Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν | ||
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία |
πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
ἐπιφανείας γιγνομένῃ , ὑφ ' ἧς ἐκζέματά τινα καὶ ἑλκώσεις ἀποτελοῦνται . Κατάρχει δὲ πρώτως ἔκδοσις μετὰ βορβορώσεως χολωδῶν ὑπολιπάρων | ||
ὧν αἱ ἐτήσιοι ὧραι καὶ τῶν καιρῶν αἱ περίοδοι τεταγμένως ἀποτελοῦνται , μετέσχηκεν ἑβδομάδος , λέγω δὲ πλάνητας ἑπτὰ καὶ |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
τρεῖς αἱ προστεθεῖσαι καὶ τρεῖς αἱ προηγησάμεναι . τεσσάρων ὅρων προστεθέντων προστίθενται τέσσαρες σχέσεις ταῖς ἓξ καὶ γίνονται δέκα . | ||
τὸ ἧπαρ : ἐν ὅλῳ δὲ τῷ σώματι πρόσφυσις τῶν προστεθέντων τῆς τροφῆς ἔσται μορίων . εἰ δ ' ἄσιτος |
ἐστὶ τῇ τοῦ κατὰ διάμετρον ζῳδίου καταδύσει . Τῆς ὑπεροχῆς γιγνωσκομένης ᾗ ὑπερέχουσιν ἀλλήλων αἱ τῶν ἑξῆς δωδεκατημορίων τοῦ ζῳδιακοῦ | ||
, καὶ τούτων ἐξ ἑαυτῶν , μὴ καταλαμβανομένης τῆς ῥύσεως γιγνωσκομένης . πῶς οὖν εὔλογον φαίνεσθαι αὐτὴν λέγειν ; καὶ |
γὰρ βραδύτερον ἐξολιϲθαίνει καὶ χαλεπώτερον ἐμβάλλεται διὰ τὴν πυκνότητα τῶν ὑπεροχῶν τε καὶ κοιλοτήτων . πάϲχει μὲν οὖν ἔϲτιν ὅτε | ||
μέσου , ἀλλὰ τοσούτῳ ἔλαττον , ὅσῳ τὸ ὑπὸ τῶν ὑπεροχῶν ἐστιν : ἦν δὲ ἡ ὑπεροχὴ μονάς : ἅπαξ |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
σελήνη , μεριοῦμεν τὸ τῶν ἡμερῶν πλῆθος εἰς τὸ τῶν ἀποκαταστάσεων πλῆθος . Γίνονται δὲ ἡμέραι τῆς ἀποκαταστάσεως κζ λγʹ | ||
τὰς εἰλημμένας ἡμῖν κατὰ συνεγγισμὸν τῶν ἐκ τῆς διορθώσεως ἐπιλελογισμένων ἀποκαταστάσεων . ἐν μὲν τοίνυν Αἰγυπτιακοῖς ἔτεσι τ καὶ νυχθημέροις |
τόπων ἐπίσκεψιν ἢ τῆς τοῦ ἡλίου κινήσεως τῆς ἀπὸ τῶν ἰσημεριῶν ἐπὶ τοὺς μέσους τῶν ἐκλείψεων χρόνους ἢ μὴ ἀληθῶς | ||
' ἡμῶν κατὰ τὸ υξγʹ ἔτος ἀπὸ τῆς Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος |
ἐλάχιστα ἀποστήματα λογισμούς , ἃ γίνεται περὶ τὰς τῶν ρκ περιοδικῶν μοιρῶν ἀπὸ τοῦ ἀπογείου διαστάσεις , ἡ μὲν τῆς | ||
τὰ περὶ τὴν σελήνην ἐξετάζειν δεῖ : περί τε τῶν περιοδικῶν αὐτῆς χρόνων , τουτέστιν τῶν ἀποκαταστατικῶν κινήσεων ἐν ἔτεσιν |
δὲ ἀπὸ τῶν ὁμαλῶν τὰ φαινόμενα , ἀφελοῦμεν πάντοτε τῶν ὁμαλῶν . ἐὰν μὲν οὖν δοθέντος τινὸς χρόνου κατὰ τὸν | ||
Τῶν τοίνυν κατὰ φύσιν παρυφισταμένων , λευκῶν μὲν ὄντων καὶ ὁμαλῶν καὶ προσέτι τῇ συστάσει συμμέτρων καὶ πρὸς τὸν πυθμένα |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις | ||
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
Ἢ ὅτι μὴ οἷόν τί ἐστι δηλοῦσιν οὐδὲ ἐναλλαγὴν τῶν ὑποκειμένων οὐδὲ χαρακτῆρα , ἀλλ ' ὅσον μόνον τὴν λεγομένην | ||
τούτων διαλέγεται ὡς μερῶν προτάσεων καὶ ὡς περὶ κατηγορουμένων καὶ ὑποκειμένων , ἐν δὲ τοῖς Ἀναλυτικοῖς ὡς περὶ μερῶν συλλογισμοῦ |
δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
τοῦ ἀπλατοῦς μήκους νόησιν ἰσχύσομεν . ὅθεν εἰ ἕκαστον τῶν νοουμένων κατὰ τοὺς ἐκκειμένους νοεῖται τρόπους , δεδίδακται δὲ κατὰ | ||
τὸ θεοὺς εἶναι , καὶ προνοεῖν τούτους . τῶν γὰρ νοουμένων τὰ μὲν κατὰ περίπτωσιν ἐνοήθη , τὰ δὲ καθ |
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ | ||
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ . |
τῶν φασμάτων τῶν τοῦ [ ] ἡλίου ἀοριστείας ἀνατολῶν καὶ δύσεων [ , ] εἰκότως [ διανοίᾳ ] [ οὐ | ||
φθινασμάτων : τῶν λήξεων , τῶν δυσμῶν : ἢ τῶν δύσεων ἢ τῶν ἐκλείψεων : ὅτε γὰρ δύει ὁ ἥλιος |
εἴγε ἕκαστον αὐτῶν ὁμοίως κατὰ περιωρισμένους τόπους τὰς μεταβάσεις τῶν κινήσεων ποιεῖται . εἰ δὲ φήσουσιν , ὅτι μικρὸν μέν | ||
κινήσεως . ἀναμνησθῶμεν πρῶτον ἐπὶ τοῦ παντὸς σώματος δυοῖν τούτων κινήσεων ἀλλήλαις μὲν παρακειμένων , οὐχ ὁμοίως δὲ γινομένων : |
δὲ αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ | ||
μικρὸν σαλευομένης τῆς σκάφης ἢ τῆς βαυκάλης κρεμαμένης ἢ ἐπὶ διαγωνίων λίθων ἐπηρεισμένης , εἰς ὕστερον δὲ καὶ διὰ φορείου |
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις | ||
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων |
μη ∠ ʹ . Καὶ ὡς τῶν περιλαμβανομένων ὑπὸ τῶν κώνων κύκλων ἡλίου τε καὶ σελήνης καὶ γῆς ἀδιαφόρῳ ἐλασσόνων | ||
μέρος τοῦ ἡμικυκλίου . τὸ αὐτὸ ἄρα μέρος καὶ τῶν κώνων θεωρηθήσεται τὸ ἔλαττον . Τοῦ ὄμματος τεθέντος ἔγγιον τοῦ |
χρόνους ἧκόν τινες ἀπὸ Σικελίας ἀπόστασιν ἀγγέλλοντες οἰκετῶν εἰς πολλὰς ἀριθμουμένων μυριάδας . οὗ προσαγγελθέντος , ἐν πολλῇ περιστάσει τὸ | ||
: ὅ ἐστιν : οὐκ εἰς τὸ ἀκριβὲς ἦλθεν ὥστε ἀριθμουμένων τῶν ψήφων εἰς τὸ βραχὺ ἐλθεῖν καὶ εἰς ἰσοψηφίαν |
ἑπτακαιεικοσαπλασίας : ἐν γὰρ ταύταις ταῖς ποσότησιν ἡ τῶν δύο μεσοτήτων ἐνορᾶται φύσις πρώταις ἐλαχίσταις ἥ τε τοῦ ἀνὰ μέσον | ||
τῇ ἀριθμητικῇ μεσότης οὐκ ἀλόγως προηγήσεται τῶν ἐν ἐκείναις ὁμωνύμων μεσοτήτων , γεωμετρικῆς τε καὶ ἁρμονικῆς : τῶν γὰρ ὑπεναντίων |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
ἐστίν , ἀλλ ' αἱ μὲν ἄνωθέν τε καὶ κάτωθεν βραχύτεραι τυγχάνουσιν οὖσαι , μακρότεραι δ ' αἱ μέσαι . | ||
ζωστῆρσι χαλκέοις ἐσφιγμένοι , καὶ ξίφη παρηρτημένα , καὶ λόγχαι βραχύτεραι τῶν μετρίων : τοῖς δ ' ἀνδράσι καὶ κράνη |
πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
ἀμείβει τόπον , ἀμφότεραι δὲ χώραν ὑπαλλάττουσιν . τῶν μέντοι παρόδων ἡ μὲν δεξιὰ ἀγρόθεν ἢ ἐκ λιμένος ἢ ἐκ | ||
δὲ σελιδίων τὰ μὲν πρῶτα β περιέξει τοὺς τῶν μέσων παρόδων ἀριθμούς , ὥσπερ ἐπὶ τοῦ ἡλίου καὶ τῆς σελήνης |
, κατοπτηθέντες δὲ καὶ συστάντες φαντασίαν τινὰ δεικνύουσι τῶν ῥηθεισῶν ὑποστάσεων , ἀλλὰ ταῦτα ῥᾳδίως ἂν διαγνοίης τῷ τε προηγήσασθαι | ||
μὴν μετὰ παχείας συστάσεως ἡγησαμένων τοιούτων οὔρων μετὰ θρομβοειδῶν τῶν ὑποστάσεων ἐν ἀσθενεστέροις πυρετοῖς , πλήθει δὲ καὶ τῷ λευκῷ |
Τούτοις δ ' ἀκολούθως ἐζητήσαμεν τὰς πηλικότητας τῶν γινομένων μεγίστων ἀποστάσεων , ὅταν ἡ μέση τοῦ ἡλίου πάροδος κατ ' | ||
πλανώμεθα , καὶ τῶν σχημάτων κατὰ ποιάν τινα σχέσιν τῶν ἀποστάσεων τὰ μὲν πολύγωνα περιφερῆ , εὐθύγραμμα δὲ τὰ στρογγύλα |
ἀκοὴν πρὸς τὰ ἐξαρτήματα καὶ βεβαιώσας πρὸς αὐτὰ τὸν τῶν σχέσεων λόγον , μετέθηκεν εὐμηχάνως τὴν μὲν τῶν χορδῶν κοινὴν | ||
ιεʹ , καὶ ἀεὶ ὁμοίως . Ἐπιδειχθείσης ἡμῖν τῆς τῶν σχέσεων πλάσεως ἀπλατῶν καὶ μικτῶν ἀπὸ ἰσότητος τὴν ἀρχὴν ἐσχηκυίας |
: ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν | ||
Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ |
χωρὶς τοῦ μεγίστου τῶν παραλλήλων τοῦ ΕΖ , τῶν δὲ ἀπολαμβανομένων τμημάτων ἐν ἑνὶ τῶν ἡμισφαιρίων ἡμικυκλίων μὲν ἔσται μείζονα | ||
: ἑνὶ γὰρ στόματι πολλοὶ κλείονται λιμένες ἄκλυστοι , κόλπων ἀπολαμβανομένων ἐντός , ὥστ ' ἐοικέναι κέρασιν ἐλάφου τὸ σχῆμα |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ | ||
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ |
τὰ συμπίπτοντά ἐστιν . ἐπεὶ τοίνυν καὶ τὰ διαστήματα τῶν ἀνέσεων , ἐν οἷς παραλαμβάνομεν τὰ βοηθήματα , οὐκ ἴσα | ||
ἐν οἷς παραλαμβάνομεν τὰ βοηθήματα , οὐκ ἴσα ἐπὶ πασῶν ἀνέσεων , καὶ αἱ περιστάσεις ἀνόμοιαι , καὶ τὰ συμπτώματα |
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ . | ||
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα |
αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ γὰρ | ||
τὰ αὐτὰ εὑρήσομεν : καὶ γὰρ καὶ ἐνταῦθα δύο οὐσῶν ἀντιθέσεων , ἐμψύχου καὶ ἀψύχου , αἰσθητικοῦ καὶ ἀναισθήτου , |
ἡλίῳ θεωρούμενος ὑφ ' ἡμῶν . Τῶν μὲν οὖν ἑῴων ἐπιτολῶν καὶ δύσεων πρότερον γίνονται αἱ ἀληθιναί , ὕστερον δὲ | ||
. ἢ οὕτως : ὦ Ἥφαιστε , χρὴ φροντίζειν τῶν ἐπιτολῶν τοῦ Διός . Σκύθην ἐς οἶμον : Τὴν Σκυθικὴν |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις | ||
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν |
τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
τῶν δ ' ἄλλων δυοῖν ὡς ἂν ἀπαυγαζομένων ἀπὸ τούτου σκιῶν : ὁποῖόν τι συμβαίνει καὶ τοῖς ἐν αἰσθητῷ φωτὶ | ||
ἐφ ' ἣν ἐν ταῖς μεσημβρίαις πεσεῖται τὰ ἄκρα τῶν σκιῶν , καὶ διήχθωσαν διὰ τοῦ Ε ἥ τε ἰσημερινὴ |
εὑρήσεται καταφυγήν , ἀποτροπὴν κακῶν , εἰ καὶ μὴ μετουσίαν προηγουμένων ἀγαθῶν . αἵδ ' εἰσὶν αἱ ἓξ πόλεις , | ||
μέχρι μὲν οὖν τινος ἐλάνθανε τοὺς ὑστέρους προσιόντας ὁ τῶν προηγουμένων ὄλεθρος : ἐπεὶ δὲ φῶς ἐγένετο σελήνης ἀνισχούσης οἱ |
. ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
τὴν στροφήν . ἐπεὶ οὖν οὐκ ἔνι ἔξω τόπων καὶ θέσεων ταῦτα κατανοῆσαι , ἀγνοεῖται ἡ φύσις αὐτῶν . Ὄγδοος | ||
, οὐ θέσις ἔσται ἀλλ ' ὑπόθεσις . Τῶν δὲ θέσεων αἳ μὲν πολιτικαί , αἳ δὲ οὔ : καὶ |
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν , | ||
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ |
ἄρτιοι ἀπὸ ῥίζης προχειρισθῶσιν εἰς μίαν μεσότητα , ἀντιπαρωνυμήσουσιν αἱ ἀκρότητες ἐν αὐτοῖς καὶ αἱ μετ ' ἐκείνας καὶ αἱ | ||
τουτονὶ καὶ νῦν ἐκκαλυπτέον , ὅτι ἄρα τούτων αἱ μὲν ἀκρότητες κατ ' ἐναντιότητα τοῦ ποιοῦ θεωροῦνται , τὰ δὲ |
τῆς γῆς κατὰ σύμπτωσιν τῶν εὐθειῶν , αἳ ἀπὸ τῶν ὡρολογίων ἤχθησαν ἐπὶ τὸ κέντρον τῆς γῆς , γινομένη , | ||
ἔχοντα παραλλαγὴν πρὸς τὰς χειμερινὰς τροπάς , καὶ αἱ τῶν ὡρολογίων καταγραφαὶ ἐκδήλους ποιοῦσι τὰς κατὰ ἀλήθειαν γινομένας τροπάς , |
, τούτωι δεύτερος τρίτου ὑπερέχει . καὶ ἐν ταύται τᾶι ἀναλογίαι συμπίπτει ἦιμεν τὸ τῶν μειζόνων ὅρων διάστημα μεῖον , | ||
ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ δὲ |
ἡ διάκρισις τῶν ἀορίστων ὀνομάτων τε καὶ ῥημάτων ἀπὸ τῶν ἀποφάσεων , πρὸ ἐκείνου δὲ ἡ διδασκαλία τοῦ πῶς τῶν | ||
καὶ ἐξ ἀμφοτέρων ψευδῶν συνάγεται . Ὅτι εἰπὼν ἐκ δύο ἀποφάσεων ἢ μερικῶν μὴ γίνεσθαι συλλογισμὸν μόνον τὸ δεύτερον ἐπεξεργάζεται |
ἰσόρροπόν τι εἶναι χρῆμα ἐν μέσῳ κείμενον , ὁμοίων τῶν περιεχόντων . Ὁ δὲ αἰθὴρ ἐξωτάτω διῃρημένος εἴς τε τὴν | ||
' ἐμοῦ : οὐδὲν παθέων ἀποκουφίζους ' : οὐδὲν τῶν περιεχόντων σε κακῶν θεραπεύουσα καὶ ἀποκουφίζουσα , ἀλλὰ τοὐναντίον ἐπιτιθεῖσα |
στερητικά . Τὸ προκείμενον ἡμῖν ἐστι διακρῖναι τὰ εἴδη τῶν ἀντικειμένων ἀπ ' ἀλλήλων , καὶ τέως τὰ πρός τι | ||
ἐπεὶ συνεθέμεθα καὶ ὡμολογήσαμεν ὡς ἂν ἐφ ' ἑνὸς τῶν ἀντικειμένων δειχθῇ , οὕτως ἐπὶ πάντων ἕξειν . οὐκ ἐδεήθημεν |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ | ||
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ |
ταῖς μὴ ἀναγκαίαις οὔτε αἱ ὑπερβολαί εἰσιν ἀναγκαῖαι οὔτε αἱ ἐλλείψεις . τὸ γὰρ μηδ ' ὅλως ἥδεσθαι ψεκτόν ἐστι | ||
τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . νόμος τὸν καινὸν |
ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
τῶν τόνων ἐν ταῖς συνεχέσιν ἀγωγαῖς , συμβαίνει κάμψιν αὐτῶν λαμβανουσῶν εὐκόπως τὸν ὑπεράνω τόπον τοῦ περιτρήτου συντρίβεσθαι . ἔτι | ||
πάντοθεν ἴσον ὑπὸ τῆς ὄψεως θεωρεῖσθαι , ἢ σύνωσιν τοιαύτην λαμβανουσῶν τῶν ἐν τῷ ἀέρι ἀτόμων ἢ ἐν τοῖς νέφεσιν |
φεῦ φεῦ : ἡ ἔκθεσις τοῦ δράματος ἐκ συστηματικῶν ἐστι περιόδων . τὰ δὲ κῶλά ἐστιν ἀναπαιστικὰ κϚʹ . τὸ | ||
τῶν περιόδων μιμοῖτο , ἐν ταῖς μεταποιήσεσι πλῆθος ἂν εὕροι περιόδων . καὶ γὰρ τὸ ἐκ παραβολῆς σχῆμα ἄριστον ὥσπερ |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
οἰκείου κλίματος χρόνοις ἀναφορικοῖς , κατὰ δὲ τὴν τοῦ μεσουρανήματος ἰσάριθμον τοῖς χρόνοις τῶν μεσουρανημάτων , κατὰ δὲ τὰς ἀπὸ | ||
οἱ ὀδόντες , ἀνεστήκασι δὲ αἱ κεφαλαί , ζητοῦσι δὲ ἰσάριθμον θήραν . μαντεύομαι οὖν ἐγὼ καὶ Ὅμηρον βούλεσθαι λέγειν |
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα , | ||
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ |
ἐπ ' ἐκείνου : αἱ διάμετροι τῶν κύκλων καὶ τῶν ἐλλείψεων τά τε χωρία δίχα διαιροῦσι καὶ τὰς περιεχούσας τὰ | ||
ΓΑ , τουτέστιν ὡς τὸ ἀπὸ τῆς διαμέτρου τῶν ὁμοίων ἐλλείψεων τῶν ἀπὸ τοῦ αὐτοῦ μέρους ἠγμένων πρὸς τὸ ἀπὸ |
φύσιν . Εἰς δὲ τὴν τῶν προκειμένων διάγνωσιν ὑποδείγμασι χρησόμεθα προτάξαντες ἐπίσημον γένεσιν . ἔστω Ἥλιον εἶναι Σκορπίῳ , Σελήνην | ||
ἀπὸ συμβεβηκότων , διὰ τί ὑπογραφικὸν ὁρισμὸν λέγομεν τὸ χεῖρον προτάξαντες καὶ μὴ ὁρισμὸν ὑπογραφικόν ; καὶ ἀπολογοῦνταί τινες λέγοντες |
ἐν τοῖς ἑξῆς Ἵππαρχός τε καὶ Πτολεμαῖος φαίνονται λαβόντες ἐπὶ διχοτόμων καὶ μηνοειδῶν κατὰ τὰς τοιαύτας θέσεις τὴν σελήνην ἀπαράλλακτον | ||
ὅτι ἀφαιρετικῆς μὲν οὔσης τῆς πρώτης ἀνωμαλίας ἐν ὁποτέρᾳ τῶν διχοτόμων ἔτι ἐλάσσων ὁ τόπος αὐτῆς εὑρίσκεται τοῦ ἐκ τῆς |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
πολλαπλάσιον καὶ ἐπιμόριον καὶ ἐπιμερὲς καὶ πολλαπλασιεπιμόριον καὶ πολλαπλασιεπιμερές , ὑπολόγων δὲ τῶν ἴσων μετὰ τῆς ὑπό προθέσεως ὀνομαζομένων . | ||
τινα ἄλλον λόγον . διότι γὰρ ἰσάκις εἰσὶν ὑπερέχοντες τῶν ὑπολόγων οἱ πρόλογοι , διὰ τοῦτο καὶ ἐναλλὰξ ἀνάλογόν εἰσιν |
τε μέλανοϲ καὶ κρεῶν πλήθουϲ καὶ πάντων ἁπλῶϲ τῶν παχυχύμων ἀποχὴ καὶ τῶν ἄγαν θερμῶν καὶ δριμέων , ὑδρογάρων φημὶ | ||
οὖν ταῖς κατὰ τὴν δίαιταν καταλλήλοις χρηστέον ὑδροποσίαις : κρεῶν ἀποχὴ καὶ συνουσίας ἀφροδισίων . ἀλειμμάτων δὲ παραλήψεις γενόμεναι παρ |
ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
διαμνημονεύονται , οἱ δὲ μακρὰν τοῖς τόποις διεστῶτες τοῖς πλεῖστον ἀπέχουσιν ὡς πλησίον παρεστῶσι διὰ τῶν γεγραμμένων ὁμιλοῦσι : ταῖς | ||
τῇ ΚΛ , ἐπεὶ καὶ τῇ ΘΚ : ἴσον γὰρ ἀπέχουσιν ἀπὸ τοῦ κέντρου : καί ἐστιν ἑκατέρα τῶν ΘΚ |
. ἰστέον δὲ ὅτι ἐπὶ τῶν τριῶν ὁρισμῶν τρεῖς σχέσεις νοοῦνται : οἱ μὲν γὰρ δύο πρῶτοι τὴν ἀπὸ τοῦ | ||
ἔχει καὶ αὐτὸ λόγον , πλὴν ὡς συνεχῶν ποσῶν τμημάτων νοοῦνται καὶ οὐχ ὡς διῃρημέναι μονάδες . Τοῦτο ἴδιον τῶν |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
τῆς θαλάττης δὶς δὲ ἀναχωρούσης , τεταγμένως δὲ καὶ τῶν ἡμερησίων χρόνων καὶ τῶν νυκτερινῶν , πῶς οἷόν τε πολλάκις | ||
ὡριαίων χρόνων , εἰ μὲν ὑπὲρ γῆν εἴη , τῶν ἡμερησίων , εἰ δὲ ὑπὸ γῆν , τῶν τῆς νυκτός |
ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
χωρίζεται ταῦτα ; ὥστ ' εἴπερ ἀδύνατον ἐξ ἁφῶν ἢ στιγμῶν εἶναι τὰ μεγέθη , ἀνάγκη εἶναι σώματα ἀδιαίρετα καὶ | ||
καὶ ἐξ ὧν τὸ σῶμα μονάδες τῶν ψυχικῶν μονάδων καὶ στιγμῶν , ἑνοῦται δὲ ψυχὴ σώματι , ἀνάγκη καὶ ταύτας |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
δύναμιν διαρρέουσαν συνιστᾶσιν , εὐαισθησίας δὲ ποιητικοί : οἱ δὲ νοτιώτεροι συμπληρωτικοὶ κεφαλῆς καὶ τῶν αἰσθητηρίων ἀμβλυντικοί , κοιλίαν δὲ | ||
γνωριζομένων : ἤδη δὲ τἀπέκεινα διὰ ψῦχος ἀοίκητά ἐστι . νοτιώτεροι δὲ τούτων καὶ οἱ ὑπὲρ τῆς Μαιώτιδος Σαυρομάται καὶ |