| τὴν ἄνεσιν ὁ λβ . εἰ δὲ ἀπὸ τοῦ οβ ἀφελοῦμεν τὸν κζ καὶ τὸν λβ , καταλειπόμενα ἔσται ιγ | ||
| συνθέντες τὰς τοῖς χρόνοις παρακειμένας ἡμέρας ἐν ἑκατέρῳ σελιδίῳ , ἀφελοῦμεν αὐτὰς ἀπὸ τῶν ἀπογεγραμμένων ἀπὸ Θὼθ ἡμερῶν , οἵων |
| φαινομένης συνόδου τοῦ πλάτους μοιρῶν , περὶ δὲ τὸν καταβιβάζοντα προσθήσομεν ὁμοίως . καὶ οὕτως ἕξομεν τὸν ἐν τῷ χρόνῳ | ||
| . τῇ δὲ δοτικῇ ἐπὶ πάσης χρείας πλὴν τῆς παθητικῆς προσθήσομεν τὸ ἔδοξεν ἢ τὸ ἐφάνη ἢ τὸ ἐπῆλθεν ἢ |
| τοῦ ὁρίζοντος καὶ τοῦ ζῳδιακοῦ καὶ τὰς ἐν τῷ δʹ σελιδίῳ τῶν παραλλάξεων μοίρας χωρὶς καὶ ἔτι τοὺς παρακειμένους ἀριθμοὺς | ||
| ιη , τῆς διπλῆς ἀποχῆς . ταύταις δὲ παράκεινται τρίτῳ σελιδίῳ μοῖρα α μθ , εἰς ἣν θέσιν γίνονται ἀνωμαλίας |
| τούτων τῶν ἡμικυκλίων συναναφοραὶ διοίσουσιν τῶν μὲν ὁμαλῶς θεωρουμένων χρόνων ρπ τοῖς διαφόροις τῆς μεγίστης ἢ ἐλαχίστης ἡμέρας παρὰ τὴν | ||
| σελήνης ἀριθμοῦ ἀφελοῦμεν τοῦ τοῦ ἐπικύκλου , ὑπὲρ δὲ τὰς ρπ προσθήσομεν αὐτῷ , καὶ ἀπὸ τοῦ οὕτω διακριθέντος τοῦ |
| ἐστιν ὁ ἀστήρ , διδοὺς ἑκάστῳ ζῳδίῳ μοίρας λ , καταλείπονται κγ . λέγομεν εἶναι τὸ δωδεκατημόριον τοῦ Ἑρμοῦ Λέοντος | ||
| ἴσαι : οὕτω δὲ μᾶλλον : αἵδε αἱ τοῦ ἰσοσκελοῦς καταλείπονται ἀπὸ ἴσων ἴσων ἀφῃρημένων : πάντα τὰ καταλειπόμενα μετὰ |
| τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
| προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| ἀπὸ δύσεως ἐπὶ τοὺς οἰκείους ὡριαίους χρόνους : τὸν γὰρ συναχθέντα ἀριθμὸν διεκβαλοῦμεν ἡμέρας μὲν ἀπὸ τῆς ἡλιακῆς μοίρας , | ||
| καὶ πρὸς ἑαυτὸ διαφέρον καὶ διαιρετόν , ἰδίᾳ μὲν τὰ συναχθέντα συνῆκται , οὐδεμία δὲ ἀνάγκη ἀπὸ τοῦ λόγου καὶ |
| δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
| τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
| δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
| καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
| ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
| , ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
| κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
| τῷ συναμφοῖν ἀριθμῷ χρῆσθαι ἐπὶ τῶν ἐτῶν . οἷον ἔστω ὡροσκοπικὴν μοῖραν ἐκπεπτωκέναι Καρκίνου μοίρᾳ ηʹ , ἥτις σημαίνει τόπον | ||
| Ἡλίου μοίρας : καὶ αὕτη μὲν οἴσει τὸ ἀπογώνιον ἤτοι ὡροσκοπικὴν μοῖραν : ἢ καὶ ταύτην ἐπιπροσθέντα ἢ καὶ ἀφαιρεθέντα |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| ταῖς θέσεσιν . πρῶτον μὲν ὡς ὡροσκοποῦντος τοῦ ἀφέτου , μεσουρανούσης δὲ τῆς ἀρχῆς τοῦ Αἰγοκέρωτος ὡς ἀπέχειν τὴν ἀρχὴν | ||
| ” . ταύτης γὰρ „ ὕψι μάλα „ φερομένης καὶ μεσουρανούσης , οὐχ ὁ Τοξότης ἀνατέλλει , ἀλλ ' ὁ |
| δευτέρου ὅρου καὶ τρίτου καὶ τετάρτου καὶ τὰ λοιπὰ τρία σελίδια ζʹ , ηʹ , θʹ , τῶν ἑξηκοστῶν , | ||
| σεληνιακῆς διαμέτρου λδ ἑξηκοστοῖς . τὰ δὲ τῶν δακτύλων τρίτα σελίδια τὸν αὐτὸν τρόπον περιέξει τοῖς ἡλιακοῖς καὶ ὁμοίως τὰ |
| μὲν δοχμιακά , ὧν τὸ μὲν συντίθεται ἐξ ἰάμβου καὶ παίωνος διαγυίου , τὸ δὲ δεύτερον ἐξ ἰάμβου καὶ δακτύλου | ||
| γʹ ὅμοιον τῷ αʹ : τὸ δʹ ὅμοιον ἡμιόλιον ἐκ παίωνος : τὸ εʹ δίμετρον ἐκ παλιμβακχείων : τὸ Ϛʹ |
| ' ὃ κλίμα τις βούλεται . Περὶ μὲν οὖν τῶν ἀναφορῶν καὶ ἐν τῇ αʹ βίβλῳ ἐδηλώσαμεν , νυνὶ δὲ | ||
| ταῖς μεταξὺ διαστάσεσιν , οὐκέτι οἱ τῶν προκειμέ - νων ἀναφορῶν ἢ καταφορῶν ἢ μεσουρανήσεων χρόνοι τοὺς ἑπομένους τόπους οἴσουσιν |
| ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις | ||
| ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν |
| ιζ ηων . Ὁ ἄρα τῶν τετραγώνων εἷς ἔσται σπθ ξδων ἀπὸ πλευρᾶς ιζ ηων , ὁ δὲ λοιπὸς ρ | ||
| ξδων ἀπὸ πλευρᾶς ιζ ηων , ὁ δὲ λοιπὸς ρ ξδων ἀπὸ πλευρᾶς ι ηων . Ἐπεὶ γὰρ τῶν κε |
| νθ . ταῦτα μετὰ τῶν # μθ ιη τοῦ τρίτου σελιδίου , γίνεται # νϚ ιζ . πάλιν τὰ τοῦ | ||
| τοῦ ηʹ σελιδίου ἑξηκοστῶν μγ κδ ἐπὶ τὰ τοῦ ἕκτου σελιδίου γενόμενα # κγ α , ποιεῖ # ιϚ λθ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
| δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
| , ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ | ||
| ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως |
| τοῦτον : ἀριθμὸς ὁ ἔχων ἐν ἑαυτῷ ὅλον τε τὸν συγκρινομένων καὶ μέρος αὐτοῦ τρίτον πρὸς τῷ ὅλῳ . ὑποδείγματα | ||
| ἐπεὶ καὶ Δαναώτατος ὑπερτίθεται παρὰ Ἀριστοφάνει , τῶν κυρίων οὐ συγκρινομένων . εἰ δὲ καθὸ ὀξύνεται , ὄνομα , καὶ |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ : ὅπερ ἔδει δεῖξαι . | ||
| τὸ Μουσεῖον ἀπιόντες αὕτη ἡ Ἄσκρη . τοῦ δὲ Ἑλικῶνος ἐκκειμένου τοῖς ἀνέμοις καὶ θαυμαστὰς μὲν ἀναπαύλας ἔχοντος ἐν θέρει |
| , κἂν μὲν ἐντὸς τῶν Ϙ μοιρῶν ὦσιν , αὐτὰς ἀπογραψόμεθα , ἐὰν δ ' ὑπὲρ τὰς Ϙ , τὰς | ||
| τε τοῖς τῶν παρόδων σελιδίοις καὶ ἐν τοῖς τῶν δακτύλων ἀπογραψόμεθα χωρὶς ἕκαστα : ἔπειτα καὶ τὸν τῆς ἀνωμαλίας ἀριθμὸν |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| ἀόριστος γίνεται , καθάπερ τὰ φυσικὰ ὁ φυσικός , ἀλλὰ ἀφελόντες τῆς ὕλης καὶ αὐτὸν σκοποῦντες καθ ' ἑαυτόν , | ||
| ὁμαλοῦ μήκους , ποιοῦσιν ἡμέραν καὶ ὡρῶν ε . ἣν ἀφελόντες ἀπὸ τῆς μέσης ἡμερῶν σϚ καὶ ὡρῶν ιζ ἰσημερινῶν |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| , ὥστε γενέσθαι πάντα τὸν ἐκ τῶν β ὀρθογωνίων ἀριθμὸν σνβ . τοσοῦτον δὲ φεν . . . . . | ||
| , ἃς ἐὰν ἀφέλωμεν ἀπὸ τῶν κατὰ τὴν τήρησιν μοιρῶν σνβ ζ , ἕξομεν ἐποχὴν εἰς τὸ αʹ ἔτος Ναβονασσάρου |
| μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
| ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
| μοῖραι νϚ κ . ἃς καὶ διπλώσαντες , τὰς γενομένας ριβ μ εἰσηνέγκαμεν εἰς τὸν τῶν ἐν κύκλῳ εὐθειῶν κανόνα | ||
| ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριβ νβ : ὥστε καί , οἵων ἐστὶν ἡ μὲν |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
| ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
| τὸ δʹ ἰωνικὸν ἡμιόλιον , ἐκ τροχαϊκῆς συζυγίας ἤτοι ἐπιτρίτου βτέρου καὶ ἰάμβου . τὸ εʹ ὅμοιον καθαρόν , ἐξ | ||
| ἀκατάληκτον ὅμοιον τῷ γʹ , ἐκ παίωνος γʹ καὶ ἐπιτρίτου βτέρου ἤτοι τροχαϊκῆς συζυγίας : εἰ δὲ βούλει , ἰαμβικὸν |
| δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
| ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ | ||
| ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ |
| . καὶ ὁσάκις μὲν ὁ Κ τὸν Μ μετρεῖ , τοσαυτάκις καὶ ἑκάτερος τῶν Θ , Η ἑκάτερον τῶν Ν | ||
| συγκυρήματος : ὁσάκις γὰρ ἂν ἀστράψῃ Ζεὺς ἢ βροντήσῃ , τοσαυτάκις ἀπὸ τῆς ἀκρωρείας διὰ φόβον κυλίεται , καθὼς ἱστορεῖ |
| , τὸν δὲ ἐξ ἀρχῆς προεισενηνεγμένον τοῦ ὁμαλοῦ μήκους ὁμοίως εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ἐὰν μὲν ἐν τοῖς | ||
| φαινομένης , ἐπὶ τὴν φαινομένην διάστασιν τῶν τῆς ἐπουσίας μοιρῶν εἰσενεγκόντες εἰς τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφορὰς ἐπισκεψόμεθα |
| . καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
| μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
| οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
| , ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ | ||
| τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου |
| ὢν πολλαπλάσιός ἐστιν ἁπλῶς , ὁ δὲ ι τοῦ δ διπλασιεφήμισυς ὢν ἐπιδιμερής ἐστιν αὐτοῦ , τὸ δὲ ἐπιδιμερὲς τοῦ | ||
| τῇ μικτῇ σχέσει . ἐπεὶ γὰρ ἡμιόλιος ἡ γεννῶσα σχέσις διπλασιεφήμισυς ἡ γεννωμένη , ἐπεὶ δὲ ἐπίτριτος διπλασιεπίτριτος , καὶ |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| αὐτὰ φαίνεται καὶ ἀποφαίνει τὸ ἀποτέλεσμα συμφώνως αὐτοῖς γινόμενον . ρξβʹ . Οὐ πρόδηλα αἴτιά ἐστιν ὅσα οὐκ ἐξ ἑαυτῶν | ||
| Θὼθ ἕως τῆς ιγʹ τοῦ Μεχὶρ ρξγʹ καὶ ἔξωθεν προσέθηκα ρξβʹ , ὁμοῦ τκεʹ : ταύτας ἀπέλυσα ἀπὸ Κριοῦ ἀνὰ |
| , ποιήσεις τοὺς διπλασιεπιτετάρτους , οἷον ὁ θ τοῦ δ διπλασιεπιτέταρτός ἐστι , καὶ ὁ ιη τοῦ η καὶ ὁ | ||
| δὲ Β ιϚ . ὅ τε οὖν Γ τοῦ Δ διπλασιεπιτέταρτός ἐστι καὶ ὁ Α τοῦ Β . ἔχει οὖν |
| μοιρῶν ρϘα λθ , ἃς καὶ παραθήσομεν ἐν τοῖς αὐτοῖς σελιδίοις κατὰ τὸν τῶν ρπ ἀριθμόν . ἐπὶ δὲ τοῦ | ||
| ΝΖΗ γίνεσθαι μοιρῶν ε λε . Παράκειται δὲ τοῖς εἰρημένοις σελιδίοις καὶ ζʹ σελίδιον , ἐπιγραφὴν ἔχον πλάτους . δύναται |
| , ἔπειτα διακοπτέσθω τὰ μεταξὺ τῶν τρημάτων διαστήματα τοῖς σμιλιωτοῖς ἐκκοπεῦσιν . μετὰ δὲ τὴν τοῦ ὀστέου ἀναίρεσιν ἡ ξύσις | ||
| δὲ τῆς βάσεως , ὅλος ὁ παραπεφυκὼς δάκτυλος τοῖς σμιλιωτοῖς ἐκκοπεῦσιν ἐκκοπτέσθω , καὶ τότε ἡ ὑποκειμένη σκυταλὶς ξυστῆρι λειοποιείσθω |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| λεγόμενά τισι φύσει ἀγαθὰ καὶ κακῶν ἐστι ποιητικά , ὡς διδάξομεν . δυνάμει ἄρα κακά ἐστι τὰ ὑπό τινων λεγόμενα | ||
| ἐδείξαμεν περὶ τοῦ ποιοῦντος καὶ πάσχοντος διεξελθόντες , καὶ ὕστερον διδάξομεν περὶ γενέσεως καὶ φθορᾶς καὶ πρὸ τούτων ἔτι περὶ |
| καὶ τοὺς μῆνας ἀπὸ τῶν ὡρῶν τῆς σεληνιακῆς ἐκλείψεως . Ποίησον τὸν περίπατον τοῦ ἐπικρατήτορος , ὅτε ἐστὶν ἐν τῷ | ||
| δʹ . Πρὸς εἰλεὸν θαυμαστὸν καὶ κόπρον ἐμοῦσι . ] Ποίησον οὕτω . ἑψήσας ἔλαιον ἐξ ἀνήθου δὸς πιεῖν : |
| . γενο - μένων σημείων . . . . . κανονίῳ δι ' αὐα . . . . . . | ||
| αὐτῶν μ β . παραθήσομεν ἄρα καὶ ἐν τῷ βʹ κανονίῳ τῶν σεληνιακῶν ἐκλείψεων τῷ τῶν ιε δακτύλων ἀριθμῷ κατὰ |
| γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα | ||
| , ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ |
| καὶ ἡ πρὸς τὴν μέσην αὐτοῦ ὑπεροχὴ δ ιη , πολυπλασιάσαντες πάλιν τὰ δ κϚ ἐπὶ τὰ # λδ καὶ | ||
| μγ κ μ η νθ λ . πάλιν τὰ ἡμερήσια πολυπλασιάσαντες ἐπὶ τὰς τοῦ Αἰγυπτιακοῦ ἐνιαυτοῦ ἡμέρας τξε καὶ ἀφελόντες |
| μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
| δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
| ἐν Καρκίνῳ , καὶ ἐν τοῖς ὡροσκοπίοις αἱ ὑπὸ τῶν γνωμόνων γραφόμεναι γραμμαὶ ἴσον ἀπέχουσι τοῦ θερινοῦ τροπικοῦ καὶ ἐν | ||
| θερινὴν τροπὴν μὴ δύνοντος ἐκεῖ τοῦ ἡλίου αἱ σκιαὶ τῶν γνωμόνων ἐπὶ πάντα τὰ τοῦ ὁρίζοντος μέρη τὰς προσνεύσεις ποιοῦνται |
| καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν ᾗ εἰσιν ὑπεροχῇ . ἐκκείσθω | ||
| κειμένων [ ἀρχομένων ἀπὸ μεγίστου τοῦ πρὸς τῷ α ] γνωσθήσονται αἱ ἀναφοραί , ἐν ᾗ εἰσιν ὑπεροχῇ , ἀρχόμεναι |
| ἀλλὰ καὶ ἑξάκις Ϛ λϚ : καὶ πάλιν ἐννάκις ιϚ ρμδ , ἀλλὰ καὶ δωδεκάκις ιβ ρμδ . ὡσαύτως καὶ | ||
| μὲν ἀπὸ τῆς ὑποτεινούσης τὰς λειπούσας εἰς τὸ ἡμικύκλιον μοίρας ρμδ τῶν λοιπῶν Μα ͵γκδ νε με , αὐτὴ δὲ |
| Ἀθήνησιν . . . . Ἄλλως . οἷον τὰ ἴσα ἀπογράφων ὧν λαμβάνει παρὰ τῶν συντελεστῶν , καὶ παρέχων αὐτοῖς | ||
| καὶ τῶν παραπλησίων τούτοις διαφέρειν οἰόμενος Λυσίαν καὶ ὥσπερ ἀρχέτυπον ἀπογράφων ὑπερέχειν , ἐκεῖνον τὸν ἄνδρα ταύτης τῆς προαιρέσεως τῶν |
| εἰ δὲ βούλει , ἰαμβικὸν τρίμετρον βραχυκατάληκτον τοῦ δευτέρου ποδὸς χορείου , τοῦ δὲ τρίτου δακτύλου . τὸ ναʹ ἀντισπαστικὸν | ||
| ἰωνικὸν ἀπ ' ἐλάττονος δίμετρον καταληκτικόν , ἐξ ἰωνικοῦ καὶ χορείου ἢ ἀναπαίστου διὰ τὴν ἀδιάφορον : τὸ εʹ ὅμοιον |
| καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
| ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
| πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
| σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
| φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
| δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
| πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
| ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
| τὸ αʹ ἀντισπαστικὸν τρίμετρον καταληκτικὸν ἐκ διιάμβου , διτροχαίου καὶ κρητικοῦ . τὸ βʹ ἰωνικὸν δίμετρον καταληκτικὸν ἐκ παίωνος δʹ | ||
| καὶ δίδου ἐν ἀνέσει # λειότατον πλῆρες , μετὰ γλυκέως κρητικοῦ . Ἐπικαλεῖται δὲ τὸ φάρμακον θεοῦ χείρ . Τοῦτο |
| δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
| προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| πα , ρ , ρκα , ρμδ , ρξθ , ρϘϚ , σκε : ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος | ||
| σκε : ἡ δὲ ΓΒ ιδ : τὸ ἀπὸ ταύτης ρϘϚ : ἡ δὲ ΒΑ ιγ καὶ τὸ ἀπὸ ταύτης |
| κάλλους καὶ ἀρετῆς ἡ ἐπὶ τὸ νοητὸν γίνεται ἄνοδος . Ϙβʹ Καὶ τοῖς ὀνόμασιν ἠναγκασμένη Ἀπολογεῖται ἐνταῦθα διὰ τί ποιητικοῖς | ||
| ] ἡμέραι [ ] Ϙαʹ , Εὐκτήμονι Ϙʹ , Καλλίππῳ Ϙβʹ . . . . κη : μετοπωρινὴ ἰσημερία . |
| φ χ εὐθείας ἐν τοῖς οἰκείοις τῶν τριῶν παραλλήλων λόγοις γράψομεν διὰ τῶν ὁμολόγων τριῶν σημείων τμήματα τῶν ὑποκειμένων μεσημβρινῶν | ||
| τί τὸ ὑγρὸν τοῦ χαλινοῦ καὶ τί τὸ σκληρόν , γράψομεν καὶ τοῦτο . ὑγρὸν μὲν γάρ ἐστιν ὅταν οἱ |
| τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
| . ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
| τροχαϊκῆς βάσεως . ὁ δὲ νεʹ ἐξ ἰαμβικοῦ πενθημιμεροῦς καὶ ἀναπαιστικῆς βάσεως . ἐπὶ τῷ τέλει κορωνὶς ἐξιόντων τῶν ὑποκριτῶν | ||
| ἐν ἐπεισθέσει , ὧν τὸ πρῶτον ἐκ τροχαϊκῆς βάσεως καὶ ἀναπαιστικῆς , καὶ ἑφθημιμερὲς ἢ Ἰωνικόν , ἀπὸ μὲν τριμέτρου |
| τὸ ξηρὸν ἐν τῷ ἀφεψήματι καταιόνησον ἑπτάκις τῆς ἡμέρας ἐξ ὡριαίου διαστήματος , τῇ δ ' ἐπιούσῃ ἕτερον ὁμοίως σκευάσας | ||
| μέρος ἐστὶ τοῦ δρόμου , καὶ τοῦτο ἐκκρούειν ἐκ τοῦ ὡριαίου μεγέθους . Ἄλλως . Ἐπεξεύρομεν δὲ καὶ ἄλλως τὸ |
| δυναμένη , ἀποστάσεως δὲ δεομένη . ἐὰν δ ' αὐτόθεν ἀφαιρῶ , ἀρκοῦμαι τῷ ἀκρωτηριασμῷ καὶ τὴν σκυταλίδα πρίζω πρὸς | ||
| Γ φησὶν ⌈ οὖν Γ , ὅτι τὸν τρίβωνα οὐκ ἀφαιρῶ Γ ἐμαυτοῦ : τὸν γὰρ τρίβωνα περισπάσας θέλει αὐτὸν |
| μοίρας ιεʹ γίνεται νεʹ ἡ διάστασις : εἰς τὰς ιεʹ ἀπολύω ἄλλα δύο δωδεκατημόρια ἕως Σκορπίου : γίνονται μοῖραι ιϚʹ | ||
| πείθονται αὐτοῖς . ἐγὼ μὲν οὖν , ἐγὼ μὲν οὖν ἀπολύω καὶ ὑμᾶς τῆς αἰτίας καὶ Ἀγασίαν , ἂν αὐτὸς |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| α αἱ πηγαὶ τοῦ ποταμοῦ . . . . . ρκϚ βορ . α Ὄδωκα πόλις . . . . | ||
| . . . . . . . . . . ρκϚ ∠ ʹ ιγ . Ἡ ἐκτὸς Γάγγου Ἰνδικὴ περιορίζεται |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| παρὰ τῶν ὀφειλόντων : ἐὰν δὲ μὴ πράξῃ , αὐτὸς ὀφειλέτω τοῖς δημόταις . Τοὺς δὲ μὴ ἀποδιδόντας τὰς μισθώσεις | ||
| ὅπως ἂν δύνηται ὀλιγίστου : ἐὰν δὲ μὴ ἀπομισθώσῃ , ὀφειλέτω χιλίας δραχμὰς τῷ δημοσίῳ . ὅ τι δ ' |
| τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . Εἶτα διὰ τὸ μὴ | ||
| Τὰ δὲ ἐλάσσονα γίνεται Ϟ Ϛ ↑ μο σμ ἴσα Ϟῷ ἑνὶ μονάσιν π . Ἀπὸ ὁμοίων ὅμοια . Γίνονται |
| ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
| Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| τῶν ἰσχίων , λάσιον ἐγκηρώσας , ὅκως καὶ τὰ ἔξωθεν περιέξει , καὶ διαλιπὼν πυρία τοῖσιν ἀσκίοισι , θερμὸν ὕδωρ | ||
| δύο κανονίων τοῦ τε τῆς Ἀφροδίτης καὶ τοῦ τοῦ Ἑρμοῦ περιέξει τὰς ὑπὸ τῶν μεγίστων λοξώσεων τῶν ἐπικύκλων αὐτῶν , |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα τῶν ἐπιζητουμένων ἐνιαυτῶν τὰς μέσως θεωρουμένας συζυγίας | ||
| τὸ φαινόμενον ἀπόγειον τοῦ ἐπικύκλου θεωρουμένας τῆς ἀνωμαλίας μοίρας παρατιθέναι προαιρώμεθα , ἀλλὰ διὰ τὸ προχειρότερον τὰς πρὸς τὸ περιοδικὸν |
| καὶ τῆς ἰδίου οὐσίας δηλωτικὸν ἢ καὶ τὸν αὐτὸν τῷ προσκειμένῳ : οὕτως γὰρ αὐτῷ ὑπάρξει ὁ μείζων ἄκρος . | ||
| δυνα - τόν . Ἀλλ ' ὅταν μὲν ἐν τῷ προσκειμένῳ τῶν ἀντικειμένων τι ἐνυπάρχῃ . τὸν κανόνα παραδίδωσιν λοιπὸν |
| τῶν ὁλοκλήρων ἐτῶν νβʹ τὰς ἀνὰ εʹ δʹ : γίνονται σογʹ : καὶ ἀπὸ Μεχὶρ ιβʹ ἕως Παϋνὶ ιεʹ : | ||
| σταδίων ͵γτʹ . Ἔχει δὲ ἔθνη νεʹ , πόλεις ἐπισήμους σογʹ , ὄρη ἐπίσημα εʹ , ποταμοὺς ἐπισήμους κγʹ , |
| τε δίς καὶ τρίς , ἐκ δὲ τοῦ δυάκις καὶ τριάκις συγκεκόφθαι , ἐπειδὴ τὰ εἰς ς λήγοντα μετὰ βραχείας | ||
| ριδ . Ἐπεὶ μο εἰσὶν αἱ ιη , εἰκοσάκις καὶ τριάκις τὰ ιη γίνεται υιδ : ἡ δὲ λεῖψις τῶν |
| ἀφειστήκει ὁ ἀστὴρ εἰς τὰ ἑπόμενα τοῦ ἡλίου , μοιρῶν ιη β . διὰ δὲ τοῦ τῆς ἀνωμαλίας κανόνος , | ||
| οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ , τοιούτων ἐδείχθη ιη λη , οἵων δ ' αἱ β ὀρθαὶ τξ |
| γὰρ βραδύτερον ἐξολιϲθαίνει καὶ χαλεπώτερον ἐμβάλλεται διὰ τὴν πυκνότητα τῶν ὑπεροχῶν τε καὶ κοιλοτήτων . πάϲχει μὲν οὖν ἔϲτιν ὅτε | ||
| μέσου , ἀλλὰ τοσούτῳ ἔλαττον , ὅσῳ τὸ ὑπὸ τῶν ὑπεροχῶν ἐστιν : ἦν δὲ ἡ ὑπεροχὴ μονάς : ἅπαξ |
| τοῦ λόγου τοῦ τῶν ριδ ιϚ πρὸς τὰ λϚ λη ἀφέλωμεν τὸν τῶν ριζ ιβ πρὸς τὰ κε μδ , | ||
| ἑκάτερος αὐτῶν ἐλάσσων Μο ι , καὶ ἐὰν ἑκάτερον αὐτῶν ἀφέλωμεν ἀπὸ Μο ι , εὑρήσομεν τοὺς λοιποὺς τῶν ζητουμένων |
| εἰπεῖν ὑπονοοῦντες ἴσως τινὰ ἐρεῖν , ὅτι δύναμαι μηδὲν τῶν ἀπογεγραμμένων ταὐτόν τι λαβών , ὅπερ ἐν πᾶσι τοῖς προβλήμασιν | ||
| ἑξηκοστὰ ἐν τῷ τρίτῳ σελιδίῳ , τὰ τοσαῦτα ἑκατέρας τῶν ἀπογεγραμμένων παραλλάξεων προσθέντες χωρὶς ἑκάτερα τὰς ἐπὶ τοῦ τότε ἀποστήματος |