' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
παρὰ τὸν τότε δρόμον τῆς σελήνης , ἵνα ποιήσωμεν ὥρας ἰσημερινάς , ταῖς γινομέναις ὥραις ἕξομεν τὸν τῆς ἀκριβοῦς συζυγίας | ||
' ἀνατολικωτάτου τὰς τοῦ ἡμικυκλίου μοίρας ρπ καὶ ιβ ὥρας ἰσημερινάς : ὥστε συνάγεσθαι τὸ ἐγνωσμένον αὐτῆς μῆκος σταδίων , |
τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
ζ . Γίνεται οὖν ὁ ἐνιαυτὸς κατ ' αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ | ||
ἐστιν ἡμερῶν τξε ἐννεακαιδεκάτων ε . Πλεονάζουσι δὲ αὗται τῶν τξε δʹ ἡμέρας οϚʹ . Δι ' ἣν αἰτίαν οἱ |
εἰς τὴν ιθʹ πρὸ ∠ ʹ καὶ γʹ α ὥρας ἰσημερινῆς τοῦ μεσονυκτίου καὶ τοῦ ιθʹ ἔτους Ἀδριανοῦ Χοϊὰκ βʹ | ||
. ἅπερ οὐδὲ ιϚʹ , φησίν , ποιεῖ ὥρας μιᾶς ἰσημερινῆς . ἐὰν γὰρ τὸ ὡριαῖον μέσον δρόμημα τῆς σελήνης |
ζῴδιῳ ἄρρενι , ὁ δὲ Ζεὺς ἐν δευτέρῳ ζῳδίῳ τῆς ἀναφορᾶς , εἰ σύσχημος καὶ Ἄρης , πατρὸς ἐνδόξου ἔδειξεν | ||
καὶ ἀναφορᾶς . καὶ δείξεως μὲν ἐμός , σός , ἀναφορᾶς δὲ ὡς σφέτερος , τῶν κτημάτων ἀδήλων ὄντων κατὰ |
δὲ εʹ . Καὶ ὧδε τὴν τῆς ὥρας διαφορὰν νόει μοιρῶν οὖσαν εʹ , Ϙʹ . Ὁ ὀκτωκαιδέκατος ἀπέχων μοίρας | ||
ἐπὶ τὴν ΑΕ ἡ ΚΖ . ἐπεὶ ἡ ΕΖ περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ μὲν ὑπὸ |
ἡμερήσιον κίνημα σχεδὸν ἀπαράλλακτον εὑρίσκομεν τῷ προκειμένῳ καὶ τὸ τῆς ἀποχῆς δηλονότι , τὸ δὲ τῆς ἀνωμαλίας ἔλαττον μοίραις # | ||
τῶν ια θ μοιρῶν περιφέρειαν διπλῆν γινομένην τῶν ἀπὸ τῆς ἀποχῆς μοιρῶν ιβ ια ∠ ʹ ἔγγιστα , καὶ διὰ |
δὲ ἀπὸ τῶν ὁμαλῶν τὰ φαινόμενα , ἀφελοῦμεν πάντοτε τῶν ὁμαλῶν . ἐὰν μὲν οὖν δοθέντος τινὸς χρόνου κατὰ τὸν | ||
Τῶν τοίνυν κατὰ φύσιν παρυφισταμένων , λευκῶν μὲν ὄντων καὶ ὁμαλῶν καὶ προσέτι τῇ συστάσει συμμέτρων καὶ πρὸς τὸν πυθμένα |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
παρόδους νοτιώτερος ᾖ τοῦ διὰ μέσων μοίραις γ καὶ Ϛʹ ἔγγιστα , οἱ δὲ τῶν περὶ τὰς ὀρθὰς γωνίας λόγοι | ||
ἡ ΒΚ ἐκ τοῦ κέντρου τοῦ ἐπικύκλου ἔσται ια λ ἔγγιστα : ὅπερ ἔδει εὑρεῖν . Ἑξῆς δὲ καὶ τῶν |
ἀλλήλαις ὑποτιθέμεθα ὁμαλὰς καὶ περὶ τὸ τοῦ διὰ μέσων τῶν ζῳδίων κέντρον ἀμφοτέρας , ὧν μίαν μὲν τὴν περιάγουσαν τὸ | ||
καὶ χρηματίζων ἢ ἐπαναφερόμενος ἢ ἀποκεκλικώς , καὶ τοὺς τῶν ζῳδίων οἰκοδεσπότας , καθὼς καὶ ὁ παλαιὸς μέμνηται λέγων : |
. δῆλον δὲ τοῦτο ἐντεῦθεν : ἐὰν γὰρ ἀνακλάσεως οὔσης ἡλιακῶν ἀκτίνων ἀφ ' ὕδατος ἢ ὅλως ἀπό τινος τῶν | ||
χαρίεν πρὸς τὴν τῶν ἰχθύων ἀπάτην : ἵστανται γὰρ τῶν ἡλιακῶν ἀκτίνων ἀπεναντίον , ὡς μὴ τὴν σκιὰν αὐτῶν τοὺς |
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
ἐλάχιστα ἀποστήματα λογισμούς , ἃ γίνεται περὶ τὰς τῶν ρκ περιοδικῶν μοιρῶν ἀπὸ τοῦ ἀπογείου διαστάσεις , ἡ μὲν τῆς | ||
τὰ περὶ τὴν σελήνην ἐξετάζειν δεῖ : περί τε τῶν περιοδικῶν αὐτῆς χρόνων , τουτέστιν τῶν ἀποκαταστατικῶν κινήσεων ἐν ἔτεσιν |
αὐτῆς νυκτὸς ἑῷα ἐπιτέλλει καὶ ἑσπέρια δύνει ἀπὸ τῆς ἑῴας ἐπιτολῆς μέχρι τῆς ἑσπερίας δύσεως . Ἔστω ὁρίζων ὁ αβʹ | ||
Ἀπὸ ἰσημερίας ἐαρινῆς εἰς Πλειάδα ἡμέραι νʹ . Ἀπὸ Πλειάδος ἐπιτολῆς εἰς τρο - πὰς θερινὰς ἡμέραι μεʹ . Ἀπὸ |
τόπων ἐπίσκεψιν ἢ τῆς τοῦ ἡλίου κινήσεως τῆς ἀπὸ τῶν ἰσημεριῶν ἐπὶ τοὺς μέσους τῶν ἐκλείψεων χρόνους ἢ μὴ ἀληθῶς | ||
' ἡμῶν κατὰ τὸ υξγʹ ἔτος ἀπὸ τῆς Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος |
αὐτὰ φαίνεται καὶ ἀποφαίνει τὸ ἀποτέλεσμα συμφώνως αὐτοῖς γινόμενον . ρξβʹ . Οὐ πρόδηλα αἴτιά ἐστιν ὅσα οὐκ ἐξ ἑαυτῶν | ||
Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα ρξβʹ , ὁμοῦ τκεʹ : ταύτας ἀπέλυσα ἀπὸ Κριοῦ ἀνὰ |
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς | ||
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ - |
πανσελήνου ἐπὶ τὴν Σελήνην , καὶ ἐὰν μὲν ἐντὸς τῶν ρπʹ μοιρῶν εὑρεθῇ , χρῆσθαι τῷ ὑποδεδειγμένῳ τρόπῳ : ἐὰν | ||
γωνία μεʹ μέρος ἐστὶν ὀρθῆς , ἡ ΓΔ ἄρα περιφέρεια ρπʹ μέρος ἐστὶ τοῦ κύκλου : ἡ δὲ ΔΖ περιφέρεια |
μοίρᾳ κατὰ τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφοράς . ἰσημερινῶν μὲν τυγχανουσῶν τῶν διδομένων ὡρῶν ἤτοι τῶν ἀπὸ τῆς | ||
ὅσον τετρακοσίοις σταδίοις , ὅπου ἡ μεγίστη ἡμέρα ὡρῶν ἐστιν ἰσημερινῶν δεκατεττάρων , κατὰ κορυφὴν γίνεται ὁ ἀρκτοῦρος , μικρὸν |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
μδ , οἵων δὲ αἱ β ὀρθαὶ τξ , τοιούτων ρπζ κη , ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ | ||
ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ |
ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
ἐν τοῖς ὑποκάτω στίχοις τουτέστιν τοῖς ἀπὸ μοιρῶν Ϙε ἕως σξε : ἐφαπτομένων γὰρ ἀκτίνων ἀπὸ τοῦ κ τοῦ ΛΜΝ | ||
, τὰ αὐτά ἐστιν : καὶ περὶ τὰς Ϙε καὶ σξε τῆς ἀνωμαλίας μοίρας , μεγίστην ἔχει τὴν ὑπεροχὴν τῶν |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
τὴν ἄνεσιν ὁ λβ . εἰ δὲ ἀπὸ τοῦ οβ ἀφελοῦμεν τὸν κζ καὶ τὸν λβ , καταλειπόμενα ἔσται ιγ | ||
συνθέντες τὰς τοῖς χρόνοις παρακειμένας ἡμέρας ἐν ἑκατέρῳ σελιδίῳ , ἀφελοῦμεν αὐτὰς ἀπὸ τῶν ἀπογεγραμμένων ἀπὸ Θὼθ ἡμερῶν , οἵων |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
οἷον ηυ , ωυ , υι . Σύμφωνα δέ εἰσι δεκαεπτά . Ἐκλήθησαν δὲ σύμφωνα , ὅτι αὐτὰ μὲν καθ | ||
ἐννήρεις λʹ , ἑπτήρεις λζʹ , ἑξήρεις εʹ , πεντήρεις δεκαεπτά : τὰ δ ' ἀπὸ τετρήρους μέχρι τριηρημιολίας διπλάσια |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
τῇ ὑπεράνω . συναθροίσας δὲ τὸ κεφάλαιον καὶ ἀφελὼν τοῦ ζῳδίου τὴν ἐποχὴν ἀπόλυε ἑκάστου ζῳδίου μοίρας ρκʹ , τουτέστι | ||
ἂν ἡ γένεσις ἔτη διάγῃ , ταῦτα ἀπὸ τοῦ ὡροσκοποῦντος ζῳδίου διεκβάλλομεν , τὸ πρῶτον ἔτος διδόντες τοῦ γεννητικοῦ χρόνου |
. . . . . . . . . . Ἰχθύων κδ Ϛʹ βο ιζ ∠ ʹ δʹ ὁ ἐπὶ | ||
. . . . . . . . . . Ἰχθύων κϚ γʹ βο κζ δʹ ὁ ἐν τῷ ἀριστερῷ |
τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
δὲ πατρὸς ἐπισήμου τοὺς γεννωμένους . ἡ δὲ Σελήνη ἐπὶ νυκτερινῶν γενέσεων τὸν τόπον τοῦτον ἐπέχουσα διασήμους , πλουσίους , | ||
- νικῶν γενέσεων καὶ ἐπὶ τῶν ἡμερινῶν καὶ ἐπὶ τῶν νυκτερινῶν ἀπὸ Κρόνου ἐπὶ Ἀφροδίτην καὶ τὰ ἶσα ἀπὸ ὡροσκόπου |
α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
. . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ | ||
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
∠ ʹ τὸ πέμπτον , ὃ καλεῖται Ἀντιβολή . . ρμη ∠ ʹ ιη δʹ : Ὄρη δὲ ὀνομάζεται ἐν | ||
ὑπὸ ΑΖΒ ὅλη τὸ ὁμαλὸν μῆκος περιέχουσα τῶν μὲν αὐτῶν ρμη λη , οἵων δ ' αἱ δ ὀρθαὶ τξ |
Φιλόνομος καὶ Καλλίας οἱ Καταναῖοι τοὺς ἑαυτῶν πατέρας ἀράμενοι διὰ μέσης τῆς φλογὸς ἐκόμισαν , τῶν ἄλλων κτημάτων καταφρονήσαντες . | ||
Ὑδροχόου μοίρας ι . καὶ ἐνθάδε ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑῴα τῶν ἴσων γέγονεν κϚ ∠ ʹ μοιρῶν |
δένδρων ποιησόμεθα . Τούτῳ τῷ μηνὶ καλάμους φυτευτέον πρὸ τῆς ἰσημερίας . Τούτῳ τῷ μηνὶ θεραπεύσομεν τὰς ἰάσεως δεομένας ἐλαίας | ||
πρὸς διάγνωσιν τροπῶν τε ἡλίου καὶ χρόνων καὶ ὡρῶν καὶ ἰσημερίας . . . . [ . ] , , |
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
καὶ τὰ περὶ ἀστέρων ἢ φάσεων ἢ κρύψεων ἢ σελήνης αὐξήσεων ἢ μειώσεων ἐν τοῖς ἐσχάτοις εἶχε τὴν παρ ' | ||
τῶν ἄκρων λημμάτων καὶ εἰς ἑνότητα σύνταξιςκαὶ τίνι καθόλου τῶν αὐξήσεων παραλλάττει τὰ ὕψη , τῆς σαφηνείας αὐτῆς ἕνεκα συντόμως |
ἐὰν δὲ τὴν μεσουρανοῦσαν ὑπὲρ γῆς θέλωμεν λαβεῖν , τὰς καιρικὰς ὥρας πάντοτε τὰς ἀπὸ τῆς μεσημβρίας τῆς παρελθούσης μέχρι | ||
: φησὶ γὰρ ἀναστρέψας αὐτός . ἐπειδὴ τὰ τὰς αὐτὰς καιρικὰς ὥρας ἀπέχοντα τοῦ μεσημβρινοῦ τμήματα τοῦ ζῳδιακοῦ καθ ' |
εἰ δέ τις ἄλλως θεωρίας ἕνεκεν καὶ περὶ τῶν ἔτι βορειοτέρων ἐγκλίσεων ἐπιζητοίη τινὰ τῶν ὁλοσχερεσλδʹ τέρων συμπτωμάτων , εὕροι | ||
ὁρίζοντος , ἀλλ ' ἕνα τῶν παραλλήλων αὐτῷ καὶ ἤτοι βορειοτέρων ἢ νοτιωτέρων . ὡμολόγηται δέ γε ὑπὸ πάντων ἁπλῶς |
ἀστέρων , οὐ χρεία διόπτρας : πολλῷ γὰρ τῶν μὲν νοτιωτέρων ὑπαρχόντων , τῶν δὲ βορειοτέρων , αὐτόθεν ἀναβλέψαντι φανερὸν | ||
Γεδρωσίαν καὶ τῆς Ἰνδικῆς διήκει , τῇ δὲ διὰ τῶν νοτιωτέρων Κυρήνης πεντακισχιλίοις σταδίοις παρὰ μικρόν . Ἅπασι δὲ τοῖς |
Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
ὁρίων τῆς Σελήνης : ἀφέτης ὡροσκόπος , Ἑρμῆς ὁ τῶν ὁρίων κύριος Ἀφροδίτης καὶ αὐτὸς ὑπὸ δύσιν ἀποκεκλικὼς εὑρέθη . | ||
Μικρὰ δὲ ἦν ἔτι τὰ τῆς δυνάμεως αὐτῆς , τῶν ὁρίων αὐτῆς οὐδαμόθεν ὑπὲρ πεντεκαίδεκα σημεῖα ἐκτεινομένων . Ἐντεῦθεν τὸ |
ἐποχῆς τῆς σελήνης τῆς ἀκριβοῦς κατὰ τὸ τέλος τῆς μέσης πενταμήνου Λέοντι μοίραις ζ ιζ . ἦν δὲ καὶ ὁ | ||
, ἐν ᾧ ὁ ἥλιος κατὰ τὸ τέλος τῆς μέσης πενταμήνου παραγίγνεται : καὶ τὴν ΗΘΚ περιφέρειαν διάστασιν εἶναι ἀπὸ |
ταῖς θέσεσιν . πρῶτον μὲν ὡς ὡροσκοποῦντος τοῦ ἀφέτου , μεσουρανούσης δὲ τῆς ἀρχῆς τοῦ Αἰγοκέρωτος ὡς ἀπέχειν τὴν ἀρχὴν | ||
” . ταύτης γὰρ „ ὕψι μάλα „ φερομένης καὶ μεσουρανούσης , οὐχ ὁ Τοξότης ἀνατέλλει , ἀλλ ' ὁ |
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
τὸ συναχθὲν ἀπὸ τοῦ πολλαπλασιασμοῦ τῶν ὡρῶν καὶ τῶν προκειμένων ὡριαίων τῇ ἡλιακῇ μοίρᾳ μερίσῃς περὶ τὸν ιεʹ . ἐὰν | ||
καιρικῶν ὡρῶν τοῦ μεταξὺ διαστήματος τοσαῦτα δωδέκατα ἀφαιροῦσιν ἀπὸ τῶν ὡριαίων : οὕτω γὰρ καὶ ποιῶμεν ἕως τῆς δωδεκάτης ὥρας |
ἀπογείου τοῦ ἐκκέντρου ὄντος , τῆς δὲ σελήνης μεταξὺ τοῦ ἀπογείου καὶ περιγείου τοῦ ἐπικύκλου οὔσης , διαφοραὶ τῶν τοιούτων | ||
ἣν ἡ μέση κίνησίς ἐστιν , καὶ τεταρτημόριον ἀπὸ τοῦ ἀπογείου τοῦ φαινομένου . Καὶ πάλιν αἱ πρὸς τῷ Β |
θερινῶν τροπῶν ἡμέραι εἰσὶν Ϙδʹ καὶ ἥμισυ , ἀπὸ δὲ θερινῆς τροπῆς μέχρι φθινοπωρινῆς ἰσημερίας ἡμέραι Ϙβʹ καὶ ἥμισυ , | ||
δὶς τοῦ ἔτους κατὰ κο - ρυφὴν , ἀπέχοντα τῆς θερινῆς τροπῆς ἐφ ' ἑκάτερα μοίρας με γʹ . Ἡ |
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν | ||
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι |
φεῦ φεῦ : ἡ ἔκθεσις τοῦ δράματος ἐκ συστηματικῶν ἐστι περιόδων . τὰ δὲ κῶλά ἐστιν ἀναπαιστικὰ κϚʹ . τὸ | ||
τῶν περιόδων μιμοῖτο , ἐν ταῖς μεταποιήσεσι πλῆθος ἂν εὕροι περιόδων . καὶ γὰρ τὸ ἐκ παραβολῆς σχῆμα ἄριστον ὥσπερ |
οὕτως ἐπιγνώσῃ : πάντοτε τῇ γενεθλιακῇ ἡμέρᾳ προστίθει ἀπὸ μὲν Θὼθ ἕως Φαμενὼθ μοίρας ηʹ , καὶ τοσούτων εὑρήσεις τὸν | ||
γενέσεως καὶ τὸν Ἑρμῆν οὕτως ἐψήφισα : ἔλαβον τὰς ἀπὸ Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα |
Περὶ ἐμφυϲήματοϲ . κθʹ . Περὶ ϲτρεμμάτων καὶ θλαϲμάτων . λʹ . Περὶ ϲαρκοθλαϲμάτων καὶ ἐκχυμωμάτων . λαʹ . Περὶ | ||
* ἡδύλογος . * ἀγαθοῦ : ὑπῆρξε τοῖς Ὀλιγαιθίδαις : λʹ γὰρ ἐν ἑκατέρῳ ἀγῶνι ἐνίκησε τῶν Ὀλιγαιθιδῶν . ἔργα |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος τῶν ἡμερῶν εὑρίσκομεν , ἐπειδήπερ , ὡς ἔφαμεν | ||
ἣν ὑποτείνει ἡ τῆς σελήνης διάμετρος καὶ ὑπεροχὴ τῶν δύο διαστάσεων , ἑξηκοστῶν ἔσται ζ ν . καὶ ἡ τετραπλασία |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
- δὲ κύκλος ὁ ΕΖΜ , καὶ ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν πορευόμενος ἔν τινι ἡμέρᾳ ἀνατολὴν πεποιήσθω κατὰ τὸ | ||
τοῦ μεσημβρινοῦ ὑπὸ γῆν . ιαʹ Ὅταν ὁ ἥλιος ἀπὸ χειμερινῶν τροπῶν ἐπὶ θερινὰς τροπὰς πορεύηται , ἐν τῷ μεταξὺ |
τῆς θαλάττης δὶς δὲ ἀναχωρούσης , τεταγμένως δὲ καὶ τῶν ἡμερησίων χρόνων καὶ τῶν νυκτερινῶν , πῶς οἷόν τε πολλάκις | ||
ὡριαίων χρόνων , εἰ μὲν ὑπὲρ γῆν εἴη , τῶν ἡμερησίων , εἰ δὲ ὑπὸ γῆν , τῶν τῆς νυκτός |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
ποιούντων ἔγγιστα ε περιόδους τὰ μὲν υη ἔτη συνάγει περιόδους σνε , τὸ δὲ λοιπὸν ἔτος ἓν μετὰ τῶν ἐπιλαμβανομένων | ||
σφαῖραν μεταλαμβανομένοις ϠϘγσιν , ἅ ἐστιν Αἰγυπτιακὰ ϠϘγ καὶ νυχθήμερα σνε # νδ μϚ να ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις ποιείσθω |
ὡς ὑφηγητοῦ τινος πύλαις διπλαῖς ἐνήλατ ' , ἐκ δὲ πυθμένων ἔκλινε κοῖλα κλῇθρα κἀμπίπτει στέγῃ . Οὗ δὴ κρεμαστὴν | ||
τὸν Κ ] , ὁ δὲ ὑπὸ τῶν Ζ Η πυθμένων καὶ τῶν Γ Δ Ε ἐστιν μονάδων ρμδʹ [ |
. . . . . . . . . . ρλε μγ . Καλοῦνται δὲ αὐτῶν οἱ μὲν παρὰ τὸν | ||
. . . . . . . . . . ρλε η ∠ ʹ Σουσουάρα . . . . . |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
ἐστιν ὁ ἀστήρ , διδοὺς ἑκάστῳ ζῳδίῳ μοίρας λ , καταλείπονται κγ . λέγομεν εἶναι τὸ δωδεκατημόριον τοῦ Ἑρμοῦ Λέοντος | ||
ἴσαι : οὕτω δὲ μᾶλλον : αἵδε αἱ τοῦ ἰσοσκελοῦς καταλείπονται ἀπὸ ἴσων ἴσων ἀφῃρημένων : πάντα τὰ καταλειπόμενα μετὰ |
, τὸν στέφανον τοῖς στέρνοις προσαγαγοῦσα καινῷ μοιχῷ συμπλακῆναι . καʹ . Οὖσα ξανθὴ τί ῥόδα ζητεῖς ; καὶ μὴν | ||
' στιν ” μονόμετρον ἐξ ἀναπαίστου καὶ σπονδείου : τὸ καʹ “ παρὰ τοῖσι θεοῖς ” μονόμετρον ἐκ βʹ ἀναπαίστων |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
ε τόπους μετ ' ἀκριβείας ἵνα μὴ λάθῃ ποτὲ ὁ ἀφέτης , ὥς φησιν , ἐκπεσὼν εἰς ἀργὸν τόπον καὶ | ||
ε ἀφετῶν ποιεῖν τὸν περίπατον ἰδίᾳ : ὁ μὲν πρῶτος ἀφέτης δηλοῖ τὸν χρόνον τῆς ζωῆς καὶ τὰς νόσους καὶ |
νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν | ||
ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
τὸ εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν μετὰ συναμφοτέρων ποιῇ τετράγωνον , καὶ ἔτι οἱ μονάδι μείζονες αὐτῶν | ||
ἐφ ' ἑκάτερα τῆς μέσης μεγίστας ἀποστάσεις μήτε ἐλάσσους εὑρίσκεσθαι συναμφοτέρων τῶν κατὰ τὸν Ταῦρον μήτε μείζους συναμφοτέρων τῶν κατὰ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
Ἄλπεσι Σεγούσιον κηʹ ∠ ʹʹ μγʹ ∠ ʹʹγʹʹ ιβʹʹ Βριγάντιον κθʹ μδʹ ιβʹʹ Νερουσίων ἐν Παραλίοις Ἄλπεσιν Οὐίντιον κηʹ ∠ | ||
αʹ . Ἄλλη . Ἀντωνίνου ἔτος καʹ Ἀθὺρ κηʹ εἰς κθʹ ὥρα νυκτερινὴ γʹ . Ἥλιος Τοξότῃ Ϛʹ , Σελήνη |
τούτων τῶν ἡμικυκλίων συναναφοραὶ διοίσουσιν τῶν μὲν ὁμαλῶς θεωρουμένων χρόνων ρπ τοῖς διαφόροις τῆς μεγίστης ἢ ἐλαχίστης ἡμέρας παρὰ τὴν | ||
σελήνης ἀριθμοῦ ἀφελοῦμεν τοῦ τοῦ ἐπικύκλου , ὑπὲρ δὲ τὰς ρπ προσθήσομεν αὐτῷ , καὶ ἀπὸ τοῦ οὕτω διακριθέντος τοῦ |
ὁ ὑπὸ γου καὶ αου # Μο ι γίνεται ΔΥ σξϚ # Μο ι : ταῦτα ἴσα ⃞ῳ . καὶ | ||
σξγ Λωτὸϲ ὁ ἥμεροϲ σξδ Λωτὸϲ τὸ δένδρον σξε Μάκερ σξϚ Μαλαβάθρου φύλλα σξζ Μαλάχη σξη Μανδραγόραϲ σξθ Μάραθρον σο |
τὸν δυτικὸν ὁρίζοντα θέσεως φανήσεται τὰ τῆς ὑπεροχῆς τῶν δύο παραλλάξεων κε προηγησαμένη : κατὰ γὰρ τὴν πρώτην θέσιν πάλιν | ||
δύναιτο συμβαίνειν , εἰ ἐπὶ τὰ ἐναντία γινομένης ἑκατέρας τῶν παραλλάξεων ἐξ ἀμφοτέρων πλείονα τῶν α κζ τμήματα συνάγοιτο . |
τις ἂν διὰ τὴν ὥραν ὅτι μαλακωτέρα καὶ γονιμωτέρα τῆς χειμερινῆς : ἀλλὰ μᾶλλον τούτου αἰτιάσαιτ ' ἄν τις τὴν | ||
τῆς παλαιοτέρας πρὸς τὸν ἰσημερινὸν διαστάσεως τῶν ἐν τῷ ἀπὸ χειμερινῆς τροπῆς ὡς ἐπὶ τὸ ἐαρινὸν σημεῖον μέχρι θερινῆς τροπῆς |
, ἐφ ' ὅσον τέμνει τοὺς τροπικοὺς ὁ ὁρίζων , ἑῴα μὲν ἀνατολικὴ φάσις ἡ πρώτη τῶν φαινομένων ἀνατολή , | ||
: τῷ βʹ ἄρα ἄστρῳ ἡ ἀπὸ ἑῴας ἀληθινῆς ἐπιτολῆς ἑῴα ἀληθινὴ δύσις γίγνεται διὰ πλείονος χρόνου ἡμίσους ἐνιαυτοῦ : |
. ἐπικὸν ἕν , μεθ ' ὃ τὰ τῆς δευτέρας περιόδου ὅμοια πέντε . ἐπὶ ταῖς ἀποθέσεσι παράγραφος . σύστημα | ||
περιέχον λόγους Ϛ αʹ Περὶ τῆς σημασίας τοῦ κυρίου τῆς περιόδου βʹ Περὶ τοῦ περιπάτου τῶν οἴκων καὶ τοῦ περιπάτου |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ | ||
, , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ . |
πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων . ἔστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι , ὧν βάσεις | ||
δηλονότι τὸ κέντρον αὐτοῦ , καὶ αὐτόθεν ἂν ἐφαίνετο τῶν διαμέτρων ὁ λόγος : ἐπεὶ δ ' ἐλάσσων ἐστὶν αὐτῆς |
λοιπὰς ιη κ τοῦ Σκορπίου ἔσχον ἀρχὴν μὲν τοῦ μεσουρανοῦντος δωδεκατημορίου , τέλος δὲ τοῦ καλουμένου θεοῦ . ταῖς δὲ | ||
καὶ μοίρας ὀνομάσαντες : καὶ τόπον μὲν ὑποτιθέμενοι τὸ τοῦ δωδεκατημορίου δωδεκατημόριον , τουτέστι μοίρας βʹ ἥμισυ καὶ διδόντες αὐτοῦ |
εἰς τὴν ἀπὸ τῆς θερινῆς τροπῆς ἐπὶ τὴν ἑξῆς μετοπωρινὴν ἰσημερίαν τὰς λοιπὰς εἰς τὸν ἐνιαύσιον χρόνον ἡμέρας ἔγγιστα Ϙβʹ | ||
τῶν δρωμένων καιρός : περὶ γὰρ τὸ ἔαρ καὶ τὴν ἰσημερίαν δρᾶται τὰ δρώμενα , ὅτε τοῦ μὲν γίνεσθαι παύεται |