἡμέρας τοτὲ μὲν ἐπὶ τάδε πιπτούσας ἔχουσι τὰς σκιάς , ὅταν ὁ ἥλιος ἀπὸ μεσημβρίας
τε καὶ μεσημβρινοί , τουτέστιν οἱ μὲν παράλληλοι τὰς μεταξὺ πιπτούσας αὐτῶν τε καὶ τοῦ ἰσημερινοῦ περιφερείας τῶν μεσημβρινῶν ,
5852685 συντεθεισαν
σοφίαν φυσικὴν ἔρχεται , καθ ' ἣν γεγένηται , οὐκέτι συντεθεῖσαν ἐκ θεωρημάτων , ἀλλ ' ὅλην ἕν τι ,
τὴν ἁρμονικὴν ἀναλογίαν ἐξ ἀμφοῖν τῆς τε ἀριθμητικῆς καὶ γεωμετρικῆς συντεθεῖσαν γίνεσθαι συμβαίνει : ἡ μὲν γὰρ ἀριθμητικὴ τοὺς ὅρους
5852513 ἀδυνατουμεν
μὲν περιλαβεῖν καὶ περιαθρῆσαι ἄπληστοι τῶν ἀρετῆς ὄντες ἐρώτων , ἀδυνατοῦμεν δὲ πλοῦτον ἀναμετρῆσαι θεοῦ . ἀλλ ' ὅμως χάρις
ἣν οἰόμεθα σοφίαν εἶναι , τοῦτο δ ' εἰ σφόδρα ἀδυνατοῦμεν , τὸ δεύτερον , τίνες εἰσίν ποτε καὶ ὁπόσαι
5849997 ΑΝΘΡΩΠΟΙΣΙΝ
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς
5848707 προσεχοντως
τοὺς θεούς . εἶθ ' ὅτι ἀσφαλέστατα ἂν οὗτοι καὶ προσεχόντως τὸν βίον διάγοιεν νομίζοντες ἔχειν ἐπισκόπους ἀεὶ πασῶν τῶν
εἰς τὸ κύτος ἀπωθεῖν . χόριον δὲ μὴ ἀναστομούμενον κατιάδι προσεχόντως διαιρεῖν τῷ δακτύλῳ προκοιλαίνοντά τι μέρος : προεκκεκριμένου δὲ
5848511 ἀσυμπτωτων
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι
5844795 εὐθετουσι
καταρτισμοὶ τούτων εἰσὶ πρακτικώτεροι : καὶ γὰρ ἐπὶ τῶν χρονίων εὐθετοῦσι καὶ ἐπὶ τῶν ἀθλητικῶν σωμάτων , πάντα τε ὅσα
ψῦξιν δυσεντερίαν οἱ ὄλυνθοι τῆς συκῆς πινόμενοι καὶ θαυμασίως πως εὐθετοῦσι . δεῖ δὲ καίειν αὐτοὺς ἐν ἀγγείῳ χαλκῷ καὶ
5841792 τεμνον
. Ἔστι δὲ καὶ ἀμφίβιον γῆν τε πεζεῦον καὶ θάλασσαν τέμνον καὶ πλοῦν τὸν αὐτόστολον ναυτιλλόμενον : δεῆσαν γὰρ τὸ
: πάλιν γὰρ χρόνου ἐστὶ τοῦ γενικωτάτου ἐμπεριεκτικόν , οὐ τέμνον τὸ ἐπιμεριζόμενον τοῦ χρόνου , διῆκον μέντοι δι '
5838398 παρεδεχοντο
ἄλλως ἐλέγχεις ; διόπερ οἱ λοιποὶ τὰς ἀντιστρόφους ἀπὸ τούτου παρεδέχοντο πάντες , ὡς ἔοικεν , εἰς τὰς τραγῳδίας .
πόλιν προδιδόντες ἦραν τὸ σύσσημον ἀπὸ τοῦ τείχους , καὶ παρεδέχοντο τοὺς περὶ τὸν Ἀλκιβιάδην διὰ τῶν κλιμάκων κατὰ πολλὴν
5838086 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
5837587 ἀντικειμενας
δὴ ταῦτά τις οὕτω διατείνοιτο , καὶ τὰς δύο ἀρχὰς ἀντικειμένας ποιῶν καὶ τὴν τοῦ ἑνὸς προτάττων ἀμφοῖν , ῥητέον
τρεῖς , καὶ ὅτι ταῦτα ἀντιτέτακται ἀλλήλοις καὶ ἐκείνας ὑποτίθεσθαι ἀντικειμένας , καὶ ὅτι πρὸ τοῦ πέρατος καὶ τῆς ἀπειρίας
5837274 ἐκπεφυκασιν
ἀρτηρίας . κωνοειδὴς τῷ σχήματι , ὑποπίμελος , ἐξ ἧς ἐκπεφύκασιν ἀρτηρίαι καὶ φλέβες δι ' ὧν ἐπιπέμπεται αἷμα καὶ
ἐξ ἀρτηρίης , ταύτῃ ἀμφιβεβηκυῖαι . Ἀρτηρίαι μὲν ἐκ τουτέου ἐκπεφύκασιν ἔνθεν καὶ ἔνθεν ἀρτηρίης τόνον ἔχουσαι . Ταύτῃ δέ
5835709 Δοξαι
φύσεως αʹ βʹ , Ἐρώτημα περὶ φύσεως αʹ βʹ , Δόξαι ἢ ἐριστικός , Περὶ τοῦ μανθάνειν προβλήματα . Τόμος
αἱ ἐκεῖθεν παραγινόμεναι ἱλαραί τε καὶ γελῶσαι τίνες καλοῦνται ; Δόξαι , ἔφη , καὶ ἀγαγοῦσαι πρὸς τὴν Παιδείαν τοὺς
5832688 ἀγκυλας
θεραπεία . μθʹ Μαλάγματα διάφορα ἐν οἷς τὸ Λευκίου πρὸς ἀγκύλας . καὶ τὸ διὰ τῶν τηκτῶν καὶ τὸ διὰ
τῶν τρυγητῶν ζάγκλῃσι : ταῖς δρεπάναις παρὰ τὸ εἶναι λίαν ἀγκύλας ὀπώρην ] σταφυλήν ῥυσαλέην δὲ τὴν ἐρρυσσωμένην , ἤτοι
5829925 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς

Back